1
|
Zubair A, Zaib S, Zhu M, Mohany M. Elemental Profiling of Common Anti-diabetic Medicinal Plants of Swat and Peshawar Districts of Khyber Pakhtunkhwa (KPK) Province of Pakistan: An Investigation Using PIXE and ICP-OES. Biol Trace Elem Res 2025; 203:2072-2083. [PMID: 39037503 DOI: 10.1007/s12011-024-04305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
The use of medicinal plants is integral to addressing liver, heart, lung, and other metabolic issues. These plants are rich in vitamins, minerals, flavonoids, and alkaloids, which collectively help in lowering intestinal glucose absorption and increasing insulin secretion by pancreatic tissues. Elemental analysis, encompassing major, minor, and trace elements, was performed on various parts (leaves, roots, and seeds) of 16 anti-diabetic medicinal plants collected from different regions of Swat and Peshawar in Khyber Pakhtunkhwa (KPK), Pakistan. This analysis utilized proton-induced X-ray emission (PIXE) and inductively coupled plasma optical emission spectroscopy (ICP-OES) techniques. Our PIXE and ICP-OES analysis revealed the presence of major (Ca, K, S, P), minor (Si, Cl), and trace (Al, Mn, Fe, Ni, Cu, Zn, Se, Cr, and Sc) elements in various parts (leaves, roots, and seeds) of the 16 anti-diabetic medicinal plants studied. Specifically, elements such as Ca, K, Cr, Cu, Mn, Zn, and Se were detected, all of which are known to contribute in maintaining normal glucose metabolism. Notably, Zn and Se are crucial trace elements for the synthesis, secretion, and action of insulin. Significant Zn concentrations were observed in ten anti-diabetic medicinal plants: Albizia lebbeck (AL), Atropa acuminata (AA), Avena fatua (AF), Citrus medica (CM), Commiphora wightii (CW), Cymbopogon citratus (CC), Daucus carota (DC), Ziziphus mauritiana (FM), Hyoscyamus niger (HN), and Martynia annua (MA), and significant Se concentrations were observed in twelve medicinal plants, i.e., Albizia lebbeck (AL), Allium sativum (AS), Atropa acuminata (AA), Avena fatua (AF), Cannabis sativa (CS), Capparis spinosa (CaS), Commiphora wightii (CW), Cymbopogon citratus (CC), Datura alba (DA), Daucus carota (DC), Ziziphus mauritiana (FM), and Hyoscyamus niger (HN). Our study's elemental analysis using PIXE and ICP-OES on various parts of 16 medicinal plants identified a significant number of useful elements. Elements such as Ca, K, S, P, Al, Si, Cl, Mn, Fe, Ni, Cu, Zn, Se, and Cr were identified and quantified. These findings support the potential use of these plants in managing diabetes and highlight the importance of elemental profiling in understanding their therapeutic properties.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Sania Zaib
- Department of Biological Sciences, Faculty of Sciences, International Islamic University, Islamabad, 44000, Pakistan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ramzan M, Mahmood S, Amjad A, Javed M, Zidan A, Bahadur A, Iqbal S, Saad M, Zaka N, Khurshid S, Awwad NS, Ibrahium HA, Akhter T. Finding potential inhibitors from phytochemicals against nucleoprotein of crimean congo fever virus using in silico approach. Sci Rep 2024; 14:31804. [PMID: 39738281 PMCID: PMC11685418 DOI: 10.1038/s41598-024-82312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization. Many outbreaks of CCHF have been reported over the years. Former studies on CCHF have reported that the nucleoprotein of CCHF, being a pivotal protein in the replication process of the virus, is a potential target for antiviral drugs. However, there is no specific drug that can be used to treat this fatal disease and laboratory testing is prohibited due to its pathogen level 4. This study aims to find a possible potential inhibitor of the nucleoprotein of CCHFV using modern techniques leading ultimately to the development of effective and natural drugs. In this study, a virtual screening procedure involving a docking process followed by the Molecular Dynamics method is used to find out the potential inhibitors of the nucleoprotein of CCHFV. Phytochemicals having pharmacological properties and approved by the Food and Drug Administration are docked over the nucleoprotein of CCHFV. The study signifies the use of Withanolide E as a drug for the treatment of CCHFV as the study depicts the potential of Withanolide E to inhibit the nucleoprotein of CCHFV using reliable and modern techniques.
Collapse
Affiliation(s)
- Muhammad Ramzan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sajid Mahmood
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Functional Materials Group, Gulf University for Science and Technology, Mishref, 32093, Kuwait
| | - Adnan Amjad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ammar Zidan
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Ali Bahadur
- Department of Chemistry, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, 325060, Zhejiang Province, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| | - Shahid Iqbal
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Muhammad Saad
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, Gliwice, 44-100, Poland.
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| | - Namrah Zaka
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Shazia Khurshid
- Department of Chemistry, Government College University Lahore, Lahore, 54000, Pakistan
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
3
|
Luo Z, Mfarrej MFB, Saleem MH, Ma J, Saleh IA, Abdel-Maksoud MA, Zakri AM, Chen F, Oliván LMG. Individual and combinatorial application of nanosilica and carbon nanoparticles alleviate nickel stress in barley (Hordeum vulgare L.): Impacts on gene expression, AsA - GSH cycle, cellular fractionation, and proline metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176304. [PMID: 39293765 DOI: 10.1016/j.scitotenv.2024.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nanotechnology is grabbing great attention all over the world because of its stimulating use in numerous fields, and the nanosilica (nSi) and carbon nanoparticles (CNPs) application has been examined in various studies. Conversely, the nSi and CNPs combinatorial use is a new method and researched in limited literature. For this purpose, a pot experiment was conducted to examine various growth and biochemical parameters in barley (Hordeum vulgare L.) under the toxic concentration of nickel (Ni) i.e., 200 mg kg-1 which were primed with combined application of two NPs of nSi at 3 mM and CNPs i.e., 200 μM respectively. The results showed that the Ni toxicity in the soil showed a significantly (P < 0.05) declined in the growth, gas exchange attributes, sugars, AsA-GSH cycle, cellular fractionation, proline metabolism in H. vulgare. However, Ni toxicity significantly (P < 0.05) increased oxidative stress biomarkers, enzymatic and nonenzymatic antioxidants including their gene expression in H. vulgare. Although, the application of nSi and CNPs showed a significant (P < 0.05) increase in the plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased the oxidative stress, and Ni uptake. In addition, individual or combined application of nSi and CNPs enhanced the cellular fractionation and decreases the proline metabolism and AsA-GSH cycle in H. vulgare. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Zhanbin Luo
- School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirate
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211000, China.
| | | | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia.
| | - Adel M Zakri
- Plant Production Dept. College of Food and Agricultural Sciences, King Saud University, P.O. Box 270677, Riyadh 11352, Saudi Arabia.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China.
| | - Leobardo Manuel Gómez Oliván
- Universidad Autónoma del Estado de México, Paseo Colón, intersección Paseo Tollocan Col. Universidad, CP 50120 Toluca, Estado de México, MÉXICO.
| |
Collapse
|
4
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|
5
|
de Lima Silva JR, Dos Santos LB, Hassan W, Kamdem JP, Duarte AE, Soufan W, El Sabagh A, Ibrahim M. Exploring the therapeutic potential of the oxygenated monoterpene linalool in alleviating saline stress effects on Allium cepa L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47598-47610. [PMID: 38997599 DOI: 10.1007/s11356-024-34285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Sodium chloride (NaCl) can cause oxidative stress in plants, which represents a potential obstacle to the development of monocultures worldwide. Onion (Allium cepa L.) is a famous vegetable consumed and used in world cuisine. In the present study, we analyzed the influence of soil physicochemical profile and the remedial capacity of linalool on seed emergence, roots, and leaf growth in onions subjected to salt stress, as well as its in vivo and in vitro antioxidant potential, Fe2+chelating activity, and reducing power of Fe3+. The outcome of the soil analysis established the following order of abundance: sulfur (S) > calcium (Ca) > potassium (K) > magnesium (Mg) > sodium (Na). NaCl (150 mM) significantly reduced the emergence speed index (ESI), leaf and root length, while increasing the peroxidation content. The length of leaves and roots significantly increased after treatment with linalool (300 and 500 μg/mL). Our data showed negative correlations between seed emergence and K+ concentration, which was reversed after treatments. Linalool (500 μg/mL) significantly reduced oxidative stress, but increased Fe2+ concentration and did not show potential to reduce Fe3+. The in vivo antioxidant effect of linalool is thought to primarily result from an enzymatic activation process. This mechanism underscores its potential as a therapeutic agent for oxidative stress-related conditions. Further investigation into this process could unveil new avenues for antioxidant therapy.
Collapse
Affiliation(s)
| | - Larisse Bernardino Dos Santos
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Microscopy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Waseem Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Jean Paul Kamdem
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Department of Biochemistry, Microbiology and Immunology (BMI), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Antonia Eliene Duarte
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan, 23200, Pakistan.
| |
Collapse
|
6
|
Hameed A, Zeeshan M, Binyamin R, Alam MW, Ali S, Zaheer MS, Ali H, Riaz MW, Ali HH, Elshikh MS, Alarjani KM. Molecular characterization of Pectobacterium atrosepticum infecting potato and its management through chemicals. PeerJ 2024; 12:e17518. [PMID: 38952990 PMCID: PMC11216208 DOI: 10.7717/peerj.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.
Collapse
Affiliation(s)
- Akhtar Hameed
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Muhammad Zeeshan
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Rana Binyamin
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | | | - Subhan Ali
- Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Waheed Riaz
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Hafiz Haider Ali
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
- Department of Agriculture, Government College University Lahore, Lahore, Pakistan
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
8
|
Wu X, Du Y, Liang LJ, Ding R, Zhang T, Cai H, Tian X, Pan M, Liu L. Structure-guided engineering enables E3 ligase-free and versatile protein ubiquitination via UBE2E1. Nat Commun 2024; 15:1266. [PMID: 38341401 PMCID: PMC10858943 DOI: 10.1038/s41467-024-45635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.
Collapse
Affiliation(s)
- Xiangwei Wu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lu-Jun Liang
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Ruichao Ding
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyi Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongyi Cai
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Man Pan
- Institute of Translational Medicine, School of Chemistry and Chemical Engineering, School of Pharmacy, National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Ni T, Zhang S, Rao J, Zhao J, Huang H, Liu Y, Ding Y, Liu Y, Ma Y, Zhang S, Gao Y, Shen L, Ding C, Sun Y. Phlorizin, an Important Glucoside: Research Progress on Its Biological Activity and Mechanism. Molecules 2024; 29:741. [PMID: 38338482 PMCID: PMC10856272 DOI: 10.3390/molecules29030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Phlorizin, as a flavonoid from a wide range of sources, is gradually becoming known for its biological activity. Phlorizin can exert antioxidant effects by regulating the IL-1β/IKB-α/NF-KB signaling pathway. At the same time, it exerts its antibacterial activity by reducing intracellular DNA agglutination, reducing intracellular protein and energy synthesis, and destroying intracellular metabolism. In addition, phlorizin also has various pharmacological effects such as antiviral, antidiabetic, antitumor, and hepatoprotective effects. Based on domestic and foreign research reports, this article reviews the plant sources, extraction, and biological activities of phlorizin, providing a reference for improving the clinical application of phlorizin.
Collapse
Affiliation(s)
- Tongjia Ni
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Jia Rao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Jiaqi Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Haiqi Huang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Ying Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yue Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yaqian Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| | - Yuchi Ma
- Jilin Aodong Health Technology Co., Ltd., Yanbian 133700, China;
| | - Shoujun Zhang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China;
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.G.); (L.S.)
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China; (Y.G.); (L.S.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
- Jilin Aodong Health Technology Co., Ltd., Yanbian 133700, China;
| | - Yunpeng Sun
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; (T.N.); (J.R.); (J.Z.); (H.H.); (Y.L.); (Y.D.); (Y.L.)
| |
Collapse
|
10
|
Dos Santos LB, de Lima Silva JR, Moreira AMT, Kamdem JP, Khan M, Muhammad N, AlAsmari AF, Alasmari F, Duarte AE, Ibrahim M. Response to carvacrol monoterpene in the emergence of Allium cepa L. seeds exposed to salt stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32048-z. [PMID: 38261226 DOI: 10.1007/s11356-024-32048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Abiotic stresses including sodium chloride (NaCl) are known to negatively affect plant physiology and seed germination by inducing a delay in establishing seedling emergence. The monoterpene carvacrol is the major component of several aromatic plants and seems to interfere with germination and seedling growth. In this study, we investigated whether treatment with carvacrol attenuates the effects of NaCl on the germination and development of Allium cepa, where biochemical parameters were also analyzed. The results showed that the Emergency Speed Index (ESI) was near to 2.0 in the control group. The groups NaCl, carvacrol alone, and in co-treatment with NaCl exhibited an ESI below 0.8, being significantly smaller when compared to the control. NaCl + carvacrol significantly inhibited seed emergence in relation to the NaCl group. Only the content of malondialdehyde was significantly altered by NaCl.
Collapse
Affiliation(s)
| | | | | | - Jean Paul Kamdem
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
- Department of Biochemistry, Microbiology and Immunology (BMI), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan, 23200, Pakistan
| | - Niaz Muhammad
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan, 23200, Pakistan
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Antonia Eliene Duarte
- Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM) KPK, Mardan, 23200, Pakistan.
| |
Collapse
|
11
|
Kim WJ, Yang B, Lee YJ, Kim JH, Kim SH, Ahn JW, Kang SY, Kim SH, Ryu J. Genome-Wide Association Study for Agronomic Traits in Gamma-Ray-Derived Mutant Kenaf ( Hibiscus cannabinus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:249. [PMID: 38256802 PMCID: PMC10819814 DOI: 10.3390/plants13020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Kenaf (Hibiscus cannabinus L.), in the Malvaceae family, is an important crop for not only fiber production, but also various other industrial materials. We performed phylogenetic analysis and a genome-wide association study (GWAS) of seven agronomic traits: days to flowering, plant height, fresh weight, dry weight, flower color, stem color, and leaf shape, using 96 kenaf genotypes, including gamma-irradiation-derived mutant lines. Genotypes were determined by genotyping-by-sequencing (GBS) and a total of 49,241 single-nucleotide polymorphisms (SNPs) were used in the analysis. Days to flowering, plant height, fresh weight, and dry weight were positively correlated with each other, and stem color was also correlated with fresh weight and dry weight. The phylogenetic analysis divided the 96 lines into nine related groups within two independent groups, and the GWAS analysis detected a total of 49 SNPs for days to flowering, plant height, fresh weight, dry weight, flower color, stem color, and leaf shape with -log10(P) ≥ 4, of which 22 were located in genic regions. The detected SNPs were located in genes with homology ranging from 45% to 96% to plants of the Malvaceae and Betulaceae, and these genes were found to be involved in plant growth and development via various pathways. Our identification of SNP markers related to agronomic traits is expected to help improve the quality of selective breeding programs for kenaf.
Collapse
Affiliation(s)
- Woon Ji Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Baul Yang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Ye-jin Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Jae Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea;
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea;
| | - Jaihyunk Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; (W.J.K.); (B.Y.); (Y.-j.L.); (J.H.K.); (S.H.K.); (J.-W.A.)
| |
Collapse
|
12
|
Abdulraheem MI, Xiong Y, Moshood AY, Cadenas-Pliego G, Zhang H, Hu J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. PLANTS (BASEL, SWITZERLAND) 2024; 13:163. [PMID: 38256717 PMCID: PMC10820249 DOI: 10.3390/plants13020163] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to stress. Several studies have investigated the role of DNA methylation (DM), non-coding RNAs, and histone modifications in plant stress responses. However, there are various limitations or challenges in translating the research findings into practical applications. Hence, this review delves into the recent recovery, implications, and applications of epigenetic regulation in response to plant stress. To better understand plant epigenetic regulation under stress, we reviewed recent studies published in the last 5-10 years that made significant contributions, and we analyzed the novel techniques and technologies that have advanced the field, such as next-generation sequencing and genome-wide profiling of epigenetic modifications. We emphasized the breakthrough findings that have uncovered specific genes or pathways and the potential implications of understanding plant epigenetic regulation in response to stress for agriculture, crop improvement, and environmental sustainability. Finally, we concluded that plant epigenetic regulation in response to stress holds immense significance in agriculture, and understanding its mechanisms in stress tolerance can revolutionize crop breeding and genetic engineering strategies, leading to the evolution of stress-tolerant crops and ensuring sustainable food production in the face of climate change and other environmental challenges. Future research in this field will continue to unveil the intricacies of epigenetic regulation and its potential applications in crop improvement.
Collapse
Affiliation(s)
- Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Yani Xiong
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Abiodun Yusuff Moshood
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Mexico;
| | - Hao Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China or (M.I.A.); (Y.X.); (A.Y.M.); (H.Z.)
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| |
Collapse
|
13
|
Emamverdian A, Khalofah A, Pehlivan N, Zia-Ur-Rehman M, Li Y, Zargar M. Exogenous application of jasmonates and brassinosteroids alleviates lead toxicity in bamboo by altering biochemical and physiological attributes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7008-7026. [PMID: 38158528 DOI: 10.1007/s11356-023-31549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Exogenous application of phytohormones is getting promising results in alleviating abiotic stresses, particularly heavy metal (HMs). Jasmonate (JA) and brassinosteroid (BR) have crosstalk in bamboo plants, reflecting a burgeoning area of investigation. Lead (Pb) is the most common pollutant in the environment, adversely affecting plants and human health. The current study focused on the foliar application of 10 µM JA and 10 µM BR in both single and combination forms on bamboo plants grown under Pb stress (0, 50, 100, 150 µM) with a completely randomized design by four replications. The study found that applying 10 µM JA and 10 µM BR significantly improves growth and tolerance by reducing oxidative stress, reactive oxygen species including hydrogen peroxide (H2O2, 32.91%), superoxide radicals (O2-•, 33.9%), methylglyoxal (MG, 19%), membrane lipoperoxidation (25.66%), and electrolyte leakage (41.5%) while increasing antioxidant (SOD (18%), POD (13%), CAT (20%), APX (12%), and GR (19%)), non-antioxidant (total phenolics (7%), flavonols (12.3%), and tocopherols (13.8%)), and glyoxylate activity (GLyI (13%), GLyII (19%)), proline content (19%), plant metal chelating capacity (17.3%), photosynthetic pigments (16%), plant growth (10%), and biomass (12%). We found that JA and BR, in concert, boost bamboo species' Pb tolerance by enhancing antioxidant and glyoxalase cycles, ion chelation, and reducing metal translocation and accumulation. This conclusively demonstrates that utilizing a BR-JA combination form at 10 µM dose may have the potential to yield optimal efficiency in mitigating oxidative stress in bamboo plants.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Yang Li
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| |
Collapse
|
14
|
Ranjbar M, Khakdan F, Ghorbani A, Zargar M, Chen M. The variations in gene expression of GAPDH in Ocimum basilicum cultivars under drought-induced stress conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119187-119203. [PMID: 37919503 DOI: 10.1007/s11356-023-30549-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) holds a pivotal role within the glycolytic pathway of higher plants. It has garnered attention as a significant target protein in instances of oxidative stress, where it can engage in thiolation reactions within its active site. Numerous genes encoding cytosolic iterations of GAPDH have been identified and analyzed in specific plant species. This investigation was conducted to gain insights into GAPDH's function amidst drought-induced stress. Within this framework, the basil plant (Ocimum basilicum) was chosen for focused exploration, encompassing the cloning of the comprehensive cDNA of basil GAPDH (ObGAPDH) and scrutinizing its patterns of expression. The complete sequence of Ob-GAPDH spanned 1315 base pairs. The resultant protein derived from this sequence comprised 399 amino acids, projecting a molecular weight of approximately 42.54 kDa and an isoelectric point (pI) of 6.01. An examination of the evolutionary connections among various GAPDH proteins unveiled ObGAPDH's shared lineage with GAPDH proteins sourced from other plants, such as Salvia splendens and Sesamum indicum. Furthermore, computational methodologies were harnessed to predict the potential oxidative role of ObGAPDH in response to external signals. Molecular docking simulations illuminated the interaction between ObGAPDH and hydrogen peroxide (H2O2) as a ligand. Scrutinizing the expression patterns of the ObGAPDH gene under conditions of water scarcity stress brought to light diverse levels of transcriptional activity. Collectively, these findings underscore the notion that the regulation of ObGAPDH expression is contingent upon both the specific plant cultivar and the presence of stress stemming from drought conditions.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Microbial Biotechnology Department, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Ali HH, Ilyas M, Zaheer MS, Hameed A, Ikram K, Khan WUD, Iqbal R, Awan TH, Rizwan M, Mustafa AEZMA, Elshikh MS. Alleviation of chromium toxicity in mung bean (Vigna radiata L.) using salicylic acid and Azospirillum brasilense. BMC PLANT BIOLOGY 2023; 23:535. [PMID: 37919670 PMCID: PMC10623693 DOI: 10.1186/s12870-023-04528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Chromium (Cr) contamination in soil poses a serious hazard because it hinders plant growth, which eventually reduces crop yield and raises the possibility of a food shortage. Cr's harmful effects interfere with crucial plant functions like photosynthesis and respiration, reducing energy output, causing oxidative stress, and interfering with nutrient intake. In this study, the negative effects of Cr on mung beans are examined, as well as investigate the effectiveness of Azospirillum brasilense and salicylic acid in reducing Cr-induced stress. RESULTS We investigated how different Cr levels (200, 300, and 400 mg/kg soil) affected the growth of mung bean seedlings with the use of Azospirillum brasilense and salicylic acid. Experiment was conducted with randomized complete block design with 13 treatments having three replications. Significant growth retardation was caused by Cr, as were important factors like shoot and root length, plant height, dry weight, and chlorophyll content significantly reduced. 37.15% plant height, 71.85% root length, 57.09% chlorophyll contents, 82.34% crop growth rate was decreased when Cr toxicity was @ 50 µM but this decrease was remain 27.80%, 44.70%, 38.97% and 63.42%, respectively when applied A. brasilense and Salicylic acid in combine form. Use of Azospirillum brasilense and salicylic acid significantly increased mung bean seedling growth (49%) and contributed to reducing the toxic effect of Cr stress (34% and 14% in plant height, respectively) due to their beneficial properties in promoting plant growth. CONCLUSIONS Mung bean seedlings are severely damaged by Cr contamination, which limits their growth and physiological characteristics. Using Azospirillum brasilense and salicylic acid together appears to be a viable way to combat stress brought on by Cr and promote general plant growth. Greater nutrient intake, increased antioxidant enzyme activity, and greater root growth are examples of synergistic effects. This strategy has the ability to reduce oxidative stress brought on by chromium, enhancing plant resistance to adverse circumstances. The study offers new perspectives on sustainable practices that hold potential for increasing agricultural output and guaranteeing food security.
Collapse
Affiliation(s)
- Hafiz Haider Ali
- Department of Agriculture, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Maimoona Ilyas
- Sustainable Development Study Center (SDSC), Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Akhtar Hameed
- Institute of Plant Protection, MNS University of Agriculture, Multan, 61000, Pakistan
| | - Kamran Ikram
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Waqas Ud Din Khan
- Department of Agriculture, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tahir Hussain Awan
- Department of Agronomy, Rice Research Institute, Kala Shah Kaku, Lahore, 54000, Pakistan
| | - Muhammad Rizwan
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
17
|
Singh A, Yadav VK, Gautam H, Rathod L, Chundawat RS, Singh G, Verma RK, Sahoo DK, Patel A. The role of plant growth promoting rhizobacteria in strengthening plant resistance to fluoride toxicity: a review. Front Microbiol 2023; 14:1271034. [PMID: 37901824 PMCID: PMC10603187 DOI: 10.3389/fmicb.2023.1271034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
A wide variety of bacteria are present in soil but in rhizospheric area, the majority of microbes helps plant in defending diseases and facilitate nutrient uptake. These microorganisms are supported by plants and they are known as plant growth-promoting rhizobacteria (PGPR). The PGPRs have the potential to replace chemical fertilizers in a way that is more advantageous for the environment. Fluoride (F) is one of the highly escalating, naturally present contaminants that can be hazardous for PGPRs because of its antibacterial capacity. The interactions of F with different bacterial species in groundwater systems are still not well understood. However, the interaction of PGPR with plants in the rhizosphere region reduces the detrimental effects of pollutants and increases plants' ability to endure abiotic stress. Many studies reveal that PGPRs have developed F defense mechanisms, which include efflux pumps, Intracellular sequestration, enzyme modifications, enhanced DNA repair mechanism, detoxification enzymes, ion transporter/antiporters, F riboswitches, and genetic mutations. These resistance characteristics are frequently discovered by isolating PGPRs from high F-contaminated areas or by exposing cells to fluoride in laboratory conditions. Numerous studies have identified F-resistant microorganisms that possess additional F transporters and duplicates of the well-known targets of F. Plants are prone to F accumulation despite the soil's low F content, which may negatively affect their growth and development. PGPRs can be used as efficient F bioremediators for the soil environment. Environmental biotechnology focuses on creating genetically modified rhizobacteria that can degrade F contaminants over time. The present review focuses on a thorough systemic analysis of contemporary biotechnological techniques, such as gene editing and manipulation methods, for improving plant-microbe interactions for F remediation and suggests the importance of PGPRs in improving soil health and reducing the detrimental effects of F toxicity. The most recent developments in the realm of microbial assistance in the treatment of F-contaminated environments are also highlighted.
Collapse
Affiliation(s)
- Anamika Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Hemant Gautam
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Lokendra Rathod
- ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Rajendra Singh Chundawat
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Gulab Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Rakesh Kumar Verma
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
18
|
Zhang M, Qiu X. Genetic basis of genome size variation of wheat. Funct Integr Genomics 2023; 23:285. [PMID: 37648783 DOI: 10.1007/s10142-023-01194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023]
Abstract
Research on various species has revealed a connection between genome size variation and the physiological and ecological characteristics of the species, suggesting that it could be a crucial factor influencing a species' adaptability to different environments. Wheat, being one of the world's three primary grains, holds significance in this regard. Investigating the genome size of wheat and analyzing the genetic factors contributing to its variation could offer valuable insights for enhancing wheat agronomic traits. This project has developed a conservative site ratio calculation approach to determine the size of the wheat genome. Additionally, it employs flow cytometry and k-mer distribution analysis to validate this method. Furthermore, the researchers use re-sequencing data to investigate the impact of environmental selection pressure and transposon dynamics on the variation in the size of the wheat genome. The findings from this study demonstrate a strong relationship between the size of the wheat genome and several environmental factors. These results serve as a valuable reference for understanding the development of variation in the size of the hetero-hexaploid wheat genome. Moreover, they contribute to advancing fundamental research on the genetic mechanisms underlying wheat characteristics. Additionally, the study paves the way for exploring new research directions in wheat breeding, which holds promise for future advancements in this field.
Collapse
Affiliation(s)
- Ming Zhang
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuebing Qiu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Ghazy MI, Hamad HS, Gewaily EE, Bleih EM, Arafat EFA, El-Kallawy WH, El-Naem SA, Rehan M, Alwutayd KM, Abd El Moneim D. Impacts of kinetin implementation on leaves, floral and root-related traits during seed production in hybrid rice under water deficiency. BMC PLANT BIOLOGY 2023; 23:398. [PMID: 37605164 PMCID: PMC10463769 DOI: 10.1186/s12870-023-04405-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Water deficit is one of the most significant abiotic factors affecting rice and agricultural production worldwide. In hybrid rice, cytoplasmic male sterility (CMS) is an important technique for creating high-yielding crop based on heterosis. The phytohormone kinetin (Kin) regulates cell division in plant during the early stages of grain formation, as well as flow assimilation and osmotic regulation under water stress. The present study performed to estimate the effects of irrigation intervals (irrigation each six days (I6), nine days (I9), twelve days (I12) and fifteen days (I15) against continuous flooding (CF, each three days)) and kinetin exogenously application (control, 15 mg L-1 and 30 mg L-1) on hybrid rice (L1, IR69625A; L2, G46A and R, Giza 178 R) seed production. RESULTS Leaves traits (Chlorophyll content (CHC), relative water content (RWC), stomatal conductance (SC), Leaf temperature (LT) and transpiration rate (TR)), floral traits such as style length (SL) and total stigma length (TSL), in addition to root traits (i.e., root length (RL), root volume (RV), root: shoot ratio (RSR), root thickness (RT), root xylem vessels number (RXVN) and root xylem vessel area (RXVA) were evaluated and a significant enhancement in most traits was observed. Applying 30 mg L-1 kinetin significantly and positively enhanced all growth, floral and roots traits (RV and RXVA recorded the most increased values by 14.8% and 23.9%, respectively) under prolonging irrigation intervals, in comparison to non-treated plants. CONCLUSIONS Subsequently, spraying kinetin exogenously on foliar could be an alternative method to reduce the harmful influences of water deficiency during seed production in hybrid rice.
Collapse
Affiliation(s)
- Mohamed I Ghazy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Hassan Sh Hamad
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Elsayed E Gewaily
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Eman M Bleih
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Elsayed F A Arafat
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Wael H El-Kallawy
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Sabry A El-Naem
- Rice Research and Training Department, Field Crops Research Institute, Agricultural Research Center, Kafrelsheikh, 33717, Egypt
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511, Egypt.
| |
Collapse
|
20
|
Anikina I, Kamarova A, Issayeva K, Issakhanova S, Mustafayeva N, Insebayeva M, Mukhamedzhanova A, Khan SM, Ahmad Z, Lho LH, Han H, Raposo A. Plant protection from virus: a review of different approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1163270. [PMID: 37377807 PMCID: PMC10291191 DOI: 10.3389/fpls.2023.1163270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
This review analyzes methods for controlling plant viral infection. The high harmfulness of viral diseases and the peculiarities of viral pathogenesis impose special requirements regarding developing methods to prevent phytoviruses. The control of viral infection is complicated by the rapid evolution, variability of viruses, and the peculiarities of their pathogenesis. Viral infection in plants is a complex interdependent process. The creation of transgenic varieties has caused much hope in the fight against viral pathogens. The disadvantages of genetically engineered approaches include the fact that the resistance gained is often highly specific and short-lived, and there are bans in many countries on the use of transgenic varieties. Modern prevention methods, diagnosis, and recovery of planting material are at the forefront of the fight against viral infection. The main techniques used for the healing of virus-infected plants include the apical meristem method, which is combined with thermotherapy and chemotherapy. These methods represent a single biotechnological complex method of plant recovery from viruses in vitro culture. It widely uses this method for obtaining non-virus planting material for various crops. The disadvantages of the tissue culture-based method of health improvement include the possibility of self-clonal variations resulting from the long-term cultivation of plants under in vitro conditions. The possibilities of increasing plant resistance by stimulating their immune system have expanded, which results from the in-depth study of the molecular and genetic bases of plant resistance toward viruses and the investigation of the mechanisms of induction of protective reactions in the plant organism. The existing methods of phytovirus control are ambiguous and require additional research. Further study of the genetic, biochemical, and physiological features of viral pathogenesis and the development of a strategy to increase plant resistance to viruses will allow a new level of phytovirus infection control to be reached.
Collapse
Affiliation(s)
- Irina Anikina
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Aidana Kamarova
- Biology and Ecology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Kuralay Issayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | | | - Madina Insebayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
21
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
22
|
Zaman W, Ullah F, Park S. Foliar epidermal anatomical characteristics of Apiaceae species endemic to Ulleungdo and Dokdo Islands, Republic of Korea. Microsc Res Tech 2023. [PMID: 37083080 DOI: 10.1002/jemt.24322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023]
Abstract
The foliar epidermal anatomical characteristics of the two endemic Apiaceae species of Korea Bupleurum latissimum Nakai and Dystaenia takesimana (Nakai) Kitag. were investigated. The taxonomically important characteristics of these two species were identified and described to help understand their classical taxonomy. Scanning electron microscopy (SEM) was used to observe the anatomical characteristics of the studied species in detail. The comparative foliar epidermal anatomical characteristics were observed in the present research for the two-endemic species. Some of the most important foliar epidermal anatomical characteristics were observed to distinguish them, including the epidermal cell shape and size, stomata type, and trichomes shape and size. SEM provided sufficient evidence to distinguish the study species. The foliar epidermal anatomical characteristics provide sufficient information to differentiate these two species from their closely related taxa. RESEARCH HIGHLIGHTS: Apiaceae species endemic to Ulleungdo and Dokdo Islands exhibit unique foliar epidermal anatomical characteristics that can be used for taxonomic identification and classification. This study contributes to the documentation of the plant diversity of Ulleungdo and Dokdo Islands, and highlights the need for further research on the biogeography and conservation of these endemic plant species.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
23
|
Mohammad WT, Alijani H, Faris P, Salarkia E, Naderifar M, Akbarizadeh MR, Hashemi N, Iravani S, Jalil AT, Saleh MM, Fathi A, Khatami M. Plant-mediated synthesis of sphalerite (ZnS) quantum dots, Th1-Th2 genes expression and their biomedical applications. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 155:127-139. [DOI: 10.1016/j.sajb.2023.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
van Tol BDM, van Doodewaerd BR, Lageveen-Kammeijer GSM, Jansen BC, Talavera Ormeño CMP, Hekking PJM, Sapmaz A, Kim RQ, Moutsiopoulou A, Komander D, Wuhrer M, van der Heden van Noort GJ, Ovaa H, Geurink PP. Neutron-encoded diubiquitins to profile linkage selectivity of deubiquitinating enzymes. Nat Commun 2023; 14:1661. [PMID: 36966155 PMCID: PMC10039891 DOI: 10.1038/s41467-023-37363-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.
Collapse
Affiliation(s)
- Bianca D M van Tol
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Bjorn R van Doodewaerd
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | | | - Bas C Jansen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Cami M P Talavera Ormeño
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Paul J M Hekking
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Aysegul Sapmaz
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Angeliki Moutsiopoulou
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - David Komander
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Melbourne, Victoria, Australia
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Gerbrand J van der Heden van Noort
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Paul P Geurink
- Department of Cell and Chemical Biology, Chemical Biology and Drug Discovery, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
25
|
Ortiz GR, Cespedes-Panduro B, Saba I, Cotrina-Aliaga J, Mohany M, Al-Rejaie S, Arias-Gonzales J, Ramirez-Coronel A, Kadham M, Akhavan-Sigari R. Adsorption of thiotepa anticancer by the assistance of aluminum nitride nanocage scaffolds: A computational perspective on drug delivery applications. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
26
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
27
|
Wu J, Cao Z, Hassan SSU, Zhang H, Ishaq M, Yu X, Yan S, Xiao X, Jin HZ. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules 2023; 28:molecules28041571. [PMID: 36838559 PMCID: PMC9959726 DOI: 10.3390/molecules28041571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evolved over eons to encode biological assays, plants-derived natural products are still the first dawn of drugs. Most researchers have focused on natural compounds derived from commonly used Pimpinella species, such as P. anisum, P. thellungiana, P. saxifrage, and P. brachycarpa, to investigate their antioxidant, antibacterial, and anti-inflammatory properties. Ethnopharmacological studies demonstrated that the genus Pimpinella has the homology characteristics of medicine and food and mainly in the therapy of gastrointestinal dysfunction, respiratory diseases, deworming, and diuresis. The natural product investigation of Pimpinella spp. revealed numerous natural products containing phenylpropanoids, terpenoids, flavonoids, coumarins, sterols, and organic acids. These natural products have the potential to provide future drugs against crucial diseases, such as cancer, hypertension, microbial and insectile infections, and severe inflammations. It is an upcoming field of research to probe a novel and pharmaceutically clinical value on compounds from the genus Pimpinella. In this review, we attempt to summarize the present knowledge on the traditional applications, phytochemistry, and pharmacology of more than twenty-five species of the genus Pimpinella.
Collapse
Affiliation(s)
- Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Cao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haozhen Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| |
Collapse
|
28
|
Vaghari-Tabari M, Alemi F, Zokaei M, Moein S, Qujeq D, Yousefi B, Farzami P, Hosseininasab SS. Polyphenols and inflammatory bowel disease: Natural products with therapeutic effects? Crit Rev Food Sci Nutr 2022; 64:4155-4178. [PMID: 36345891 DOI: 10.1080/10408398.2022.2139222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammatory bowel disease (IBD) is a long-life disease with periods of recurrence and relief. Oxidative stress plays an important role in the pathogenesis of this disease. Recent years' studies in the field of IBD treatment mostly have focused on targeting cytokines and immune cell trafficking using antibodies and inhibitors, altering the composition of intestinal bacteria in the line of attenuation of inflammation using probiotics and prebiotics, and attenuating oxidative stress through antioxidant supplementation. Studies in animal models of IBD have shown that some polyphenolic compounds including curcumin, quercetin, resveratrol, naringenin, and epigallocatechin-3-gallate can affect almost all of the above aspects and are useful compounds in the treatment of IBD. Clinical studies performed on IBD patients have also confirmed the findings of animal model studies and have shown that supplementation with some of the above-mentioned polyphenolic compounds has positive effects in reducing disease clinical and endoscopic activity, inducing and maintaining remission, and improving quality of life. In this review article, in addition to a detailed reviewing the effects of the above-mentioned polyphenolic compounds on the events involved in the pathogenesis of IBD, the results of these clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Farzami
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
29
|
Mahnashi MH, Alshahrani MA, Nahari MH, Hassan SSU, Jan MS, Ayaz M, Ullah F, Alshehri OM, Alshehri MA, Rashid U, Sadiq A. In-Vitro, In-Vivo, Molecular Docking and ADMET Studies of 2-Substituted 3,7-Dihydroxy-4H-chromen-4-one for Oxidative Stress, Inflammation and Alzheimer's Disease. Metabolites 2022; 12:1055. [PMID: 36355138 PMCID: PMC9694897 DOI: 10.3390/metabo12111055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 10/23/2023] Open
Abstract
Plants' bioactives are well-known safe drugs for vital diseases. Flavones and Flavonoid-rich dietary supplements are known to exhibit neuroprotective potential. In this study, we isolated a flavone 2-(3,4-dimethoxyphenyl)-3,7-dihydroxy-4H-chromen-4-one from Notholirion thomsonianum and it was evaluated against various targets of the oxidative stress-related neurological disorders. The compound showed excellent acetyl and butyrylcholinesterase inhibitions in its profile, giving IC50 values of 1.37 and 0.95 μM, respectively. Similarly, in in-vitro MAO-B assay, our flavone exhibited an IC50 value of 0.14 μM in comparison to the standard safinamide (IC50 0.025 μM). In in-vitro anti-inflammatory assay, our isolated compound exhibited IC50 values of 7.09, 0.38 and 0.84 μM against COX-1, COX-2 and 5-LOX, respectively. The COX-2 selectivity (SI) of the compound was 18.70. The compound was found safe in animals and was very effective in carrageenan-induced inflammation. Due to the polar groups in the structure, a very excellent antioxidant profile was observed in both in-vitro and in-vivo models. The compound was docked into the target proteins of the respective activities and the binding energies confirmed the potency of our compound. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) results showed that the isolated flavone has a good GIT absorption ability and comes with no hepatic and cardiotoxicity. In addition, the skin sensitization test, in-vitro human cell line activation test (h-CLAT) and KeratinoSens have revealed that isolated flavone is not skin sensitive with a confidence score of 59.6% and 91.6%. Herein, we have isolated a natural flavone with an effective profile against Alzheimer's, inflammation and oxidative stress. The exploration of this natural flavone will provide a baseline for future research in the field of drug development.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda 24420, KP, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Osama M. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammad Ali Alshehri
- Medical Genetics Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| |
Collapse
|
30
|
Zhang M, Zhou S, Obaid NH, Altimari US, Adel Mohammed M, Kareem Obaid Aldulaim A, Salaam Abood E, Kotb H, Enayati A, Khori V, Mirzaei H, Salehi A, Soltani A, Sani Sarjadi M, Lutfor Rahman M. Chromenone-based GSK-3β inhibitors as potential therapeutic targets for cardiovascular diseases: in silico study, molecular dynamics, and ADMET profiles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|