1
|
Zheng Q, Bao P, Wu X, Zhang X, Huang C, Wang T, Ma C, Zhang M, Chu M, Guo X, Liang C, Pan H, Yan P. Integration of bulk and single-cell RNA sequencing reveals dynamic changes in epidermal cells. Int J Biol Macromol 2025; 309:142601. [PMID: 40158578 DOI: 10.1016/j.ijbiomac.2025.142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
The epidermis and its appendages serve as key systems in stem cell biology. However, despite extensive research, the dynamic changes in these structures and the regulatory mechanisms governing cell behavior during the hair follicle cycle remain incompletely understood. In this study, we employed bulk and single-cell RNA sequencing to investigate the molecular regulation of yak epidermal cell populations across the anagen, catagen, and telogen phases. Through bulk transcriptomics screening, the hub genes potentially involved in the hair follicle cycle of yaks were identified. Single-cell RNA sequencing further revealed the temporal and spatial dynamics of 14 different cell populations in the hair follicle cycle, and reconstructed the trajectory of epidermal cell differentiation. We also found a large overlap of gene modules in the hair follicle microenvironment. Differential gene enrichment analysis of different branches further revealed that the function of hair follicle stem cells is closely related to their spatial location in tissues and their ability to adhere to the basement membrane. Our study not only provides valuable resources for understanding the molecular pathways of the time axis and spatial axis of the hair follicle cycle but is also highly important for future yak breeding.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaolan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Minghao Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China.
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China; Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Kamizaki K, Katsukawa M, Yamamoto A, Fukada SI, Uezumi A, Endo M, Minami Y. Ror2 signaling regulated by differential Wnt proteins determines pathological fate of muscle mesenchymal progenitors. Cell Death Dis 2024; 15:784. [PMID: 39468010 PMCID: PMC11519583 DOI: 10.1038/s41419-024-07173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Skeletal muscle mesenchymal progenitors (MPs) play a critical role in supporting muscle regeneration. However, under pathological conditions, they contribute to intramuscular adipose tissue accumulation, involved in muscle diseases, including muscular dystrophy and sarcopenia, age-related muscular atrophy. How MP fate is determined in these different contexts remains unelucidated. Here, we report that Ror2, a non-canonical Wnt signaling receptor, is selectively expressed in MPs and regulates their pathological features in a differential ligand-dependent manner. We identified Wnt11 and Wnt5b as ligands of Ror2. In vitro, Wnt11 inhibited MP senescence, which is required for normal muscle regeneration, and Wnt5b promoted MP proliferation. We further found that both Wnts are abundant in degenerating muscle and synergistically stimulate Ror2, leading to unwanted MP proliferation and eventually intramuscular adipose tissue accumulation. These findings provide evidence that Ror2-mediated signaling elicited by differential Wnts plays a critical role in determining the pathological fate of MPs.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuko Katsukawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Ayano Yamamoto
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| |
Collapse
|
3
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
4
|
Liu Y, Yang S, Tan L, Li X, Long D, Lu J, Wang D. Necrosulfonamide promotes hair growth and ameliorates DHT-induced hair growth inhibition. J Dermatol Sci 2024; 115:64-74. [PMID: 39043505 DOI: 10.1016/j.jdermsci.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Alopecia affects patients' appearance and psychology. Mixed-lineage kinase domain-like pseudokinase (MLKL)-mediated necroptosis plays a role in various skin diseases, but its effect on hair growth is unclear. OBJECTIVE To investigate the effects of MLKL on hair growth and its regulatory mechanisms and to determine the potential clinical value of Necrosulfonamide (NSA, a MLKL-targeting inhibitor) in promoting hair growth and counteracting dihydrotestosterone (DHT) inhibition of hair growth. METHODS The expression level of MLKL was detected in the scalp of androgenetic alopecia (AGA) patients and the skin tissues of mice. Knock down MLKL expression or use NSA to observe hair growth in vivo and in vitro. RESULTS In AGA patients, MLKL expression is elevated in the alopecia areas. In mice, MLKL is significantly expressed in the outer root sheath (ORS) cells of hair follicles, peaking during the catagen phase. Knockdown expression of MLKL in mice skin promoted hair growth. NSA enhanced hair growth and prevented hair follicle regression via the Wnt signaling. Reduced MLKL boosts ORS cell proliferation without directly impacting DPCs' growth. Interestingly, NSA boosts DPCs' proliferation and induction when co-cultured with ORS cells. Besides, NSA alleviated the inhibition of DHT on hair growth in vivo and vitro. CONCLUSION NSA inhibited the activation of MLKL in ORS cells, promoted the activation of Wnt signal in DPC cells, and improved the inhibition of hair growth by DHT, illuminating a new alopecia mechanism and aiding anti-alopecia drug development.
Collapse
Affiliation(s)
- Yuanhong Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lina Tan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuemei Li
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Daijing Long
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Wang F, He G, Liu M, Sun Y, Ma S, Sun Z, Wang Y. Pilose antler extracts promotes hair growth in androgenetic alopecia mice by activating hair follicle stem cells via the AKT and Wnt pathways. Front Pharmacol 2024; 15:1410810. [PMID: 39045053 PMCID: PMC11263108 DOI: 10.3389/fphar.2024.1410810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Background: Angrogenetic alopecia (AGA) is one of the most prevalent hair loss disorders worldwide. The hair follicle stem cell (HFSC) is closely related to the formation of hair follicle (HF) structure and HF self-renewal. The activation of HFSC in AGA is critical for hair growth. Pilose antler has been reported to have hair growth-promoting activity, but the mechanism of action on AGA and HFSC has not been reported. Methods: We previously extracted an active component from the pilose antler known as PAEs. In this study, we conducted experiments using AGA mice and HFSC. The effects of PAEs on hair growth in AGA mice were firstly detected, and then the mechanisms of PAEs for AGA were predicted by integrating network pharmacology and de novo transcriptomics data of pilose antler. Finally, biological experiments were used to validate the molecular mechanism of PAEs in treating AGA both in vivo and in vitro. Results: It was found that PAEs promoted hair regrowth by accelerating the activation of anagen, delaying the anagen-catagen transition. It also alleviated the morphological changes, such as hair shortening, thinning, miniaturization, and HF number reduction, and regulated the hair regeneration process of four subtypes of hair. We further found that PAEs could promote the proliferation of HFSC, outer root sheath (ORS) cells, and hair bulb cells in AGA mice. We then integrated network pharmacology and pilose antler transcriptomics data to predict that the mechanism of PAEs treatment in AGA mice is closely related to the PI3K-AKT/Wnt-β-Catenin pathways. Subsequently, it was also verified that PAEs could activate both pathways in the skin of AGA mice. In addition, we found that PAEs perhaps increased the number of blood vessels around dermal papilla (DP) in experiments in vivo. Meanwhile, the PAEs stimulated the HFSC proliferation in vitro and activated the AKT and Wnt pathways. However, the proliferative activity of HFSC was inhibited after blocking the Wnt pathway and AKT activity. Conclusion: This study suggests that the hair growth-promoting effect of PAEs in AGA mice may be closely related to the stimulation of the AKT and Wnt pathways, which in turn activates the proliferation of HFSC.
Collapse
Affiliation(s)
- Fenglong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenxiao Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Lee H, Kim SY, Kwon NJ, Jo SJ, Kwon O, Kim JI. Single-Cell and Spatial Transcriptome Analysis of Dermal Fibroblast Development in Perinatal Mouse Skin: Dynamic Lineage Differentiation and Key Driver Genes. J Invest Dermatol 2024; 144:1238-1250.e11. [PMID: 38072389 DOI: 10.1016/j.jid.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
Several single-cell RNA studies of developing mouse skin have elucidated the molecular and cellular processes involved in skin development. However, they have primarily focused on either the fetal or early postnatal period, leaving a gap in our understanding of skin development. In this study, we conducted a comprehensive time-series analysis by combining single-cell RNA-sequencing datasets collected at different stages of development (embryonic days 13.5, 14.5, and 16.5 and postnatal days 0, 2, and 4) and validated our findings through multipanel in situ spatial transcriptomics. Our analysis indicated that embryonic fibroblasts exhibit heterogeneity from a very early stage and that the rapid determination of each lineage occurs within days after birth. The expression of putative key driver genes, including Hey1, Ebf1, Runx3, and Sox11 for the dermal papilla trajectory; Lrrc15 for the dermal sheath trajectory; Zfp536 and Nrn1 for the papillary fibroblast trajectory; and Lrrn4cl and Mfap5 for the fascia fibroblast trajectory, was detected in the corresponding, spatially identified cell types. Finally, cell-to-cell interaction analysis indicated that the dermal papilla lineage is the primary source of the noncanonical Wnt pathway during skin development. Together, our study provides a transcriptomic reference for future research in the field of skin development and regeneration.
Collapse
Affiliation(s)
- Hanjae Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea; Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Laboratory of Cutaneous Aging and Hair Research, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea; Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea.
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Cangiotti G, Veltri A, Delepine G, Lien WH. Characterization of the Newborn Epidermis and Adult Hair Follicles Using Whole-Mount Immunofluorescent Staining of Mouse Dorsal Skin. Methods Mol Biol 2024; 2849:45-54. [PMID: 38407797 DOI: 10.1007/7651_2024_513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The mammalian integumentary system, including skin and its appendages, serves as a protective barrier for the body. During development, skin epidermis undergoes rapid cell division and differentiation to form multiple stratified layers of keratinocytes. Concurrently the epidermis also gives rise to hair follicles that invaginate into the dermis. In adult skin, the hair follicle undergoes cyclic regeneration fueled by hair follicle stem cells located in the bulge. Three-dimensional and high-resolution imaging of these structures using whole-mount immunofluorescent staining allows to better characterize epidermal progenitors and stem cells.
Collapse
Affiliation(s)
- Gaia Cangiotti
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Georges Delepine
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Ma C, Cheng M, Wu Y, Xu X. The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle. Stem Cells Dev 2024; 33:1-10. [PMID: 37847179 DOI: 10.1089/scd.2023.0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.
Collapse
Affiliation(s)
- Cong Ma
- Department of Dermatology, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, China
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| | - Xuegang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Tabrizian N, Nouruzi S, Cui CJ, Kobelev M, Namekawa T, Lodhia I, Talal A, Sivak O, Ganguli D, Zoubeidi A. ASCL1 is activated downstream of the ROR2/CREB signaling pathway to support lineage plasticity in prostate cancer. Cell Rep 2023; 42:112937. [PMID: 37552603 DOI: 10.1016/j.celrep.2023.112937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.
Collapse
Affiliation(s)
- Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Ishana Lodhia
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Amina Talal
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
10
|
Zhou Y, Jia L, Zhou D, Chen G, Fu Q, Li N. Advances in microneedles research based on promoting hair regrowth. J Control Release 2023; 353:965-974. [PMID: 36549392 DOI: 10.1016/j.jconrel.2022.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Alopecia is the most common and difficult-to-treat hair disorder. It usually brings a significant psychological burden to the patients. With the growing popularity of alopecia, the study of alopecia has gained more attention. Currently, only minoxidil and finasteride have been approved by the FDA for the treatment of alopecia, but the efficacy has always been unsatisfactory. As a new form of transdermal drug delivery, microneedles have been widely used in the treatment of alopecia and have proven to be effective. Microneedles delivery can improve the efficiency of local drug delivery and patients' compliance, which can achieve better therapeutic effects on hair-related diseases. Therefore, microneedles have gained much attention in the field of alopecia and hair regrowth promotion in recent years. This review summarizes the last decade of research on the microneedles delivery design for the treatment of alopecia or promotion of hair regrowth and provides a comprehensive evaluation of this field.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Luan Jia
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|