1
|
Jin QQ, Duan XF, Yan DN, Yin F, Li CC, Zhou LP, Cai LX, Sun QF. A stimuli-responsive dimeric capsule built from an acridine-based metallacycle for ratiometric fluorescence sensing of TNP. Dalton Trans 2025; 54:4998-5005. [PMID: 39991840 DOI: 10.1039/d4dt03334e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Stimulus-responsive luminescent metal-organic architectures have received a lot of attentions in supramolecular chemistry. Herein, we report the synthesis of an acridine-based metal-organic macrocycle that undergoes reversible interconversion between the monomer and the dimer states in response to variations in the concentration and solvent, resulting in a switch between blue and green fluorescence. X-ray structure analysis reveals that hydrogen bonds between benzimidazole C-H and NO3- anions, along with π-π interactions between acridines, are the primary driving forces behind this behavior of the assembly. The stimuli-responsive supramolecular fluorescence switching originates from the monomer and excimer states. The addition of 2,4,6-trinitrophenol (TNP) leads to a fluorescence "turn-off" at 430 nm for the monomer and a "turn-on" at 520 nm for the dimer, thus facilitating the ratiometric detection of TNP with the detection limit being as low as 13 ppb. Our work provides valuable insights into the construction of stimuli-responsive materials for fluorescence sensing.
Collapse
Affiliation(s)
- Qi-Qi Jin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Chen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Xuan Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing-Fu Sun
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Summers T, Taylor MG, Augustine LJ, Janssen J, Perez D, Batista ER, Yang P. On the Importance of Configuration Search to the Predictivity of Lanthanide Selectivity. JACS AU 2025; 5:631-641. [PMID: 40017747 PMCID: PMC11862928 DOI: 10.1021/jacsau.4c00770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 03/01/2025]
Abstract
The lanthanide elements are crucial components in numerous technologies, yet their industrial production through liquid-liquid extraction continues to be economically and environmentally costly due to the challenge of separating elements with similar physicochemical properties. While computational ligand screening has shown promise toward discovering efficient extractants, the complexity of constructing chemically sensible 3D structures (often by hand), coupled with the high cost of quantum chemistry calculations, often limits exploration of the vast ligand chemical and conformational space in favor of local exploration around known chemistries. Moreover, metal complexes can have many stable configurations whose differences in energies exceed the small energy differences that determine the extractant selectivity for certain lanthanides. Because of this difference, incorrect selectivity predictions can be made if the lowest energy coordination complex is not identified and modeled. To address this issue, we present a high-throughput computational workflow that automates the construction and quantum mechanical modeling of 3D lanthanide-extractant complexes. This approach allows for an unbiased search of distinct configurational and compositional variations for each metal, enabling accurate predictions of their solution structures and lanthanide selectivity. As showcased by three extractants from diverse chemical categories-a crown ether, a phenanthroline monocarboxamide, and a malonamide-it is found that sampling the lanthanide-ligand configuration space is critical to correctly predicting the metal coordination environment and experimental lanthanide selectivity trends.
Collapse
Affiliation(s)
- Thomas
J. Summers
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael G. Taylor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Logan J. Augustine
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Danny Perez
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
3
|
Melegari M, Neri M, Falco A, Tegoni M, Maffini M, Fornari F, Mucchino C, Artizzu F, Serpe A, Marchiò L. Tailoring the Use of 8-Hydroxyquinolines for the Facile Separation of Iron, Dysprosium and Neodymium. CHEMSUSCHEM 2024; 17:e202400286. [PMID: 38786929 DOI: 10.1002/cssc.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Permanent magnets (PMs) containing rare earth elements (REEs) can generate energy in a sustainable manner. With an anticipated tenfold increase in REEs demand by 2050, one of the crucial strategies to meet the demand is developing of efficient recycling methods. NdFeB PMs are the most widely employed, however, the similar chemical properties of Nd (20-30 % wt.) and Dy (0-10 % wt.) make their recycling challenging, but possible using appropriate ligands. In this work, we investigated commercially available 8-hydroxyquinolines (HQs) as potential Fe/Nd/Dy complexing agents enabling metal separation by selective precipitation playing on specific structure/property (solubility) relationship. Specifically, test ethanolic solutions of nitrate salts, prepared to mimic the main components of a PM leachate, were treated with functionalized HQs. We demonstrated that Fe3+ can be separated as insoluble [Fe(QCl,I)3] from soluble [REE(QCl,I)4]- complexes (QCl,I -: 5-Cl-7-I-8-hydoxyquinolinate). Following that, QCl - (5-Cl-8-hydroxyquinolinate) formed insoluble [Nd3(QCl)9] and soluble (Bu4N)[Dy(QCl)4]. The process ultimately gave a solution phase containing Dy with only traces of Nd. In a preliminary attempt to assess the potentiality of a low environmental impact process, REEs were recovered as oxalates, while the ligands as well as Bu4N+ ions, were regenerated and internally reused, thus contributing to the sustainability of a possible metal recovery process.
Collapse
Affiliation(s)
- Matteo Melegari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Martina Neri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Alex Falco
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Monica Maffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Fabio Fornari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Claudio Mucchino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Flavia Artizzu
- Department of Sustainable Development and Ecological Transition, University of Eastern Piedmont "A. Avogadro", Piazza S. Eusebio 5, 13100, Vercelli, Italy
| | - Angela Serpe
- Department of Civil and Environmental Engineering and Architecture (DICAAR), and Research Unit of INSTM, University of Cagliari, Via Marengo 2, 09123, Cagliari, Italy
- Environmental Geology and Geoengineering Institute of the National Research Council (IGAG-CNR), Piazza d'Armi, 09123, Cagliari, Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| |
Collapse
|
4
|
Larrinaga WB, Jung JJ, Lin CY, Boal AK, Cotruvo JA. Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides. Proc Natl Acad Sci U S A 2024; 121:e2410926121. [PMID: 39467132 PMCID: PMC11551332 DOI: 10.1073/pnas.2410926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize Methylobacterium (Methylorubrum) extorquens LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIII and SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIII and NdIII by 100-fold. Selective dimerization enriches high-value PrIII and NdIII relative to low-value LaIII and CeIII in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for NdIII and SmIII. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
Collapse
Affiliation(s)
- Wyatt B. Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Jonathan J. Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
5
|
Gao Y, Licup GL, Bigham NP, Cantu DC, Wilson JJ. Chelator-Assisted Precipitation-Based Separation of the Rare Earth Elements Neodymium and Dysprosium from Aqueous Solutions. Angew Chem Int Ed Engl 2024; 63:e202410233. [PMID: 39030817 DOI: 10.1002/anie.202410233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The rare earth elements (REEs) are critical resources for many clean energy technologies, but are difficult to obtain in their elementally pure forms because of their nearly identical chemical properties. Here, an analogue of macropa, G-macropa, was synthesized and employed for an aqueous precipitation-based separation of Nd3+ and Dy3+. G-macropa maintains the same thermodynamic preference for the large REEs as macropa, but shows smaller thermodynamic stability constants. Molecular dynamics studies demonstrate that the binding affinity differences of these chelators for Nd3+ and Dy3+ is a consequence of the presence or absence of an inner-sphere water molecule, which alters the donor strength of the macrocyclic ethers. Leveraging the small REE affinity of G-macropa, we demonstrate that within aqueous solutions of Nd3+, Dy3+, and G-macropa, the addition of HCO3 - selectively precipitates Dy2(CO3)3, leaving the Nd3+-G-macropa complex in solution. With this method, remarkably high separation factors of 841 and 741 are achieved for 50 : 50 and 75 : 25 mixtures. Further studies involving Nd3+:Dy3+ ratios of 95 : 5 in authentic magnet waste also afford an efficient separation as well. Lastly, G-macropa is recovered via crystallization with HCl and used for subsequent extractions, demonstrating its good recyclability.
Collapse
Affiliation(s)
- Yangyang Gao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| | - Gerra L Licup
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Nicholas P Bigham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada, 89557, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, United States
| |
Collapse
|
6
|
O'Connell-Danes JG, Ngwenya BT, Morrison CA, Love JB. Challenges and Applications of Supramolecular Metalate Chemistry. Angew Chem Int Ed Engl 2024; 63:e202409834. [PMID: 39022891 DOI: 10.1002/anie.202409834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
While the supramolecular chemistry of simple anions is ubiquitous, the targeting and exploitation of their metal-containing relatives, the metalates, is less well understood. This mini review highlights the latest advances in this emergent area by discussing the supramolecular chemistry of metalates thematically, with a focus on the exploitation of metalates in a diversity of applications, including medical imaging and therapy, environmental remediation, molecular magnetism, catalysis, perovskite materials, and metal separations. The unifying features of these systems are identified with a view to allow the supramolecular chemist to target the unique material properties of the metalates, even in areas that are currently relatively immature.
Collapse
Affiliation(s)
| | - Bryne T Ngwenya
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
7
|
Pramanik S, Li B, Driscoll DM, Johnson KR, Evans BR, Damron JT, Ivanov AS, Jiang DE, Einkauf J, Popovs I, Jansone-Popova S. Tetradentate Ligand's Chameleon-Like Behavior Offers Recognition of Specific Lanthanides. J Am Chem Soc 2024; 146:25669-25679. [PMID: 39136967 PMCID: PMC11421014 DOI: 10.1021/jacs.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The surging demand for high-purity individual lanthanides necessitates the development of novel and exceptionally selective separation strategies. At the heart of these separation systems is an organic compound that, based on its structural features, selectively recognizes the lighter or heavier lanthanides in the trivalent lanthanide (Ln) series. This work emphasizes the significant implications resulting from modifying the donor group configuration within an N,O-based tetradentate ligand and the changes in the solvation environment of Ln ions in the process of separating Lns, with the unique ability to achieve peak selectivity in the light, medium, and heavy Ln regions. The structural rigidity of the bis-lactam-1,10-phenanthroline ligand enforces size-based selectivity, displaying an exceptional affinity for Lns having larger ionic radii such as La. Modifying the ligand by eliminating one preorganization element (phenanthroline → bipyridine) results in the fast formation of complexes with light Lns, but, in the span of hours, the peak selectivity shifts toward middle Ln (Sm), resulting in time-resolved separation. As expected, at low nitric acid concentrations, the neutral tetradentate ligand complexes with Ln3+ ions. However, the change in extraction mechanism is observed at high nitric acid concentrations, leading to the formation and preferential extraction of anionic heavy Ln species, [Ln(NO3)x+3]x-, that self-assemble with two ligands that have undergone protonation, forming intricate supramolecular architectures. The tetradentate ligand that is structurally balanced with restrictive and unrestrictive motifs demonstrates unique, controllable selectivity for light, middle, and heavy Lns, underscoring the pivotal role of solvation and ion interactions within the first and second coordination spheres.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Katherine R Johnson
- Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Mao M, Qi Y, Lu K, Chen Q, Xie X, Li X, Lin Z, Chai L, Liu W. Selective Capacitive Recovery of Rare-Earth Ions from Wastewater over Phosphorus-Modified TiO 2 Cathodes via an Electro-Adsorption Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14013-14021. [PMID: 39041953 DOI: 10.1021/acs.est.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Large amounts of wastewater containing low-concentration (<10 ppm) rare-earth ions (REIs) are discharged annually in China's rare-earth mining and processing industry, resulting in severe environmental pollution and economic losses. Hence, achieving efficient selective recovery of low-concentration REIs from REIs-containing wastewater is essential for environmental protection and resource recovery. In this study, a pseudocapacitance system was designed for highly efficient capacitive selective recovery of REIs from wastewater using the titanium dioxide/P/C (TiO2/P/C) composite electrode, which exhibited over 99% recovery efficiency for REIs, such as Eu3+, Dy3+, Tb3+, and Lu3+ in mixed solution. This system maintained high efficiency and more than 90 times the enrichment concentration of REIs even after 100 cycles. Ti4+ of TiO2 was reduced to Ti3+ of Ti3O5 under forward voltage in the system, which trapped the electrons of phosphorus site and caused it to be oxidized to phosphate with a strong affinity for REIs, thus improving the selectivity of REIs. Under reverse voltage, Ti3O5 was oxidized to TiO2, which transferred electrons to phosphate and transformed to the phosphorus site, resulting in the desorption and enrichment of REIs and the regeneration of the electrode. This study provides a promising method for the efficient recovery of REIs from wastewater.
Collapse
Affiliation(s)
- Minlin Mao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China
| | - Yue Qi
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Kaibin Lu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Qin Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xiangta Xie
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Xiaoqin Li
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Liyuan Chai
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
9
|
Xia D, Lee C, Charpentier NM, Deng Y, Yan Q, Gabriel JP. Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309635. [PMID: 38837685 PMCID: PMC11321694 DOI: 10.1002/advs.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Indexed: 06/07/2024]
Abstract
The ever-increasing importance of critical metals (CMs) in modern society underscores their resource security and circularity. Waste-printed circuit boards (WPCBs) are particularly attractive reservoirs of CMs due to their gamut CM embedding and ubiquitous presence. However, the recovery of most CMs is out of reach from current metal-centric recycling industries, resulting in a flood loss of refined CMs. Here, 41 types of such spent CMs are identified. To deliver a higher level of CM sustainability, this work provides an insightful overview of paradigm-shifting pathways for CM recovery from WPCBs that have been developed in recent years. As a crucial starting entropy-decreasing step, various strategies of metal enrichment are compared, and the deployment of artificial intelligence (AI) and hyperspectral sensing is highlighted. Then, tailored metal recycling schemes are presented for the platinum group, rare earth, and refractory metals, with emphasis on greener metallurgical methods contributing to transforming CMs into marketable products. In addition, due to the vital nexus of CMs between the environment and energy sectors, the upcycling of CMs into electro-/photo-chemical catalysts for green fuel synthesis is proposed to extend the recycling chain. Finally, the challenges and outlook on this all-round upgrading of WPCB recycling are outlined.
Collapse
Affiliation(s)
- Dong Xia
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
| | - Carmen Lee
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Nicolas M. Charpentier
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| | - Yuemin Deng
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
- Ecologic France15 Avenue du CentreGuyancour78280France
| | - Qingyu Yan
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jean‐Christophe P. Gabriel
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| |
Collapse
|
10
|
Vance SM, Mojsak M, Kinsman LMM, Rae R, Kirk C, Love JB, Morrison CA. Selective Gold Precipitation by a Tertiary Diamide Driven by Thermodynamic Control. Inorg Chem 2024; 63:9332-9345. [PMID: 38722710 PMCID: PMC11110006 DOI: 10.1021/acs.inorgchem.4c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
The simple diamide ligand L was previously shown to selectively precipitate gold from acidic solutions typical of e-waste leach streams, with precipitation of gallium, iron, tin, and platinum possible under more forcing conditions. Herein, we report direct competition experiments to afford the order of selectivity. Thermal analysis indicates that the gold-, gallium-, and iron-containing precipitates present as the most thermodynamically stable structures at room temperature, while the tin-containing structure does not. Computational modeling established that the precipitation process is thermodynamically driven, with ion exchange calculations matching the observed experimental selectivity ordering. Calculations also show that the stretched ligand conformation seen in the X-ray crystal structure of the gold-containing precipitate is more strained than in the structures of the other metal precipitates, indicating that intermolecular interactions likely dictate the selectivity ordering. This was confirmed through a combination of Hirshfeld, noncovalent interaction (NCI), and quantum theory of atoms in molecules (QTAIM) analyses, which highlight favorable halogen···halogen contacts between metalates and pseudo-anagostic C-H···metal interactions in the crystal structure of the gold-containing precipitate.
Collapse
Affiliation(s)
- Susanna
S. M. Vance
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Mateusz Mojsak
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Luke M. M. Kinsman
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Rebecca Rae
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Caroline Kirk
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Jason B. Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Carole A. Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
11
|
Li S, Jansone-Popova S, Jiang DE. Insights into coordination and ligand trends of lanthanide complexes from the Cambridge Structural Database. Sci Rep 2024; 14:11301. [PMID: 38760382 PMCID: PMC11101447 DOI: 10.1038/s41598-024-62074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
Understanding lanthanide coordination chemistry can help develop new ligands for more efficient separation of lanthanides for critical materials needs. The Cambridge Structural Database (CSD) contains tens of thousands of single crystal structures of lanthanide complexes that can serve as a training ground for both fundamental chemical insights and future machine learning and generative artificial intelligence models. This work aims to understand the currently available structures of lanthanide complexes in CSD by analyzing the coordination shell, donor types, and ligand types, from the perspective of rare-earth element (REE) separations. We obtain four sets of lanthanide complexes from CSD: Subset 1, all Ln-containing complexes (49472 structures); Subset 2, mononuclear Ln complexes (27858 structures); Subset 3, mononuclear Ln complexes without cyclopentadienyl ligands (Cp) (26156 structures); Subset 4, Ln complexes with at least one 1,10-phenanthroline (phen) or its derivative as a coordinating ligand (2226 structures). The subsequent analysis of lanthanide complexes in these subsets examines the trends in coordination numbers and first shell distances as well as identifies and characterizes the ligands and donor groups. In addition, examples of Ln-complexes with commercially available complexants and phen-based ligands are interrogated in detail. This systematic investigation lays the groundwork for future data-driven ligand designs for REE separations based on the structural insights into the lanthanide coordination chemistry.
Collapse
Affiliation(s)
- Shicheng Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Santa Jansone-Popova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
12
|
Tricoire M, Hsueh FC, Keener M, Rajeshkumar T, Scopelliti R, Zivkovic I, Maron L, Mazzanti M. Siloxide tripodal ligands as a scaffold for stabilizing lanthanides in the +4 oxidation state. Chem Sci 2024; 15:6874-6883. [PMID: 38725506 PMCID: PMC11077534 DOI: 10.1039/d4sc00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Synthetic strategies to isolate molecular complexes of lanthanides, other than cerium, in the +4 oxidation state remain elusive, with only four complexes of Tb(iv) isolated so far. Herein, we present a new approach for the stabilization of Tb(iv) using a siloxide tripodal trianionic ligand, which allows the control of unwanted ligand rearrangements, while tuning the Ln(iii)/Ln(iv) redox-couple. The Ln(iii) complexes, [LnIII((OSiPh2Ar)3-arene)(THF)3] (1-LnPh) and [K(toluene){LnIII((OSiPh2Ar)3-arene)(OSiPh3)}] (2-LnPh) (Ln = Ce, Tb, Pr), of the (HOSiPh2Ar)3-arene ligand were prepared. The redox properties of these complexes were compared to those of the Ln(iii) analogue complexes, [LnIII((OSi(OtBu)2Ar)3-arene)(THF)] (1-LnOtBu) and [K(THF)6][LnIII((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (2-LnOtBu) (Ln = Ce, Tb), of the less electron-donating siloxide trianionic ligand, (HOSi(OtBu)2Ar)3-arene. The cyclic voltammetry studies showed a cathodic shift in the oxidation potential for the cerium and terbium complexes of the more electron-donating phenyl substituted scaffold (1-LnPh) compared to those of the tert-butoxy (1-LnOtBu) ligand. Furthermore, the addition of the -OSiPh3 ligand further shifts the potential cathodically, making the Ln(iv) ion even more accessible. Notably, the Ce(iv) complexes, [CeIV((OSi(OtBu)2Ar)3-arene)(OSiPh3)] (3-CeOtBu) and [CeIV((OSiPh2Ar)3-arene)(OSiPh3)(THF)2] (3-CePh), were prepared by chemical oxidation of the Ce(iii) analogues. Chemical oxidation of the Tb(iii) and Pr(iii) complexes (2-LnPh) was also possible, in which the Tb(iv) complex, [TbIV((OSiPh2Ar)3-arene)(OSiPh3)(MeCN)2] (3-TbPh), was isolated and crystallographically characterized, yielding the first example of a Tb(iv) supported by a polydentate ligand. The versatility and robustness of these siloxide arene-anchored platforms will allow further development in the isolation of more oxidizing Ln(iv) ions, widening the breadth of high-valent Ln chemistry.
Collapse
Affiliation(s)
- Maxime Tricoire
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Fang-Che Hsueh
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Megan Keener
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Marinella Mazzanti
- Group of Coordiantion Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
13
|
O’Connell-Danes J, Ngwenya BT, Morrison CA, Nichol GS, Delmau LH, Love JB. Shape-Selective Supramolecular Capsules for Actinide Precipitation and Separation. JACS AU 2024; 4:798-806. [PMID: 38425904 PMCID: PMC10900489 DOI: 10.1021/jacsau.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Improving actinide separations is key to reducing barriers to medical and industrial actinide isotope production and to addressing the challenges associated with the reprocessing of spent nuclear fuel. Here, we report the first example of a supramolecular anion recognition process that can achieve this goal. We have designed a preorganized triamidoarene receptor that induces quantitative precipitation of the early actinides Th(IV), Np(IV), and Pu(IV) from industrially relevant conditions through the formation of self-assembled hydrogen-bonded capsules. Selectivity over the later An(III) elements is shown through modulation of the nitric acid concentration, and no precipitation of actinyl or transition-metal ions occurs. The Np, Pu, and Am precipitates were characterized structurally by single-crystal X-ray diffraction and reveal shape specificity of the internal hydrogen-bonding array for the encapsulated hexanitratometalates. This work complements ion-exchange resins for 5f-element separations and illustrates the significant potential of supramolecular separation methods that target anionic actinide species.
Collapse
Affiliation(s)
| | - Bryne T. Ngwenya
- School
of Geosciences, University of Edinburgh, Edinburgh EH9 3FE, U.K.
| | - Carole A. Morrison
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Gary S. Nichol
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Lætitia H. Delmau
- Radioisotope
Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jason B. Love
- EaStCHEM
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
14
|
Danouche M, Bounaga A, Oulkhir A, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Advances in bio/chemical approaches for sustainable recycling and recovery of rare earth elements from secondary resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168811. [PMID: 38030017 DOI: 10.1016/j.scitotenv.2023.168811] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Rare Earth Elements (REEs) are indispensable in the growing smart technologies, such as smart phones and electronic devices, renewable energy, new generation of hybrid cars, etc. These elements are naturally occurring in specific geological deposits (bastnäsite, monazite, and xenotime), primarily concentrated in the regions of China, Australia, and the USA. The extraction and processing of REEs and the mismanagement of secondary REE resources, such as industrial waste, end-of-life materials, and mining by-products, raise major environmental and health concerns. Recycling represents a convincing solution, avoiding the necessity to separate low-value or coexisting radioactive elements when REEs are recovered from raw ore. Despite these advantages, only 1 % of REEs are usually recycled. This review overreached strategies for recycling REEs from secondary resources, emphasizing their pivotal role. The predominant approach for recycling REEs involves hydrometallurgical processing by leaching REEs from their origins using acidic solutions and then separating them from dissolved impurities using techniques like liquid-liquid extraction, membrane separation, chromatography, adsorption, flotation, and electrochemical methods. However, these methods have notable disadvantages, particularly their over requirements for water, reagents, and energy. Biohydrometallurgy introduces an innovative alternative using microorganisms and their metabolites to extract REEs through bioleaching. Other investigations are carried out to recover REEs through biological strategies, including biosorption, affinity chromatography with biological ligands, bioflotation employing biological surfactants, and bioelectrochemical methods. However, biohydrometallurgical processes can also be relatively slow and less suitable for large-scale applications, often lacking specificity for targeted REEs recovery. Overcoming these challenges necessitates ongoing research and development efforts to advance recycling technologies.
Collapse
Affiliation(s)
- M Danouche
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Bounaga
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Oulkhir
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France
| | - R Boulif
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Y Zeroual
- Situation Innovation, OCP Group BP 118, Jorf Lasfar, El Jadida 24000, Morocco
| | - R Benhida
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France.
| | - K Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, AgroBioScience Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
15
|
Kumar N. Exclusive ion recognition using host-guest sandwich complexes. Phys Chem Chem Phys 2024; 26:3152-3158. [PMID: 38189478 DOI: 10.1039/d3cp05070j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ion recognition in porous aqueous media utilizing polyethers involves the formation of 1 : 1 and higher-order host-guest complexes. The effectiveness of these interactions relies on the optimal size of the host cavity to encapsulate the guest ions. While liquid/liquid extraction based on host-guest interactions offers higher specificity in metal ion extraction, it results in the co-extraction of unwanted coordinating solvents and counter-anions. Therefore, an improved protocol is required by which the ion can be selectively trapped within the host cavity and simultaneously decrease the guest coordination with the outside environment. This study delves into the microscopic mechanisms underpinning the exclusive ion recognition through the formation of 2 : 1 host-guest sandwich complexes, which reduce metal coordination with solvent or counter-ions, ensuring selectivity. Our analysis shows that ions with a radius larger than the host cavity, such as cesium (Cs+), form stable host-guest sandwich complexes at elevated host concentrations. In this study, we performed molecular dynamics simulations to investigate the microscopic details of Cs+ interactions with open-chain and preorganized polyethers, namely podand, crown, and cryptand in electrolyte media. Our findings reveal that the formation of stable Cs+-crown sandwich complexes significantly reduces Cs+ coordination with H2O and NO3-. This loss of solute coordination leads to exclusivity in bound metal ions, offering a potential strategy for efficient solvent extraction.
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
16
|
Jena R, Laha S, Dwarkanath N, Hazra A, Haldar R, Balasubramanian S, Maji TK. Noncovalent interaction guided selectivity of haloaromatic isomers in a flexible porous coordination polymer. Chem Sci 2023; 14:12321-12330. [PMID: 37969590 PMCID: PMC10631220 DOI: 10.1039/d3sc03079b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Porous, supramolecular structures exhibit preferential encapsulation of guest molecules, primarily by means of differences in the order of (noncovalent) interactions. The encapsulation preferences can be for geometry (dimension and shape) and the chemical nature of the guest. While geometry-based sorting is relatively straightforward using advanced porous materials, designing a "chemical nature" specific host is not. To introduce "chemical specificity", the host must retain an accessible and complementary recognition site. In the case of a supramolecular, porous coordination polymer (PCP) [Zn(o-phen)(ndc)] (o-phen: 1,10-phenanthroline, ndc: 2,6-naphthalenedicarboxylate) host, equipped with an adaptable recognition pocket, we have discovered that the preferential encapsulation of a haloaromatic isomer is not only for dimension and shape, but also for the "chemical nature" of the guest. This selectivity, i.e., preference for the dimension, shape and chemical nature, is not guided by any complementary recognition site, which is commonly required for "chemical specificity". Insights from crystal structures and computational studies unveil that the differences in the different types of noncovalent host-guest interaction strengths, acting in a concerted fashion, yield the unique selectivity.
Collapse
Affiliation(s)
- Rohan Jena
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Subhajit Laha
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad Gopanpally Hyderabad 500046 Telangana India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore-560064 India
| |
Collapse
|
17
|
Mangel DN, Juarez GJ, Carpenter SH, Steinbrueck A, Lynch VM, Yang J, Sedgwick AC, Tondreau A, Sessler JL. Deferasirox Derivatives: Ligands for the Lanthanide Series. J Am Chem Soc 2023; 145:22206-22212. [PMID: 37751361 DOI: 10.1021/jacs.3c08375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Deferasirox is an FDA-approved iron chelator used in the treatment of iron toxicity. In this work, we report the use of several deferasirox derivatives as lanthanide chelators. Solid-state structural studies of three representative trivalent lanthanide cations, La(III), Eu(III), and Lu(III), revealed the formation of 2:2 complexes in the solid state. A 1:1 stoichiometry dominates in DMSO solution, with Ka values of 472 ± 14, 477 ± 11, and 496 ± 15 M-1 being obtained in the case of these three cations, respectively. Under the conditions of competitive precipitation in the presence of triethylamine, high selectivity (up to 80%) for lutetium(III) was observed in competition with La(III), Ce(III), and Eu(III). Theoretical calculations provided support for the observed selective crystallization.
Collapse
Affiliation(s)
- Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Gabriel J Juarez
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | | | - Axel Steinbrueck
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Jian Yang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Adam C Sedgwick
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Aaron Tondreau
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
18
|
Santos CV, Monteiro SA, Soares ASC, Souto ICA, Moura RT. Decoding Chemical Bonds: Assessment of the Basis Set Effect on Overlap Electron Density Descriptors and Topological Properties in Comparison to QTAIM. J Phys Chem A 2023; 127:7997-8014. [PMID: 37703453 DOI: 10.1021/acs.jpca.3c04504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Quantum chemical bonding descriptors based on the total and overlap density can provide valuable information about chemical interactions in different systems. However, these descriptors can be sensitive to the basis set used. To address this, different numerical treatments of electron density have been proposed to reduce the basis set dependency. In this work, we introduce overlap properties (OPs) obtained through numerical treatment of the electron density and present the topology of overlap density (TOP) for the first time. We compare the basis set dependency of numerical OP and TOP descriptors with their quantum theory of atoms in molecules (QTAIM) counterparts, considering the total electron density. Three single (C-C, C-O, and C-F) bonds in ethane, methanol, and fluoromethane and two double (C═C and C═O) bonds in ethene and formaldehyde were analyzed. Diatomic molecules Li-X with X = F, Cl, and Br were also analyzed. Eight parameters, including QTAIM descriptors and OP/TOP descriptors, are used to assess the basis dependency at the ωB97X-D level of theory using 28 basis sets from three classes: Pople, Ahlrichs, and Dunning. The study revealed that the topological overlap electron density properties exhibit comparatively lesser dependence on the basis set compared to their total electron density counterparts. Remarkably, these properties retain their chemical significance even with reduced basis set dependency. Similarly, numerical OP descriptors show less basis set dependency than their QTAIM counterparts. The excess of polarization functions increases charge concentration in the interatomic region and influences both QTAIM and OP descriptors. The basis sets Def2TZVP, 6-31++G(d,p), 6-311++G(d,p), cc-pVDZ, cc-pVTZ, and cc-pVQZ demonstrate reduced variability for the tested bond classes in this study, with particular emphasis on the triple-ζ quality Ahlrichs' basis set. We recommend against using basis sets with numerous polarization functions, such as augmented Dunning's and Ahlrichs' quadruple-ζ.
Collapse
Affiliation(s)
- Carlos V Santos
- Department of Chemistry, Federal University of Paraiba, Joao Pessoa, Paraiba 58051-970, Brazil
| | - Shirlene A Monteiro
- Department of Chemistry, State University of Paraiba, Campina Grande, Paraiba 58051-970, Brazil
| | - Amanda S C Soares
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Paraiba 58397-000, Brazil
| | - Isabeli C A Souto
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Paraiba 58397-000, Brazil
| | - Renaldo T Moura
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, Paraiba 58397-000, Brazil
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
19
|
Zhang J, Chen N, Morozova V, Voznyy O, Azimi G. Investigating Metal-Tributyl Phosphate Complexes during Supercritical Fluid Extraction of the NdFeB Magnet Using Density Functional Theory and X-ray Absorption Spectroscopy. Inorg Chem 2023; 62:7689-7702. [PMID: 37154778 DOI: 10.1021/acs.inorgchem.2c04508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Supercritical fluid extraction (SCFE) is gaining significant interest as a green technology for the recycling of end-of-life waste electrical and electronic equipment (WEEE). Neodymium iron boron (NdFeB) magnets, which contain large quantities of critical rare-earth elements such as neodymium, praseodymium, and dysprosium, are widely used in wind turbines and electric/hybrid vehicles. Hence, they are considered a promising secondary resource for these elements when they reach their end-of-life. Previously, the SCFE process was developed for recycling WEEE, including NdFeB; however, the process mechanism remains unexplored. Here, density functional theory, followed by extended X-ray absorption fine structure and X-ray absorption near-edge structure analyses, are utilized to determine the structural coordination and interatomic interactions of complexes formed during the SCFE of the NdFeB magnet. The results indicate that Fe(II), Fe(III), and Nd(III) form Fe(NO3)2(TBP)2, Fe(NO3)3(TBP)2, and Nd(NO3)3(TBP)3 complexes, respectively. This theory-guided investigation elucidates the complexation chemistry and mechanism during the SCFE process by rigorously determining the structural models.
Collapse
Affiliation(s)
- Jiakai Zhang
- Laboratory for Strategic Materials, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Ning Chen
- Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Valeria Morozova
- Clean Energy Lab, Department of Physical and Environmental Sciences, University of Toronto (Scarborough), Toronto, Ontario M1C 1A4, Canada
| | - Oleksandr Voznyy
- Clean Energy Lab, Department of Physical and Environmental Sciences, University of Toronto (Scarborough), Toronto, Ontario M1C 1A4, Canada
| | - Gisele Azimi
- Laboratory for Strategic Materials, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
20
|
Summers TJ, Sobrinho JA, de Bettencourt-Dias A, Kelly SD, Fulton JL, Cantu DC. Solution Structures of Europium Terpyridyl Complexes with Nitrate and Triflate Counterions in Acetonitrile. Inorg Chem 2023; 62:5207-5218. [PMID: 36940386 DOI: 10.1021/acs.inorgchem.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Lanthanide-ligand complexes are key components of technological applications, and their properties depend on their structures in the solution phase, which are challenging to resolve experimentally or computationally. The coordination structure of the Eu3+ ion in different coordination environments in acetonitrile is examined using ab initio molecular dynamics (AIMD) simulations and extended X-ray absorption fine structure (EXAFS) spectroscopy. AIMD simulations are conducted for the solvated Eu3+ ion in acetonitrile, both with or without a terpyridyl ligand, and in the presence of either triflate or nitrate counterions. EXAFS spectra are calculated directly from AIMD simulations and then compared to experimentally measured EXAFS spectra. In acetonitrile solution, both nitrate and triflate anions are shown to coordinate directly to the Eu3+ ion forming either ten- or eight-coordinate solvent complexes where the counterions are binding as bidentate or monodentate structures, respectively. Coordination of a terpyridyl ligand to the Eu3+ ion limits the available binding sites for the solvent and anions. In certain cases, the terpyridyl ligand excludes any solvent binding and limits the number of coordinated anions. The solution structure of the Eu-terpyridyl complex with nitrate counterions is shown to have a similar arrangement of Eu3+ coordinating molecules as the crystal structure. This study illustrates how a combination of AIMD and EXAFS can be used to determine how ligands, solvent, and counterions coordinate with the lanthanide ions in solution.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557-0388, United States
| | - Josiane A Sobrinho
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89557-0705, United States
| | | | - Shelly D Kelly
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4801, United States
| | - John L Fulton
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557-0388, United States
| |
Collapse
|
21
|
Wu H, Wang Y, Tang C, Jones LO, Song B, Chen XY, Zhang L, Wu Y, Stern CL, Schatz GC, Liu W, Stoddart JF. High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin. Nat Commun 2023; 14:1284. [PMID: 36894545 PMCID: PMC9998620 DOI: 10.1038/s41467-023-36591-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Developing an eco-friendly, efficient, and highly selective gold-recovery technology is urgently needed in order to maintain sustainable environments and improve the utilization of resources. Here we report an additive-induced gold recovery paradigm based on precisely controlling the reciprocal transformation and instantaneous assembly of the second-sphere coordinated adducts formed between β-cyclodextrin and tetrabromoaurate anions. The additives initiate a rapid assembly process by co-occupying the binding cavity of β-cyclodextrin along with the tetrabromoaurate anions, leading to the formation of supramolecular polymers that precipitate from aqueous solutions as cocrystals. The efficiency of gold recovery reaches 99.8% when dibutyl carbitol is deployed as the additive. This cocrystallization is highly selective for square-planar tetrabromoaurate anions. In a laboratory-scale gold-recovery protocol, over 94% of gold in electronic waste was recovered at gold concentrations as low as 9.3 ppm. This simple protocol constitutes a promising paradigm for the sustainable recovery of gold, featuring reduced energy consumption, low cost inputs, and the avoidance of environmental pollution.
Collapse
Affiliation(s)
- Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Yong Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, 310027, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311215, Hangzhou, China.
| |
Collapse
|
22
|
Tailored hydrophobic deep eutectic solvent for removing trace aluminum impurity to produce high-purity GdCl3. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
23
|
Johnson K, Driscoll DM, Damron JT, Ivanov AS, Jansone-Popova S. Size Selective Ligand Tug of War Strategy to Separate Rare Earth Elements. JACS AU 2023; 3:584-591. [PMID: 36873676 PMCID: PMC9976341 DOI: 10.1021/jacsau.2c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 05/08/2023]
Abstract
Separating rare earth elements is a daunting task due to their similar properties. We report a "tug of war" strategy that employs a lipophilic and hydrophilic ligand with contrasting selectivity, resulting in a magnified separation of target rare earth elements. Specifically, a novel water-soluble bis-lactam-1,10-phenanthroline with an affinity for light lanthanides is coupled with oil-soluble diglycolamide that selectively binds heavy lanthanides. This two-ligand strategy yields a quantitative separation of the lightest (e.g., La-Nd) and heaviest (e.g., Ho-Lu) lanthanides, enabling efficient separation of neighboring lanthanides in-between (e.g., Sm-Dy).
Collapse
Affiliation(s)
- Katherine
R. Johnson
- Nuclear
Energy and Fuel Cycle Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Darren M. Driscoll
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T. Damron
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S. Ivanov
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
24
|
Zhang J, Wenzel M, Schnaars K, Hennersdorf F, Lindoy LF, Weigand JJ. Highly Tunable 4-Phosphoryl Pyrazolone Receptors for Selective Rare-Earth Separation. Inorg Chem 2023; 62:3212-3228. [PMID: 36752766 DOI: 10.1021/acs.inorgchem.2c04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Highly selective rare-earth separation has become increasingly important due to the indispensable role of these elements in various cutting-edge technologies including clean energy. However, the similar physicochemical properties of rare-earth elements (REEs) render their separation very challenging, and the development of new selective receptors for these elements is potentially of very considerable economic and environmental importance. Herein, we report the development of a series of 4-phosphoryl pyrazolone receptors for the selective separation of trivalent lanthanum, europium, and ytterbium as the representatives of light, middle, and heavy REEs, respectively. X-ray crystallography studies were employed to obtain solid-state structures across 11 of the resulting complexes, allowing comparative structure-function relationships to be probed, including the effect of lanthanide contraction that occurs along the series from lanthanum to europium to ytterbium and which potentially provides a basis for REE ion separation. In addition, the influence of ligand structure and lipophilicity on lanthanide binding and selectivity was systematically investigated via n-octanol/water distribution and liquid-liquid extraction (LLE) studies. Corresponding stoichiometry relationships between solid and solution states were well established using slope analyses. The results provide new insights into some fundamental lanthanide coordination chemistry from a separation perspective and establish 4-phosphoryl pyrazolone derivatives as potential practical extraction reagents for the selective separation of REEs in the future.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Kathleen Schnaars
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, New South Wales 2006, Sydney, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
25
|
Do-Thanh CL, Luo H, Gaugler JA, Dai S. A task-specific ionic liquid based on hydroxypyridinone for lanthanide separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Falco A, Neri M, Melegari M, Baraldi L, Bonfant G, Tegoni M, Serpe A, Marchiò L. Semirigid Ligands Enhance Different Coordination Behavior of Nd and Dy Relevant to Their Separation and Recovery in a Non-aqueous Environment. Inorg Chem 2022; 61:16110-16121. [PMID: 36177719 PMCID: PMC9554911 DOI: 10.1021/acs.inorgchem.2c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/30/2022]
Abstract
Rare-earth elements are widely used in high-end technologies, the production of permanent magnets (PMs) being one of the sectors with the greatest current demand and likely greater future demand. The combination of Nd and Dy in NdFeB PMs enhances their magnetic properties but makes their recycling more challenging. Due to the similar chemical properties of Nd and Dy, their separation is expensive and currently limited to the small scale. It is therefore crucially important to devise efficient and selective methods that can recover and then reuse those critical metals. To address these issues, a series of heptadentate Trensal-based ligands were used for the complexation of Dy3+ and Nd3+ ions, with the goal of indicating the role of coordination and solubility equilibria in the selective precipitation of Ln3+-metal complexes from multimetal non-water solutions. Specifically, for a 1:1 Nd/Dy mixture, a selective and fast precipitation of the Dy complex occurred in acetone with the Trensalp-OMe ligand at room temperature, with a concomitant enrichment of Nd in the solution phase. In acetone, complexes of Nd and Dy with Trensalp-OMe were characterized by very similar formation constants of 7.0(2) and 7.3(2), respectively. From the structural analysis of an array of Dy and Nd complexes with TrensalR ligands, we showed that Dy invariably provided complexes with coordination number (cn) of 7, whereas the larger Nd experienced an expansion of the coordination sphere by recruiting additional solvent molecules and giving a cn of >7. The significant structural differences have been identified as the main premises upon which a suitable separation strategy can be devised with these kind of ligands, as well as other preorganized polydentate ligands that can exploit the small differences in Ln3+ coordination requirements.
Collapse
Affiliation(s)
- Alex Falco
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Martina Neri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Melegari
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Laura Baraldi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Giulia Bonfant
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Angela Serpe
- Department
of Civil and Environmental Engineering and Architecture (DICAAR) and
Research Unit of INSTM, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Environmental
Geology and Geoengineering Institute of the National Research Council
(IGAG-CNR), Piazza d’Armi, 09123 Cagliari, Italy
| | - Luciano Marchiò
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|