1
|
Wang L, Wang Y, Ding K, Li Z, Zhang Z, Li X, Song Y, Xie L, Chen Z. YTHDC1 promotes postnatal brown adipose tissue development and thermogenesis by stabilizing PPARγ. EMBO J 2025:10.1038/s44318-025-00460-x. [PMID: 40355558 DOI: 10.1038/s44318-025-00460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Brown adipose tissue (BAT) plays a vital role in non-shivering thermogenesis and energy metabolism and is influenced by factors like environmental temperature, ageing, and obesity. However, the molecular mechanisms behind BAT development and thermogenesis are not fully understood. Our study identifies the m6A reader protein YTHDC1 as a crucial regulator of postnatal interscapular BAT development and energy metabolism in mice. YTHDC1 directly interacts with PPARγ through its intrinsically disordered region (IDR), thus protecting PPARγ from binding the E3 ubiquitin ligase ARIH2, and preventing its ubiquitin-mediated proteasomal degradation. Specifically, the ARIH2 RING2 domain is essential for PPARγ degradation, while PPARγ's A/B domain is necessary for their interaction. Deletion of Ythdc1 in BAT increases PPARγ degradation, impairing interscapular BAT development, thermogenesis, and overall energy expenditure. These findings reveal a novel mechanism by which YTHDC1 regulates BAT development and energy homeostasis independently of its m6A recognition function.
Collapse
Affiliation(s)
- Lihua Wang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
- Department of Cardiovascular Surgery, Institute for Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Kaixin Ding
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhipeng Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yue Song
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
2
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Lu Y, Zhang Y, Yao J, Bai W, Li K. Histone Modifications: Potential Therapeutic Targets for Diabetic Retinopathy. Biomolecules 2025; 15:575. [PMID: 40305347 PMCID: PMC12024956 DOI: 10.3390/biom15040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication arising as a secondary effect of diabetes, with both genetic and environmental factors playing a significant role in its onset and progression. Epigenetics serves as the crucial link between these genetic and environmental influences. Among the various epigenetic mechanisms, histone modification stands out as a key regulatory process associated with the development of many diseases. Histone modifications primarily regulate cellular function by influencing gene expression. Modulating histone modifications, particularly through the regulation of enzymes involved in these processes, holds a promising therapeutic approach for managing diseases like DR. In this review, we explore the regulatory mechanisms of histone modification and its contribution to the pathogenesis of DR.
Collapse
Affiliation(s)
- Yao Lu
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.L.); (J.Y.)
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Yizheng Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Jin Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.L.); (J.Y.)
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Wen Bai
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.L.); (J.Y.)
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.L.); (J.Y.)
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China;
| |
Collapse
|
4
|
Li SS, Lei DL, Yu HR, Xiang S, Wang YH, Wu ZJ, Jiang L, Huang ZT. Diagnostic value and immune infiltration characterization of WTAP as a critical m6A regulator in liver transplantation. Hepatobiliary Pancreat Dis Int 2025; 24:138-146. [PMID: 39730289 DOI: 10.1016/j.hbpd.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) regulators are essential for numerous biological processes and are implicated in various diseases. However, the comprehensive role of m6A regulators in the context of liver transplantation (LT) remains poorly understood. This study aimed to illustrate the relationship between m6A regulators and ischemia-reperfusion injury (IRI) following LT. METHODS Datasets were acquired from the Gene Expression Omnibus database. Differential analysis of the merged data identified the differentially expressed m6A regulators. Random forest (RF) models and nomograms were used to forecast the incidence and assess the IRI risk following LT. m6A regulators were classified into distinct subgroups using cluster analysis. The differential gene expression was validated using immunohistochemistry, immunofluorescence, and Western blotting. RESULTS We found significant disparities in the gene expression levels of the three m6A regulators between patients with and without LT. Wilms' tumor 1-associating protein (WTAP) expression was upregulated following LT. The RF models exhibited a high degree of accuracy in predicting IRI risk. Immune infiltration analysis showed that WTAP was an immune-associated m6A regulator that was closely associated with T and B cells. WTAP expression in the rat LT model was upregulated after 24 h of reperfusion, which was consistent with the results of the bioinformatics analysis. CONCLUSIONS WTAP has a high diagnostic value for IRI in LT and influences the immune status of patients. Hence, WTAP, as a significant regulator of m6A, is a potential biomarker for the detection and implementation of immunotherapy for IRI following LT.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Deng-Liang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Hua-Rong Yu
- Department of Basic Medical Sciences, Chongqing Medical University, Chongqing 400000, China
| | - Song Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Yi-Hua Wang
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Li Jiang
- Department of General Surgery, Division of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zuo-Tian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| |
Collapse
|
5
|
Ding K, Zhang Z, Han Z, Shi L, Li X, Liu Y, Li Z, Zhao C, Cui Y, Zhou L, Xu B, Zhou W, Zhao Y, Wang Z, Huang H, Xie L, Chen XW, Chen Z. Liver ALKBH5 regulates glucose and lipid homeostasis independently through GCGR and mTORC1 signaling. Science 2025; 387:eadp4120. [PMID: 40014709 DOI: 10.1126/science.adp4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 03/01/2025]
Abstract
Maintaining glucose and lipid homeostasis is crucial for health, with dysregulation leading to metabolic diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated fatty liver disease (MAFLD). This study identifies alkylation repair homolog protein 5 (ALKBH5), an RNA N6-methyladenosine (m6A) demethylase, as a major regulator in metabolic disease. ALKBH5 is up-regulated in the liver during obesity and also phosphorylated by protein kinase A, causing its translocation to the cytosol. Hepatocyte-specific deletion of Alkbh5 reduces glucose and lipids by inhibiting the glucagon receptor (GCGR) and mammalian target of rapamycin complex 1 (mTORC1) signaling pathways. Targeted knockdown of hepatic Alkbh5 reverses T2DM and MAFLD in diabetic mice, highlighting its therapeutic potential. This study unveils a regulatory mechanism wherein ALKBH5 orchestrates glucose and lipid homeostasis by integrating the GCGR and mTORC1 pathways, providing insight into the regulation of metabolic diseases.
Collapse
Affiliation(s)
- Kaixin Ding
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhipeng Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Lei Shi
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Xinzhi Li
- NHC Key Laboratory of Cell Transplantation, Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Chongchong Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Yifeng Cui
- NHC Key Laboratory of Cell Transplantation, Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liying Zhou
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Bolin Xu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, and Center for Life Sciences, Peking University, Beijing, China
| | - Wenjing Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, and Center for Life Sciences, Peking University, Beijing, China
| | - Yikui Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhiqiang Wang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - He Huang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, and Center for Life Sciences, Peking University, Beijing, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
6
|
Shen D, Yu X, Fan X, Liang Y, Lu D, Ke Z, Wang L, Xiang P, Xiao J. CDCA3-MYC positive feedback loop promotes bladder cancer progression via ENO1-mediated glycolysis. J Exp Clin Cancer Res 2025; 44:63. [PMID: 39980052 PMCID: PMC11841255 DOI: 10.1186/s13046-025-03325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Bladder cancer (BLCA) ranks among the most prevalent malignancies of the urinary system, with its clinical diagnosis predominantly reliant on invasive procedures. Traditional chemotherapy regimens exhibit significant limitations, underscoring the urgency of identifying novel diagnostic biomarkers and strategies to enhance chemotherapy efficacy. CDCA3 has been recognized as a facilitator of BLCA progression, activated by MYBL2. However, its precise regulatory mechanisms in BLCA pathogenesis remain incompletely elucidated. METHODS To investigate the functional role of CDCA3 in BLCA, MTT and colony formation assays were employed to assess cellular proliferation, while flow cytometry was utilized to evaluate apoptosis and intracellular ROS levels. The expression of CDCA3, ENO1, TRIM28, and MYC was analyzed through WB and qRT-PCR, and Co-IP assays were conducted to delineate interactions among CDCA3, TRIM28, and MYC. RESULTS CDCA3, a key regulator of the cell cycle, facilitates BLCA glycolysis by modulating the transcriptional expression of α-Enolase (ENO1), thereby enhancing BLCA progression. Mechanistically, CDCA3 recruits TRIM28, which stabilizes MYC, while MYC transcriptionally upregulates CDCA3, establishing a self-reinforcing CDCA3-MYC feedback loop. A risk prediction model incorporating the expression profiles of CDCA3 and ENO1 was developed to evaluate the overall survival of patients with BLCA. This model provides a prognostic tool to predict survival outcomes in patients with BLCA based on CDCA3 and ENO1 expression levels. CONCLUSIONS This study delineates a novel role for CDCA3 in the regulation of BLCA glycolysis and identifies its interaction with MYC as a critical positive feedback mechanism, providing fresh insights into the molecular mechanisms underlying BLCA progression.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xiang Yu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuefeng Fan
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yu Liang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongmei Lu
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Zongpan Ke
- Department of Urology, The Second Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ping Xiang
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
7
|
Zhu J, Wu X, Mu M, Zhang Q, Zhao X. TEC-mediated tRF-31R9J regulates histone lactylation and acetylation by HDAC1 to suppress hepatocyte ferroptosis and improve non-alcoholic steatohepatitis. Clin Epigenetics 2025; 17:9. [PMID: 39838504 PMCID: PMC11748747 DOI: 10.1186/s13148-025-01813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Tectorigenin (TEC) is a monomer of anthocyanin, which we found exhibits hepatoprotective effects. tRNA-derived fragments (tRFs) and ferroptosis play important roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). Recent discoveries have revealed that histone lactylation and acetylation play a crucial role in connecting cellular metabolism and epigenetic regulation through post-translational modification of histones. However, it is unclear whether TEC improves NASH by regulating histone lactylation, acetylation and hepatocyte ferroptosis through tRFs. RESULTS In this study, we demonstrated that TEC significantly inhibits free fatty acids-induced hepatocyte ferroptosis both in vitro and in vivo. We identified tRF-31R9J (tRF-31-R9JP9P9NH5HYD) involved in TEC regulation of ferroptosis in steatosis hepatocytes. Overexpression of tRF-31R9J suppressed hepatocyte ferroptosis and enhanced cell viability in steatosis HepG2 cells. Knockdown of tRF-31R9J partially counteracted the inhibitory effect of TEC on ferroptosis in hepatocytes. Mechanistically, tRF-31R9J recruited HDAC1 to reduce the levels of histone lactylation and acetylation modifications of the pro-ferroptosis genes ATF3, ATF4, and CHAC1, thereby inhibiting their gene expression. CONCLUSIONS This study demonstrates that TEC-mediated tRF-31R9J inhibits hepatocyte ferroptosis through HDAC1-regulated histone delactylation and deacetylation, thereby improving NASH. These discoveries offer a theoretical foundation and new strategies for the medical management of NASH.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Xian Wu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Mao Mu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Quan Zhang
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China
| | - Xueke Zhao
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
8
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
9
|
Bove G, Crepaldi M, Amin S, Megchelenbrink WL, Nebbioso A, Carafa V, Altucci L, Del Gaudio N. The m 6A-independent role of epitranscriptomic factors in cancer. Int J Cancer 2024; 155:1705-1713. [PMID: 38935523 DOI: 10.1002/ijc.35067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.
Collapse
Affiliation(s)
- Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Crepaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sajid Amin
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Wouter Leonard Megchelenbrink
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Prinses Máxima Centrum, Utrecht, The Netherlands
- BIOGEM, Via Camporeale, Ariano Irpino, Italy
- IEOS-CNR Institute for Endocrinology and Oncology "Gaetano Salvatore", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Lin Y, Lin P, Lu Y, Zheng J, Zheng Y, Huang X, Zhao X, Cui L. Post-Translational Modifications of RNA-Modifying Proteins in Cellular Dynamics and Disease Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406318. [PMID: 39377984 PMCID: PMC11600222 DOI: 10.1002/advs.202406318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Indexed: 11/28/2024]
Abstract
RNA-modifying proteins, classified as "writers," "erasers," and "readers," dynamically modulate RNA by adding, removing, or interpreting chemical groups, thereby influencing RNA stability, functionality, and interactions. To date, over 170 distinct RNA chemical modifications and more than 100 RNA-modifying enzymes have been identified, with ongoing research expanding these numbers. Although significant progress has been made in understanding RNA modification, the regulatory mechanisms that govern RNA-modifying proteins themselves remain insufficiently explored. Post-translational modifications (PTMs) such as phosphorylation, ubiquitination, and acetylation are crucial in modulating the function and behavior of these proteins. However, the full extent of PTM influence on RNA-modifying proteins and their role in disease development remains to be fully elucidated. This review addresses these gaps by offering a comprehensive analysis of the roles PTMs play in regulating RNA-modifying proteins. Mechanistic insights are provided into how these modifications alter biological processes, contribute to cellular function, and drive disease progression. In addition, the current research landscape is examined, highlighting the therapeutic potential of targeting PTMs on RNA-modifying proteins for precision medicine. By advancing understanding of these regulatory networks, this review seeks to facilitate the development of more effective therapeutic strategies and inspire future research in the critical area of PTMs in RNA-modifying proteins.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Pei Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Ye Lu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Yucheng Zheng
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xiangyu Huang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Xinyuan Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
| | - Li Cui
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdong510280China
- School of DentistryUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
11
|
Li S, Mehal WZ, Ouyang X. RNA modifications in the progression of liver diseases: from fatty liver to cancer. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2105-2119. [PMID: 38809498 PMCID: PMC11545962 DOI: 10.1007/s11427-023-2494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/24/2023] [Indexed: 05/30/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern associated with high risk of metabolic syndrome, and has impacted a substantial segment of the population. The disease spectrum ranges from simple fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is increasingly becoming a prevalent indication for liver transplantation. The existing therapeutic options for NAFLD, NASH, and HCC are limited, underscoring the urgent need for innovative treatment strategies. Insights into gene expression, particularly RNA modifications such as N6 methyladenosine (m6A), hold promising avenues for interventions. These modifications play integral roles in RNA metabolism and cellular functions, encompassing the entire NAFLD-NASH-HCC progression. This review will encompass recent insights on diverse RNA modifications, including m6A, pseudouridine (ψ), N1-methyladenosine (m1A), and 5-methylcytidine (m5C) across various RNA species. It will uncover their significance in crucial aspects such as steatosis, inflammation, fibrosis, and tumorigenesis. Furthermore, prospective research directions and therapeutic implications will be explored, advancing our comprehensive understanding of the intricate interconnected nature of these pathological conditions.
Collapse
Affiliation(s)
- Simiao Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Lian X, Tang X. Immune infiltration analysis based on pyroptosis-related gene in metabolic dysfunction-associated fatty liver disease. Heliyon 2024; 10:e34348. [PMID: 39145004 PMCID: PMC11320144 DOI: 10.1016/j.heliyon.2024.e34348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic disease that can involve pyroptosis. The primary objective of this study was to conduct a thorough and comprehensive analysis the pyroptosis-related genes in MAFLD. Methods We identified pyroptosis-related differentially expressed genes (PRDEGs) in both healthy individuals and MAFLD patients. Using various bioinformatic approaches, we conducted an immune infiltration analysis from multiple perspectives. Results A total of 20 pyroptosis-related LASSO genes were obtained, and 10 hub genes were used to do immune infiltration analysis. The hub genes were utilized in the construction of interaction networks between mRNA-miRNA and mRNA-TF. Immune characteristics analysis revealed multiple immune cell types significantly related to PRDEG expression, particularly genes HSP90AA1, TSLP, CDK9, and BRD4. Conclusion Pyroptosis-related immune infiltration might be a mechanism of MAFLD progression and offers a research direction for potential treatment techniques.
Collapse
Affiliation(s)
- Xin Lian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xulei Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
13
|
Fang M, Li T, Wu Z. WTAP-MEDIATED M6A MODIFICATION OF KLF6 AGGRAVATES HYPOXIA/REOXYGENATION-INDUCED HUMAN CARDIOMYOCYTE INJURY. Shock 2024; 62:201-207. [PMID: 38662610 DOI: 10.1097/shk.0000000000002373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Background: Myocardial infarction (MI) is a severe condition that typically results from the ischemia and necrosis of heart muscle. Kruppel-like factor 6 (KLF6) can aggravate myocardial ischemia/reperfusion injury. This work aims to reveal its role and mechanism in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. Methods: Human cardiomyocyte (AC16) was exposed to hypoxic treatment to mimic MI-like cell injury. mRNA expression levels of KLF6 and WT1-associated protein (WTAP) were detected by quantitative real-time polymerase chain reaction. Protein expression was detected by western blotting assay. Cell viability was assessed by CCK-8 assay. Cell apoptosis and cell cycle were investigated by flow cytometry. Enzyme-linked immunosorbent assays were conducted to detect IL-1β, TNF-α and IL-6 levels. Fe 2+ colorimetric assay kit was used to detect Fe 2+ level. MDA Content Assay Kit was used to detect MDA level. Cellular ROS Assay kit was applied to assess ROS level. The association of KLF6 and WTAP was identified by RNA immunoprecipitation assay and dual-luciferase reporter assay. Results: KLF6 and WTAP expression at mRNA and protein levels were significantly upregulated in serum samples of MI patients and H/R-induced AC16 cells when compared with control groups. KLF6 silencing attenuated H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis. Additionally, WTAP stabilized KLF6 mRNA by regulating its m6A modification. Furthermore, WTAP knockdown rescued H/R-induced AC16 cell apoptosis, inflammatory response, oxidative stress, and ferroptosis by decreasing KLF6 expression. Conclusion: WTAP-mediated m6A modification of KLF6 aggravated hypoxia/reoxygenation-induced apoptosis, inflammatory response, oxidative stress, and ferroptosis of human cardiomyocytes, providing a therapeutic strategy for MI.
Collapse
Affiliation(s)
- Mingcheng Fang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | | | | |
Collapse
|
14
|
Li Y, Yang Y, Niu Y, Li Y, Hu Z, Sun S, Chen Y, Hu B, Huang Y, Deng X. The role of WTAP in regulating macrophage-mediated osteoimmune responses and tissue regeneration in periodontitis. Front Immunol 2024; 15:1423378. [PMID: 39081311 PMCID: PMC11286459 DOI: 10.3389/fimmu.2024.1423378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Periodontitis, delineated by the destruction of structures that support teeth, is predominantly propelled by intricate immune responses. Immunomodulatory treatments offer considerable promise for the management of this ailment; however, the modulation of the periodontal immune microenvironment to facilitate tissue regeneration presents a substantial biomedical challenge. Herein, our study investigates the role of Wilms' tumor 1-associating protein (WTAP), a critical m6A methyltransferase, in the immunomodulation of periodontitis and assesses its viability as a therapeutic target. We observed heightened expression of WTAP in macrophages extracted from gingival tissues impacted by periodontitis, with a strong association with M1 polarization. Via loss-of-function experiments, we demonstrated that diminishing WTAP expression precipitates a transition from M1 to M2 macrophage phenotypes amidst inflammatory conditions, thus improving the periodontal immune landscape. Further, RNA sequencing and indirect co-culture assays indicated that suppressing of WTAP expression modulates osteoimmune responses and enhances the osteogenic differentiation of bone marrow stromal cells. The local deployment of adeno-associated virus-shWTAP in murine models of periodontitis robustly validated the therapeutic promise of targeting WTAP in this disease. Collectively, our findings highlight the crucial role of WTAP in orchestrating macrophage-mediated osteoimmune responses and tissue regeneration in periodontitis, proposing novel avenues for immunotherapeutic interventions in its treatment.
Collapse
Affiliation(s)
- Yuman Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yuting Niu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yao Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhewen Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Shiyu Sun
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yiming Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Bo Hu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
15
|
Shi L, Li X, Zhang M, Qin C, Zhang Z, Chen Z. Downregulation of Wtap causes dilated cardiomyopathy and heart failure. J Mol Cell Cardiol 2024; 188:38-51. [PMID: 38224851 DOI: 10.1016/j.yjmcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
RNA binding proteins have been shown to regulate heart development and cardiac diseases. However, the detailed molecular mechanisms is not known. In this study, we identified Wilms' tumor 1-associating protein (WTAP, a key regulatory protein of the m6A RNA methyltransferase complex) as a key regulator of heart function and cardiac diseases. WTAP is associated with heart development, and its expression is downregulated in both human and mice with heart failure. Cardiomyocyte-specific knockout of Wtap (Wtap-CKO) induces dilated cardiomyopathy, heart failure and neonatal death. Although WTAP deficiency in the heart decreases METTL3 (methyltransferase-like 3) protein levels, cardiomyocyte-specific overexpression of Mettl3 in Wtap-CKO mice does not rescue the phenotypes of Wtap-CKO mice. Instead, WTAP deficiency in the heart decreases chromatin accessibility in the promoter regions of Mef2a (myocyte enhancer factor-2α) and Mef2c, leading to reduced mRNA and protein levels of these genes and lower expression of their target genes. Conversely, WTAP directly binds to the promoter of the Mef2c gene and increases its promoter luciferase activity and expression. These data demonstrate that WTAP plays a key role in heart development and cardiac function by maintaining the chromatin accessibility of cardiomyocyte specific genes.
Collapse
Affiliation(s)
- Lei Shi
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China; HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Meiwei Zhang
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China
| | - Cong Qin
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China
| | - Zhiguo Zhang
- Department of Cardiology at the First Hospital of Jilin University, Changchun 130021, China.
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
16
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
17
|
Dai J, Zhang L, Zhang R, Ge J, Yao F, Zhou S, Xu J, Yu K, Xu J, Jiang L, Jin K, Dai X, Li J, Li Q. Hepatocyte Deubiquitinating Enzyme OTUD5 Deficiency is a Key Aggravator for Metabolic Dysfunction-Associated Steatohepatitis by Disturbing Mitochondrial Homeostasis. Cell Mol Gastroenterol Hepatol 2023; 17:399-421. [PMID: 38036082 PMCID: PMC10827517 DOI: 10.1016/j.jcmgh.2023.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a common chronic liver disease worldwide. No effective pharmacologic therapies for MASH have been developed; to develop such promising drugs, the underlying mechanisms regulating MASH need to be elucidated. Here, we aimed to determine the role of ovarian tumor domain-containing protein 5 (OTUD5) in MASH progression and identify a specific mechanism. METHODS The expression levels of OTUD subfamily under palmitic acid/oleic acid (PAOA) stimulation were screened. OTUD5 expression was assessed in human liver tissues without steatosis, those with simple steatosis, and those with MASH. MASH models were developed in hepatocyte-specific Otud5-knockout mice that were fed high-fat high-cholesterol and high-fat high-cholesterol plus high-fructose/sucrose diet for 16 weeks. RESULTS The expression of OTUD5 was down-regulated in fatty liver and was negatively related to the progression of MASH. Lipid accumulation and inflammation were exacerbated by Otud5 knockdown but attenuated by Otud5 overexpression under PAOA treatment. Hepatocyte-specific Otud5 deletion markedly exacerbated steatosis, inflammation, and fibrosis in the livers of 2 MASH mouse models. We identified voltage-dependent anion channel 2 (VDAC2) as an OTUD5-interacting partner; OTUD5 cleaved the K48-linked polyubiquitin chains from VDAC2, and it inhibited subsequent proteasomal degradation. The anabolic effects of OTUD5 knockdown on PAOA-induced lipid accumulation were effectively reversed by VDAC2 overexpression in primary hepatocytes. Metabolomic results revealed that VDAC2 is required for OTUD5-mediated protection against hepatic steatosis by maintaining mitochondrial function. CONCLUSIONS OTUD5 may ameliorate MASH progression via VDAC2-maintained mitochondrial homeostasis. Targeting OTUD5 may be a viable MASH-treatment strategy.
Collapse
Affiliation(s)
- Jingjing Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Liren Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Ruizhi Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jing Ge
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Feifan Yao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jiali Xu
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Longfeng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ke Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Xinzheng Dai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Qing Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
18
|
Wang X, Li X, Zong Y, Yu J, Chen Y, Zhao M, Wu D, Liao Y, Jiang C, Zhu H. Identification and Validation of Genes Related to RNA Methylation Modification in Diabetic Retinopathy. Curr Eye Res 2023; 48:1034-1049. [PMID: 37529844 DOI: 10.1080/02713683.2023.2238144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE To identify and validate the differentially expressed genes related to RNA methylation modification in diabetic retinopathy. METHODS The data sets GSE12610 and GSE111465 related to diabetic retinopathy in the Gene Expression Omnibus were selected. The R software package was used to identify differentially expressed genes related to RNA methylation modification in diabetic retinopathy. Protein-protein interaction network was constructed to explore the interactions between proteins and predict proteins. Then, Gene Ontology annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were used to analyze the potential enrichment pathways and clarify the biological functions of these genes. In addition, the correlation between them and immune cells was visualized, and receiver operating characteristic curves were drawn to evaluate the diagnostic performance of each one of them for diabetic retinopathy. To verify the differentially expressed genes, the mRNA expression of rat retinal vascular endothelial cells cultured in low and high glucose medium separately were detected by RT-qPCR. RESULTS The expression of Lrpprc, Nsun4, Nsun6 and Trdmt1 were significantly up-regulated in diabetic retinopathy samples, while the expression of Cbll1, Hnrnpc, Mettl3 and Wtap were significantly down-regulated. Differentially expressed genes were mainly enriched in the RNA-methylation-medication pathways and biological function. The results of immune infiltration analysis proved that eosinophils aggregated more in diabetic group, while T cells follicular helper aggregated more in normal samples. These genes of Cbll1 (AUC = 0.986), Hnrnpc (AUC = 0.819), Lrpprc (AUC = 0.806), Mettl3 (AUC = 0.917), Nsun4 (AUC = 0.819), Nsun6 (AUC = 0.819), Trdmt1 (AUC = 0.972) and Wtap (AUC = 0.972) were respectively used as the diagnostic basis of diabetic retinopathy. According to the RT-qPCR results, the expression of Mettl3 was significantly down-regulated (p < 0.0005) in cells cultured in high glucose, while Trdmt1 (p < 0.05), Nsun4 (p < 0.05) and Nsun6 (p < 0.05) were significantly up-regulated. CONCLUSION Differentially expressed genes such as Mettl3, Nsun4, Nsun6, and Trdmt1 should be conducted to explore, and the role of RNA methylation in the process of diabetic retinopathy would be revealed in-depth.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiaomei Li
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yan Chen
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minghui Zhao
- Department of Ophthalmology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danping Wu
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yujie Liao
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Haohao Zhu
- Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Li X, Liu C, Zhang Z, Li X, Yao Z, Dong Y, Wang X, Chen Z. Hepatocyte-specific Wtap deficiency promotes hepatocellular carcinoma by activating GRB2-ERK depending on downregulation of proteasome-related genes. J Biol Chem 2023; 299:105301. [PMID: 37777158 PMCID: PMC10630636 DOI: 10.1016/j.jbc.2023.105301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Wilm's tumor 1-associating protein (WTAP), a regulatory protein of the m6A methyltransferase complex, has been found to play a role in regulating various physiological and pathological processes. However, the in vivo role of WTAP in the pathogenesis of hepatocellular carcinoma (HCC) is unknown. In this study, we have elucidated the crucial role of WTAP in HCC progression and shown that hepatic deletion of Wtap promotes HCC pathogenesis through activation of multiple signaling pathways. A single dose of diethylnitrosamine injection causes more and larger HCCs in hepatocyte-specific Wtap knockout (Wtap-HKO) mice than Wtapflox/flox mice fed with either normal chow diet or a high-fat diet. Elevated CD36, IGFBP1 (insulin-like growth factor-binding protein 1), and chemokine (C-C motif) ligand 2 (CCL2) expression leads to steatosis and inflammation in the Wtap-HKO livers. The hepatocyte proliferation is dramatically increased in Wtap-HKO mice, which is due to higher activation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-3 signaling pathways. Hepatic deletion of Wtap activates the ERK signaling pathway by increasing the protein stability of GRB2 and ERK1/2, which is due to the decreased expression of proteasome-related genes. Restoring PSMB4 or PSMB6 (two key components of the proteasome) leads to the downregulation of GRB2 and ERK1/2 in Wtap-HKO hepatocytes. Mechanistically, WTAP interacts with RNA polymerase II and H3K9ac to maintain expression of proteasome-related genes. These results demonstrate that hepatic deletion of Wtap promotes HCC progression through activating GRB2-ERK1/2-mediated signaling pathway depending on the downregulation of proteasome-related genes especially Psmb4 and Psmb6.
Collapse
Affiliation(s)
- Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhimin Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xueying Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhicheng Yao
- Department of General surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
20
|
Liu C, Li X, Gao M, Dong Y, Chen Z. Downregulation of hepatic METTL3 contributes to APAP-induced liver injury in mice. JHEP Rep 2023; 5:100766. [PMID: 37456679 PMCID: PMC10338307 DOI: 10.1016/j.jhepr.2023.100766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background & Aims Acetaminophen (APAP) overdose is a major cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. Methyltransferase-like 3 (METTL3) is a core N6-methyl-adenosine (m6A) RNA methyltransferase that has been shown to regulate many physiological and pathological processes. This study aimed to investigate the role of METTL3 in APAP-induced liver injury in mice. Methods Hepatocyte-specific Mettl3 knockout (Mettl3-HKO) mice and adenovirus-mediated gene overexpression or knockdown were used. We assayed APAP-induced liver injury by measuring serum alanine aminotransferase/aspartate aminotransferase activity, necrotic area, cell death, reactive oxygen species levels and activation of signalling pathways. We also performed mechanistic studies using a variety of assays and molecular techniques. Results Hepatic METTL3 is downregulated in APAP-induced liver injury, and hepatocyte-specific deletion of Mettl3 accelerates APAP-induced liver injury, leading to increased mortality as a result of the dramatic activation of the mitogen-activated protein kinase kinase 4 (MKK4) / c-Jun NH2-terminal kinase (JNK) signalling pathway. Inhibition of JNK by SP600125 largely blocks APAP-induced liver injury in Mettl3-HKO mice. Hepatic deletion of Mettl3 activates the MKK4/JNK signalling pathway by increasing the protein stability of MKK4 and JNK1/2 as a result of decreased proteasome activity. Restoration of proteasome activity by overexpression of proteasome 20S subunit beta 4 (PSMB4) or proteasome 20S subunit beta 6 (PSMB6) leads to the downregulation of MKK4 and JNK in Mettl3-HKO hepatocytes. Mechanistically, METTL3 interacts with RNA polymerase II and active histone modifications such as H3K9ac, H3K27ac, and H3K36me3 to maintain the expression of proteasome-related genes. Conclusions Our study demonstrated that downregulation of METTL3 promotes APAP-induced liver injury by decreasing proteasome activity and thereby enhancing activity of the MKK4/JNK signalling pathway. Impact and Implications Acetaminophen (APAP) overdose is a key cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. We demonstrated in this study that methyltransferase-like 3 (METTL3), a core m6A RNA methyltransferase, is downregulated in APAP-induced liver injury, which exacerbates APAP-induced liver injury through enhancing the MKK4/JNK signalling pathway with involvement of the decreased proteasome activity.
Collapse
Affiliation(s)
- Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
21
|
Ju G, Lei J, Cai S, Liu S, Yin X, Peng C. The Emerging, Multifaceted Role of WTAP in Cancer and Cancer Therapeutics. Cancers (Basel) 2023; 15:cancers15113053. [PMID: 37297015 DOI: 10.3390/cancers15113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a grave and persistent illness, with the rates of both its occurrence and death toll increasing at an alarming pace. N6-methyladenosine (m6A), the most prevalent mRNA modification in eukaryotic organisms, is catalyzed by methyltransferases and has a significant impact on various aspects of cancer progression. WT1-associated protein (WTAP) is a crucial component of the m6A methyltransferase complex, catalyzing m6A methylation on RNA. It has been demonstrated to participate in numerous cellular pathophysiological processes, including X chromosome inactivation, cell proliferation, cell cycle regulation, and alternative splicing. A better understanding of the role of WTAP in cancer may render it a reliable factor for early diagnosis and prognosis, as well as a key therapeutic target for cancer treatment. It has been found that WTAP is closely related to tumor cell cycle regulation, metabolic regulation, autophagy, tumor immunity, ferroptosis, epithelial mesenchymal transformation (EMT), and drug resistance. In this review, we will focus on the latest advances in the biological functions of WTAP in cancer, and explore the prospects of its application in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Guomin Ju
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Jiangchu Lei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Shuqi Cai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Siyuan Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Xinjia Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, China
| |
Collapse
|
22
|
Li X, Yang Y, Li Z, Wang Y, Qiao J, Chen Z. Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice. Diabetologia 2023; 66:1084-1096. [PMID: 36920524 DOI: 10.1007/s00125-023-05900-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
AIMS/HYPOTHESIS N6-methyladenosine (m6A) mRNA methylation and m6A-related proteins (methyltransferase-like 3 [METTL3], methyltransferase-like 14 [METTL14] and YTH domain containing 1 [YTHDC1]) have been shown to regulate islet beta cell function and the pathogenesis of diabetes. However, whether Wilms' tumour 1-associating protein (WTAP), a key regulator of the m6A RNA methyltransferase complex, regulates islet beta cell failure during pathogenesis of diabetes is largely unknown. The present study aimed to investigate the role of WTAP in the regulation of islet beta cell failure and diabetes. METHODS Islet beta cell-specific Wtap-knockout and beta cell-specific Mettl3-overexpressing mice were generated for this study. Blood glucose, glucose tolerance, serum insulin, glucose-stimulated insulin secretion (both in vivo and in vitro), insulin levels, glucagon levels and beta cell apoptosis were examined. RNA-seq and MeRIP-seq were performed, and the data were well analysed. RESULTS WTAP was downregulated in islet beta cells in type 2 diabetes, due to lipotoxicity and chronic inflammation, and islet beta cell-specific deletion of Wtap (Wtap-betaKO) induced beta cell failure and diabetes. Wtap-betaKO mice showed severe hyperglycaemia (above 20 mmol/l [360 mg/dl]) from 8 weeks of age onwards. Mechanistically, WTAP deficiency decreased m6A mRNA modification and reduced the expression of islet beta cell-specific transcription factors and insulin secretion-related genes by reducing METTL3 protein levels. Islet beta cell-specific overexpression of Mettl3 partially reversed the abnormalities observed in Wtap-betaKO mice. CONCLUSIONS/INTERPRETATION WTAP plays a key role in maintaining beta cell function by regulating m6A mRNA modification depending on METTL3, and the downregulation of WTAP leads to beta cell failure and diabetes. DATA AVAILABILITY The RNA-seq and MeRIP-seq datasets generated during the current study are available in the Gene Expression Omnibus database repository ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215156 ; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215360 ).
Collapse
Affiliation(s)
- Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jingting Qiao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
23
|
Li X, Yang Y, Chen Z. Downregulation of the m 6A reader protein YTHDC1 leads to islet β-cell failure and diabetes. Metabolism 2023; 138:155339. [PMID: 36302453 DOI: 10.1016/j.metabol.2022.155339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
N6-methyladenosine (m6A) methyltransferase writer proteins (METTL3/METTL14) have been shown to regulate β-cell function and diabetes. However, whether and which m6A reader proteins regulate β-cell function and the pathogenesis of diabetes are largely unknown. In this study, we showed that YTHDC1 (YTH domain-containing protein 1), a key m6A nuclear reader protein, plays an essential role in maintaining β-cell function. YTHDC1 is downregulated in islet β cells in type 2 diabetes, which is due to lipotoxicity and chronic inflammation. β-Cell specific deletion of Ythdc1 results in β-cell failure and diabetes, which is likely due to the decreased expression of β-cell specific transcription factors and insulin secretion-related genes. Taken together, YTHDC1 is required for maintaining β-cell function, and the downregulation of YTHDC1 leads to β-cell failure and diabetes.
Collapse
Affiliation(s)
- Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
24
|
Wang Y, Li X, Liu C, Zhou L, Shi L, Zhang Z, Chen L, Gao M, Gao L, Xu Y, Huang H, Li J, Chen Z. WTAP regulates postnatal development of brown adipose tissue by stabilizing METTL3 in mice. LIFE METABOLISM 2022; 1:270-284. [PMID: 39872074 PMCID: PMC11749075 DOI: 10.1093/lifemeta/loac028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 01/29/2025]
Abstract
Brown adipocyte maturation during postnatal development is essential for brown adipose tissue (BAT) to protect animals against cold. Impaired maturation of brown adipocytes leads to cold intolerance. However, the molecular mechanisms that determine the maturation of brown adipocytes during postnatal development are not fully understood. Here, we identify Wilms' tumor 1-associating protein (WTAP) as an essential regulator in the postnatal development and maturation of BAT. BAT-specific knockout of Wtap (Wtap-BKO) severely impairs maturation of BAT in vivo by decreasing the expression of BAT-selective genes, leading to the whitening of interscapular BAT (iBAT). Single nucleus RNA-sequencing analysis shows the dynamic changes of cell heterogeneity in iBAT of Wtap-BKO mice. Adult mice with WTAP deficiency in BAT display hypothermic and succumb to acute cold challenge. Mechanistically, WTAP deficiency decreases m6A mRNA modification by reducing the protein stability of METTL3. BAT-specific overexpression of Mettl3 partially rescues the phenotypes observed in Wtap-BKO mice. These data demonstrate that WTAP/METTL3 plays an essential role in iBAT postnatal development and thermogenesis.
Collapse
Affiliation(s)
- Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Cenxi Liu
- School of Life Science, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China
| | - Liying Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lei Shi
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Long Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Lanyue Gao
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuanyuan Xu
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jin Li
- School of Life Science, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
25
|
Qian Y, Ma Z, Liu C, Li X, Zhu X, Wang N, Xu Z, Xia R, Liang J, Duan Y, Yin H, Xiong Y, Zhang A, Guo C, Chen Z, Huang Z, He Y. Structural insights into adhesion GPCR ADGRL3 activation and G q, G s, G i, and G 12 coupling. Mol Cell 2022; 82:4340-4352.e6. [PMID: 36309016 DOI: 10.1016/j.molcel.2022.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022]
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play key roles in a diversity of physiologies. A hallmark of aGPCR activation is the removal of the inhibitory GAIN domain and the dipping of the cleaved stalk peptide into the ligand-binding pocket of receptors; however, the detailed mechanism remains obscure. Here, we present cryoelectron microscopy (cryo-EM) structures of ADGRL3 in complex with Gq, Gs, Gi, and G12. The structures reveal unique ligand-engaging mode, distinctive activation conformation, and key mechanisms of aGPCR activation. The structures also reveal the uncharted structural information of GPCR/G12 coupling. A comparison of Gq, Gs, Gi, and G12 engagements with ADGRL3 reveals the key determinant of G-protein coupling on the far end of αH5 of Gα. A detailed analysis of the engagements allows us to design mutations that specifically enhance one pathway over others. Taken together, our study lays the groundwork for understanding aGPCR activation and G-protein-coupling selectivity.
Collapse
Affiliation(s)
- Yu Qian
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China; HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhengxiong Ma
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xinyan Zhu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Na Wang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenmei Xu
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Ruixue Xia
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Jiale Liang
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Yaning Duan
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Han Yin
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Yangjie Xiong
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China
| | - Anqi Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Changyou Guo
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yuanzheng He
- Laboratory of Receptor Structure and Signaling, HIT Center for Life Sciences, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|