1
|
Sun X, Wang Y, Yuan F, Zhang Y, Kang X, Sun J, Wang P, Lu T, Sae Wang F, Gu J, Wang J, Xia Q, Zheng A, Zou Z. Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Nat Commun 2024; 15:8221. [PMID: 39300135 DOI: 10.1038/s41467-024-52566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 μM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fanny Sae Wang
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Chathurangika P, Premadasa LS, Perera SSN, De Silva K. Determining dengue infection risk in the Colombo district of Sri Lanka by inferencing the genetic parameters of Aedes mosquitoes. BMC Infect Dis 2024; 24:944. [PMID: 39251932 PMCID: PMC11385510 DOI: 10.1186/s12879-024-09878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND For decades, dengue has posed a significant threat as a viral infectious disease, affecting numerous human lives globally, particularly in tropical regions, yet no cure has been discovered. The genetic trait of vector competence in Aedes mosquitoes, which facilitates dengue transmission, is difficult to measure and highly sensitive to environmental changes. METHODS In this study we attempt, for the first time in a non-laboratory setting, to quantify the vector competence of Aedes mosquitoes assuming its homogeneity across both species; aegypti and albopictus and across the four Dengue serotypes. Estimating vector competence in relation to varying rainfall patterns was focused in this study to showcase the changes in this vector trait with respect to environmental variables. We quantify it using an existing mathematical model originally developed for malaria in a Bayesian inferencing setup. We conducted this study in the Colombo district of Sri Lanka where the highest number of human populations are threatened with dengue. Colombo district experiences continuous favorable temperature and humidity levels throughout the year creating ideal conditions for Aedes mosquitoes to thrive and transmit the Dengue disease. Therefore we only used the highly variable and seasonal rainfall as the primary environmental variable as it significantly influences the number of breeding sites and thereby impacting the population dynamics of Aedes. RESULTS Our research successfully deduced vector competence values for the four identified seasons based on Monsoon rainfalls experienced in Colombo within a year. We used dengue data from 2009 - 2022 to infer the estimates. These estimated values have been corroborated through experimental studies documented in the literature, thereby validating the malaria model to estimate vector competence for dengue disease. CONCLUSION Our research findings conclude that environmental conditions can amplify vector competence within specific seasons, categorized by their environmental attributes. Additionally, the deduced vector competence offers compelling evidence that it impacts disease transmission, irrespective of geographical location, climate, or environmental factors.
Collapse
Affiliation(s)
- Piyumi Chathurangika
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka
| | - Lakmini S Premadasa
- International Center for the Advancement of Research and Education (I·CARE), Texas Biomedical Research Institute, San Antonio, 78227, TX, USA
| | - S S N Perera
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka
| | - Kushani De Silva
- Research & Development Centre for Mathematical Modeling, Department of Mathematics, Faculty of Science, University of Colombo, 00030, Colombo, Sri Lanka.
| |
Collapse
|
3
|
Bohers C, Vazeille M, Bernaoui L, Pascalin L, Meignan K, Mousson L, Jakerian G, Karch A, de Lamballerie X, Failloux AB. Aedes albopictus is a competent vector of five arboviruses affecting human health, greater Paris, France, 2023. Euro Surveill 2024; 29:2400271. [PMID: 38757289 PMCID: PMC11100294 DOI: 10.2807/1560-7917.es.2024.29.20.2400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024] Open
Abstract
Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.
Collapse
Affiliation(s)
- Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Lydia Bernaoui
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Kevin Meignan
- Agence Régionale de Démoustication, Rosny-sous-Bois, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Anaïs Karch
- Agence Régionale de Démoustication, Rosny-sous-Bois, France
| | - Xavier de Lamballerie
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| |
Collapse
|
4
|
Saba Villarroel PM, Hamel R, Gumpangseth N, Yainoy S, Koomhin P, Missé D, Wichit S. Global seroprevalence of Zika virus in asymptomatic individuals: A systematic review. PLoS Negl Trop Dis 2024; 18:e0011842. [PMID: 38630843 PMCID: PMC11057727 DOI: 10.1371/journal.pntd.0011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) has spread to five of the six World Health Organization (WHO) regions. Given the substantial number of asymptomatic infections and clinical presentations resembling those of other arboviruses, estimating the true burden of ZIKV infections is both challenging and essential. Therefore, we conducted a systematic review and meta-analysis of seroprevalence studies of ZIKV IgG in asymptomatic population to estimate its global impact and distribution. METHODOLOGY/PRINCIPAL FINDINGS We conducted extensive searches and compiled a collection of articles published from Jan/01/2000, to Jul/31/2023, from Embase, Pubmed, SciELO, and Scopus databases. The random effects model was used to pool prevalences, reported with their 95% confidence interval (CI), a tool to assess the risk of study bias in prevalence studies, and the I2 method for heterogeneity (PROSPERO registration No. CRD42023442227). Eighty-four studies from 49 countries/territories, with a diversity of study designs and serological tests were included. The global seroprevalence of ZIKV was 21.0% (95%CI 16.1%-26.4%). Evidence of IgG antibodies was identified in all WHO regions, except for Europe. Seroprevalence correlated with the epidemics in the Americas (39.9%, 95%CI:30.0-49.9), and in some Western Pacific countries (15.6%, 95%CI:8.2-24.9), as well as with recent and past circulation in Southeast Asia (22.8%, 95%CI:16.5-29.7), particularly in Thailand. Additionally, sustained low circulation was observed in Africa (8.4%, 95%CI:4.8-12.9), except for Gabon (43.7%), and Burkina Faso (22.8%). Although no autochthonous transmission was identified in the Eastern Mediterranean, a seroprevalence of 16.0% was recorded. CONCLUSIONS/SIGNIFICANCE The study highlights the high heterogeneity and gaps in the distribution of seroprevalence. The implementation of standardized protocols and the development of tests with high specificity are essential for ensuring a valid comparison between studies. Equally crucial are vector surveillance and control methods to reduce the risk of emerging and re-emerging ZIKV outbreaks, whether caused by Ae. aegypti or Ae. albopictus or by the Asian or African ZIKV.
Collapse
Affiliation(s)
- Paola Mariela Saba Villarroel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Rodolphe Hamel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Phanit Koomhin
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat, Thailand
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Gabiane G, Bohers C, Mousson L, Obadia T, Dinglasan RR, Vazeille M, Dauga C, Viglietta M, Yébakima A, Vega-Rúa A, Gutiérrez Bugallo G, Gélvez Ramírez RM, Sonor F, Etienne M, Duclovel-Pame N, Blateau A, Smith-Ravin J, De Lamballerie X, Failloux AB. Evaluating vector competence for Yellow fever in the Caribbean. Nat Commun 2024; 15:1236. [PMID: 38336944 PMCID: PMC10858021 DOI: 10.1038/s41467-024-45116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The mosquito-borne disease, Yellow fever (YF), has been largely controlled via mass delivery of an effective vaccine and mosquito control interventions. However, there are warning signs that YF is re-emerging in both Sub-Saharan Africa and South America. Imported from Africa in slave ships, YF was responsible for devastating outbreaks in the Caribbean. In Martinique, the last YF outbreak was reported in 1908 and the mosquito Aedes aegypti was incriminated as the main vector. We evaluated the vector competence of fifteen Ae. aegypti populations for five YFV genotypes (Bolivia, Ghana, Nigeria, Sudan, and Uganda). Here we show that mosquito populations from the Caribbean and the Americas were able to transmit the five YFV genotypes, with YFV strains for Uganda and Bolivia having higher transmission success. We also observed that Ae. aegypti populations from Martinique were more susceptible to YFV infection than other populations from neighboring Caribbean islands, as well as North and South America. Our vector competence data suggest that the threat of re-emergence of YF in Martinique and the subsequent spread to Caribbean nations and beyond is plausible.
Collapse
Affiliation(s)
- Gaelle Gabiane
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
- Université des Antilles, Ecole Doctorale 589, Schœlcher, Martinique, Marseille, France
| | - Chloé Bohers
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Marseille, France
- Institut Pasteur, Université Paris Cité, G5 Infectious Disease Epidemiology and Analytics, Paris, France
| | - Rhoel R Dinglasan
- University of Florida, Department of Infectious Diseases & Immunology and Emerging Pathogens Institute, College of Veterinary Medicine, Gainesville, FL, USA
| | - Marie Vazeille
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | - Marine Viglietta
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Anubis Vega-Rúa
- Institut Pasteur de Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe, Marseille, France
| | - Gladys Gutiérrez Bugallo
- Institut Pasteur de Guadeloupe, Laboratory of Vector Control Research, Unit Transmission Reservoir and Pathogens Diversity, Les Abymes, Guadeloupe, Marseille, France
- Department of Vector Control, Center for Research, Diagnostic, and Reference, Institute of Tropical Medicine Pedro Kouri, Havana, Cuba
| | - Rosa Margarita Gélvez Ramírez
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas, Fundación INFOVIDA, Bucaramanga, Colombia
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection, Marseille, France
| | - Fabrice Sonor
- Centre de Démoustication et de Recherches Entomologiques, Lutte antivectorielle, Martinique, Marseille, France
- Agence Régionale de Santé, Direction de la Santé Publique, Martinique, Marseille, France
| | - Manuel Etienne
- Centre de Démoustication et de Recherches Entomologiques, Lutte antivectorielle, Martinique, Marseille, France
| | - Nathalie Duclovel-Pame
- Agence Régionale de Santé, Direction de la Santé Publique, Martinique, Marseille, France
| | - Alain Blateau
- Agence Régionale de Santé, Direction de la Santé Publique, Martinique, Marseille, France
| | - Juliette Smith-Ravin
- Groupe de recherche Biospheres Université des Antilles, Campus de Schœlcher, Martinique, Marseille, France
| | - Xavier De Lamballerie
- Unité des Virus Emergents (UVE), Aix Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection, Marseille, France
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors, Paris, France.
| |
Collapse
|
6
|
Viginier B, Raquin V. Aedes aegypti Vector Competence Assay for Rift Valley Fever Virus Using Artificial Blood Meal. Methods Mol Biol 2024; 2824:15-25. [PMID: 39039403 DOI: 10.1007/978-1-0716-3926-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Vector competence assays allow to measure, in the laboratory, the ability of a mosquito to get infected and then retransmit an arbovirus while mimicking natural vector infection route. Aedes aegypti is a major vector of arboviruses worldwide and thus a reference species used in vector competence assays. Rift Valley fever virus (RVFV) is a major public health threat, mostly in Africa, that infects humans and animals through the bite of mosquito vectors. Here, we describe vector competence assay of Aedes aegypti mosquitoes for RVFV, from mosquito exposure to the virus through an infectious artificial blood meal to the measurement of virus prevalence in the mosquito's body, head, and saliva.
Collapse
Affiliation(s)
- Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Vincent Raquin
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
| |
Collapse
|
7
|
Delrieu M, Martinet JP, O’Connor O, Viennet E, Menkes C, Burtet-Sarramegna V, Frentiu FD, Dupont-Rouzeyrol M. Temperature and transmission of chikungunya, dengue, and Zika viruses: A systematic review of experimental studies on Aedes aegypti and Aedes albopictus. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100139. [PMID: 37719233 PMCID: PMC10500480 DOI: 10.1016/j.crpvbd.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.
Collapse
Affiliation(s)
- Méryl Delrieu
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Jean-Philippe Martinet
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Olivia O’Connor
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| | - Elvina Viennet
- School of Biomedical Sciences, Queensland University of Technology,
Kelvin Grove, QLD 4059, Australia
| | - Christophe Menkes
- ENTROPIE, IRD, University of New Caledonia, University of La Réunion,
CNRS, Ifremer, Nouméa, New Caledonia
| | - Valérie Burtet-Sarramegna
- Institute of Exact and Applied Sciences (ISEA), University of New
Caledonia, 45 Avenue James Cook - BP R4 98 851 - Nouméa Cedex, New
Caledonia
| | - Francesca D. Frentiu
- School of Biomedical Sciences, And Centre for Immunology and Infection
Control, Queensland University of Technology, Brisbane, QLD 4000,
Australia
| | - Myrielle Dupont-Rouzeyrol
- Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International
Network, URE Dengue et Arborises, Nouméa 98845, New Caledonia
| |
Collapse
|
8
|
Bisia M, Montenegro-Quinoñez CA, Dambach P, Deckert A, Horstick O, Kolimenakis A, Louis VR, Manrique-Saide P, Michaelakis A, Runge-Ranzinger S, Morrison AC. Secondary vectors of Zika Virus, a systematic review of laboratory vector competence studies. PLoS Negl Trop Dis 2023; 17:e0011591. [PMID: 37651473 PMCID: PMC10499269 DOI: 10.1371/journal.pntd.0011591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND After the unprecedented Zika virus (ZIKV) outbreak in the western hemisphere from 2015-2018, Aedes aegypti and Ae. albopictus are now well established primary and secondary ZIKV vectors, respectively. Consensus about identification and importance of other secondary ZIKV vectors remain. This systematic review aims to provide a list of vector species capable of transmitting ZIKV by reviewing evidence from laboratory vector competence (VC) studies and to identify key knowledge gaps and issues within the ZIKV VC literature. METHODS A search was performed until 15th March 2022 on the Cochrane Library, Lilacs, PubMed, Web of Science, WHOLIS and Google Scholar. The search strings included three general categories: 1) "ZIKA"; 2) "vector"; 3) "competence", "transmission", "isolation", or "feeding behavior" and their combinations. Inclusion and exclusion criteria has been predefined and quality of included articles was assessed by STROBE and STROME-ID criteria. FINDINGS From 8,986 articles retrieved, 2,349 non-duplicates were screened by title and abstracts,103 evaluated using the full text, and 45 included in this analysis. Main findings are 1) secondary vectors of interest include Ae. japonicus, Ae. detritus, and Ae. vexans at higher temperature 2) Culex quinquefasciatus was not found to be a competent vector of ZIKV, 3) considerable heterogeneity in VC, depending on the local mosquito strain and virus used in testing was observed. Critical issues or gaps identified included 1) inconsistent definitions of VC parameters across the literature; 2) equivalency of using different mosquito body parts to evaluate VC parameters for infection (mosquito bodies versus midguts), dissemination (heads, legs or wings versus salivary glands), and transmission (detection or virus amplification in saliva, FTA cards, transmission to neonatal mice); 3) articles that fail to use infectious virus assays to confirm the presence of live virus; 4) need for more studies using murine models with immunocompromised mice to infect mosquitoes. CONCLUSION Recent, large collaborative multi-country projects to conduct large scale evaluations of specific mosquito species represent the most appropriate approach to establish VC of mosquito species.
Collapse
Affiliation(s)
- Marina Bisia
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Carlos Alberto Montenegro-Quinoñez
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Instituto de Investigaciones, Centro Universitario de Zacapa, Universidad de San Carlos de Guatemala, Zacapa, Guatemala
| | - Peter Dambach
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Andreas Deckert
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Olaf Horstick
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Antonios Kolimenakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Valérie R. Louis
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos (UCBE), Universidad Autónoma de Yucatán, Mérida, México
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - Silvia Runge-Ranzinger
- Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
9
|
Kalendar R, Kairov U, Karabayev D, Aitkulova A, Tynyshtykbayeva N, Daniyarov A, Otarbay Z, Rakhimova S, Akilzhanova A, Sarbassov D. Universal whole-genome Oxford nanopore sequencing of SARS-CoV-2 using tiled amplicons. Sci Rep 2023; 13:10334. [PMID: 37365249 DOI: 10.1038/s41598-023-37588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
We developed a comprehensive multiplexed set of primers adapted for the Oxford Nanopore Rapid Barcoding library kit that allows universal SARS-CoV-2 genome sequencing. This primer set is designed to set up any variants of the primers pool for whole-genome sequencing of SARS-CoV-2 using single- or double-tiled amplicons from 1.2 to 4.8 kb with the Oxford Nanopore. This multiplexed set of primers is also applicable for tasks like targeted SARS-CoV-2 genome sequencing. We proposed here an optimized protocol to synthesize cDNA using Maxima H Minus Reverse Transcriptase with a set of SARS-CoV-2 specific primers, which has high yields of cDNA template for RNA and is capable of long-length cDNA synthesis from a wide range of RNA amounts and quality. The proposed protocol allows whole-genome sequencing of the SARS-CoV-2 virus with tiled amplicons up to 4.8 kb on low-titer virus samples and even where RNA degradation has occurred. This protocol reduces the time and cost from RNA to genome sequence compared to the Midnight multiplex PCR method for SARS-CoV-2 genome sequencing using the Oxford Nanopore.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Daniyar Karabayev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Akbota Aitkulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nuray Tynyshtykbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Asset Daniyarov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Dos Sarbassov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
10
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
11
|
Xi R, Abdulla R, Zhao J, Aisa HA, Liu Y. Pharmacokinetic Study and Metabolite Identification of CAM106 in Rats by Validated UHPLC-MS/MS. Pharmaceuticals (Basel) 2023; 16:ph16050728. [PMID: 37242511 DOI: 10.3390/ph16050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Given the limitations of existing antiviral drugs and vaccines, there is still an urgent need for new anti-influenza drugs. CAM106, a rupestonic acid derivative, was studied for its potent antiviral activity and showed a favorable inhibitory effect on influenza virus replication. However, many gaps exist in preclinical studies of CAM106. This study focused on the pharmacokinetic profile and metabolites of CAM106 in vivo. An efficient and fast bioanalytical method was successfully developed and validated for the quantitation of CAM106 in rat plasma. A mobile phase aqueous solution (A, containing 0.1% formic acid) and acetonitrile (B) worked within 0-3.5 min, with 60% B. The mass spectrum scanning mode was the parallel reaction monitoring (PRM) with a resolution of 17,500. The linear range of the method was 2.13-1063.83 ng/mL. The validated method was applied to a pharmacokinetic study in rats. The matrix effects ranged from 93.99% to 100.08% and the recovery ranged from 86.72% to 92.87%. The intra- and inter-day precisions were less than 10.24% and the relative error (RE) ranged from -8.92% to 7.1%. The oral bioavailability of CAM106 was 1.6%. Thereafter, its metabolites in rats were characterized using high-resolution mass spectrometry. The isomers M7-A, M7-B, M7-C, and M7-D were well separated. As a result, a total of 11 metabolites were identified in the feces, urine, and plasma of rats. The main metabolic pathways of CAM106 were oxidation, reduction, desaturation, and methylation. The assay was reliable and provided useful information for further clinical studies of CAM106.
Collapse
Affiliation(s)
- Ruqi Xi
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yongqiang Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
12
|
Dahiya N, Yadav M, Singh H, Jakhar R, Sehrawat N. ZIKV: Epidemiology, infection mechanism and current therapeutics. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2022.1059283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The Zika virus (ZIKV) is a vector-borne flavivirus that has been detected in 87 countries worldwide. Outbreaks of ZIKV infection have been reported from various places around the world and the disease has been declared a public health emergency of international concern. ZIKV has two modes of transmission: vector and non-vector. The ability of ZIKV to vertically transmit in its competent vectors, such as Aedes aegypti and Aedes albopictus, helps it to cope with adverse conditions, and this could be the reason for the major outbreaks that occur from time to time. ZIKV outbreaks are a global threat and, therefore, there is a need for safe and effective drugs and vaccines to fight the virus. In more than 80% of cases, ZIKV infection is asymptomatic and leads to complications, such as microcephaly in newborns and Guillain–Barré syndrome (GBS) in adults. Drugs such as sofosbuvir, chloroquine, and suramin have been found to be effective against ZIKV infections, but further evaluation of their safety in pregnant women is needed. Although temoporfin can be given to pregnant women, it needs to be tested further for side effects. Many vaccine types based on protein, vector, DNA, and mRNA have been formulated. Some vaccines, such as mRNA-1325 and VRC-ZKADNA090-00-VP, have reached Phase II clinical trials. Some new techniques should be used for formulating and testing the efficacy of vaccines. Although there have been no recent outbreaks of ZIKV infection, several studies have shown continuous circulation of ZIKV in mosquito vectors, and there is a risk of re-emergence of ZIKV in the near future. Therefore, vaccines and drugs for ZIKV should be tested further, and safe and effective therapeutic techniques should be licensed for use during outbreaks.
Collapse
|