1
|
Zhuang D, Wang D, Xu J, Tang Z, Ching JJ, Ling TC, Li X, Hong W. Frontiers in Single-Molecule Junction Detection: A Review of Recent Innovations and Breakthroughs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40393706 DOI: 10.1021/acs.langmuir.5c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Single-molecule junction techniques offer powerful tools for studying physical and chemical properties at the single-molecule level, while enabling groundbreaking advances in ultrasensitive sensing. This review encapsulates the latest progress made in tracking chemical reactions and intermolecular interactions by employing single-molecule junction techniques. Additionally, we explore their practical applications in detection and sensing of trace chemical substances and biomolecules. Single-molecule electrical measurements, such as mechanically controllable break junctions (MCBJs), scanning tunneling microscopy break junctions (STM-BJs), and graphene-molecule-graphene single-molecule junctions (GMG-SMJ), exhibit exceptional sensitivity and resolution. These techniques allow for precise control and detection at the molecular scale, providing powerful tools for research across disciplines such as chemistry, biology, and physics while also driving new discoveries and advancements in related fields. Furthermore, we highlight the applications of single-molecule junction-based sensing techniques in identifying small molecules and ions in various media, thus contributing noteworthy insights into the design of ultrasensitive single-molecule sensors.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dongdong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jizhe Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Ziyun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Juan Joon Ching
- Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Wu SD, Chen ZZ, Sun WJ, Shi LYY, Shen AK, Cao JJ, Liu Z, Lambert CJ, Zhang HL. Boosting the Photoresponse of Azobenzene Single-Molecule Junctions via Mechanical Interlock and Dynamic Anchor. ACS NANO 2024; 18:31547-31558. [PMID: 39476419 DOI: 10.1021/acsnano.4c13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As the most classic photoisomerization system, azobenzene has been widely utilized as a building unit in various photoswitching applications. However, attempts to build azobenzene-based single-molecule photoswitches have met with limited success, giving low on/off ratios. Herein, we demonstrate two designs of azobenzene-based photoresponsive single-molecule junctions, based on mechanically interlocked diazocine and azobenzene-based dynamic anchors, respectively. Molecular conductance measurements using the scanning tunneling microscope breaking junction (STMBJ) technique revealed dramatic conductance changes upon photoillumination, achieving a high on/off ratio of ∼3.7. Using density functional theory (DFT), we revealed peculiar quantum interference (QI) effects in the diazocine molecular switch, indicating that diazocine is an excellent candidate for molecular photoswitches. The asymmetric azobenzene devices with a dynamic anchor exhibit switching behavior between a fully off state and a highly conductive state associated with the trans/cis conformation transition. The findings of this work not only present the design and development of functional molecular devices based on azobenzene units but also provide insight into the fundamental properties of light-induced quantum interference in azobenzene-based molecular devices.
Collapse
Affiliation(s)
- Shun-Da Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zi-Zhen Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Jing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Li-Yu-Yang Shi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - An-Kang Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jing-Jing Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
4
|
Zhao C, Diao J, Liu Z, Hao J, He S, Li S, Li X, Li G, Fu Q, Jia C, Guo X. Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces. Nat Commun 2024; 15:8835. [PMID: 39397019 PMCID: PMC11471814 DOI: 10.1038/s41467-024-53179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Detecting chemical reaction dynamics at solid-liquid interfaces is important for understanding heterogeneous reactions. However, there is a lack of exploration of interface reaction dynamics from the single-molecule perspective, which can reveal the intrinsic reaction mechanism underlying ensemble experiments. Here, single-event protonation reaction dynamics at a solid-liquid interface are studied in-situ using single-molecule junctions. Molecules with amino terminal groups are used to construct single-molecule junctions. An interfacial cationic state present after protonation is discovered. Real-time electrical measurements are used to monitor the reversible reaction between protonated and deprotonated states, thereby revealing the interfacial reaction mechanism through dynamic analysis. The protonation reaction rate constant has a linear positive correlation with proton concentration, whereas the deprotonation reaction rate constant has a linear negative correlation. In addition, external mechanical forces can effectively regulate the protonation reaction process. This work provides a single-molecule perspective for exploring interface science, which will contribute to the development of heterogeneous catalysis and electrochemistry.
Collapse
Affiliation(s)
- Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Jiazheng Diao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Future Technology, University of Science and Technology of China, Hefei, China
| | - Zhao Liu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Shaojia Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Xingxing Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Future Technology, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Guangwu Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China.
- Shenzhen Research, Institute of Nankai University, 16th Floor, Yantian Science & Technology Building, Shenzhen, China.
| | - Qiang Fu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Future Technology, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China.
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China.
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
5
|
Tanaka Y. Organometallics in molecular junctions: conductance, functions, and reactions. Dalton Trans 2024; 53:8512-8523. [PMID: 38712999 DOI: 10.1039/d4dt00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular junctions, which involve sandwiching molecular structures between electrodes, play a crucial role in molecular electronics. Recent advances in this field have revealed the vital role of organometallic chemistry in the investigation of molecular junctions, which has added to their well-known contributions to catalysis and materials chemistry. This review summarizes the recent examples of organometallic chemistry applications in molecular junctions, which can be categorized into three types, i.e., class I encompassing molecular junctions with bridging organometallic complexes, class II involving molecular junctions with covalent and noncovalent metal electrode-carbon bonds, and class III comprising organometallic reactions within molecular junctions.
Collapse
Affiliation(s)
- Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Yamamoto T, Yamane H, Yokoshi N, Oka H, Ishihara H, Sugawara Y. Optical Imaging of a Single Molecule with Subnanometer Resolution by Photoinduced Force Microscopy. ACS NANO 2024; 18:1724-1732. [PMID: 38157420 PMCID: PMC10795473 DOI: 10.1021/acsnano.3c10924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Visualizing the optical response of individual molecules is a long-standing goal in catalysis, molecular nanotechnology, and biotechnology. The molecular response is dominated not only by the electronic states in their isolated environment but also by neighboring molecules and the substrate. Information about the transfer of energy and charge in real environments is essential for the design of the desired molecular functions. However, visualizing these factors with spatial resolution beyond the molecular scale has been challenging. Here, by combining photoinduced force microscopy and Kelvin probe force microscopy, we have mapped the photoinduced force in a pentacene bilayer with a spatial resolution of 0.6 nm and observed its "multipole excitation". We identified the excitation as the result of energy and charge transfer between the molecules and to the Ag substrate. These findings can be achieved only by combining microscopy techniques to simultaneously visualize the optical response of the molecules and the charge transfer between the neighboring environments. Our approach and findings provide insights into designing molecular functions by considering the optical response at each step of layering molecules.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Department
of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidemasa Yamane
- Department
of Physics, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
- Osaka
Research Institute of Industrial Science and Technology, Izumi, Osaka 594-1157, Japan
| | - Nobuhiko Yokoshi
- Department
of Physics and Electronics, Osaka Metropolitan
University, Sakai, Osaka 599-8531, Japan
| | - Hisaki Oka
- Department
of Physics, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Hajime Ishihara
- Department
of Materials Engineering Science, Osaka
University, Toyonaka, Osaka 560-8531, Japan
| | - Yasuhiro Sugawara
- Department
of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Liu S, Zeng J, Wu Z, Hu H, Xu A, Huang X, Chen W, Chen Q, Yu Z, Zhao Y, Wang R, Han T, Li C, Gao P, Kim H, Baik SJ, Zhang R, Zhang Z, Zhou P, Liu G. An ultrasmall organic synapse for neuromorphic computing. Nat Commun 2023; 14:7655. [PMID: 37996491 PMCID: PMC10667342 DOI: 10.1038/s41467-023-43542-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
High-performance organic neuromorphic devices with miniaturized device size and computing capability are essential elements for developing brain-inspired humanoid intelligence technique. However, due to the structural inhomogeneity of most organic materials, downscaling of such devices to nanoscale and their high-density integration into compact matrices with reliable device performance remain challenging at the moment. Herein, based on the design of a semicrystalline polymer PBFCL10 with ordered structure to regulate dense and uniform formation of conductive nanofilaments, we realize an organic synapse with the smallest device dimension of 50 nm and highest integration size of 1 Kb reported thus far. The as-fabricated PBFCL10 synapses can switch between 32 conductance states linearly with a high cycle-to-cycle uniformity of 98.89% and device-to-device uniformity of 99.71%, which are the best results of organic devices. A mixed-signal neuromorphic hardware system based on the organic neuromatrix and FPGA controller is implemented to execute spiking-plasticity-related algorithm for decision-making tasks.
Collapse
Affiliation(s)
- Shuzhi Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianmin Zeng
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhixin Wu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ao Xu
- School of Microelectronics, Hefei University of Technology, Hefei, 230601, China
| | - Xiaohe Huang
- State Key Laboratory of ASIC and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Weilin Chen
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qilai Chen
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Zhe Yu
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Yinyu Zhao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Rong Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Tingting Han
- School of Microelectronics, Hefei University of Technology, Hefei, 230601, China
| | - Chao Li
- School of Microelectronics, Hefei University of Technology, Hefei, 230601, China
| | - Pingqi Gao
- School of Materials, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China
| | - Hyunwoo Kim
- School of Electronic and Electrical Engineering, Hankyong National University, Anseong-si, Gyeonggi-do, 17579, Korea
| | - Seung Jae Baik
- School of Electronic and Electrical Engineering, Hankyong National University, Anseong-si, Gyeonggi-do, 17579, Korea
| | - Ruoyu Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Zhang Zhang
- School of Microelectronics, Hefei University of Technology, Hefei, 230601, China.
| | - Peng Zhou
- State Key Laboratory of ASIC and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, China.
| | - Gang Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
9
|
Guo Y, Yang C, Zhang L, Guo X. Tunable Interferometric Effects between Single-Molecule Suzuki-Miyaura Cross-Couplings. J Am Chem Soc 2023; 145:6577-6584. [PMID: 36916174 DOI: 10.1021/jacs.3c01108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Parallel two molecular bridges loaded with a palladium catalyst were integrated into separate pairs of graphene electrodes in the same device. Based on the complete description of the one-palladium catalytic pathway by single-molecule electrical spectroscopy, this setup enables the mapping of the cross-correlation between different catalysts and demonstrates the emergent complexity in the extrapolation from single molecule to ensemble. The anticorrelation behaviors at the time scale of two individual catalysts in sufficiently close proximity were revealed in the Suzuki-Miyaura cross-coupling. Further experimental evidence demonstrates that the long-range electric dipole-dipole interaction induced by solvent leads to the destructive interferometric effect of two catalysts. In contrast, the cooperative coupling of the elementary step between two catalysts affords a local acceleration. This new form of reaction dynamics measurement via focusing on multiple molecules with single-event resolution holds great promise to build a bridge between single molecule and ensemble.
Collapse
Affiliation(s)
- Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Lei Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|