1
|
Li YJ, Zhao X, Wu S, Yao N, Zhang X, Liu Y, Tian X, Li Y, Gao B, Johnston SC, Shi FD, Li Z. Formyl peptide receptor 1 and its antagonist T0080 in atherosclerosis. Cell Death Differ 2025:10.1038/s41418-025-01506-7. [PMID: 40204950 DOI: 10.1038/s41418-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Focal inflammation and arterial damage driven by macrophages are key pathogenic processes in atherosclerosis. However, the mechanisms that regulate these processes remain poorly understood. In this study, we demonstrate that formyl peptide receptor 1 (FPR1) agonist, a mitochondrial N-formyl peptide, is elevated in the blood of patients with atherosclerosis and correlates with carotid stenosis. Macrophages expressing FPR1 were found in atherosclerotic lesions. Conditional deletion of Fpr1 in macrophages reduced plaque formation, local inflammation, and aortic atherosclerosis in apolipoprotein E (ApoE)-/- mice. FPR1 activates protein kinase C (PKC) in macrophages, promoting the production of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β), which accelerates the apoptosis of endothelial cells and smooth muscle cells. To inhibit FPR1 bioactivity, we developed an antagonist, T0080. Therapeutic administration of T0080 attenuates atherosclerotic progression in ApoE-/- mice. Our findings highlight the pivotal role of FPR1 in macrophage-mediated atherosclerotic plaque formation and support further investigation of T0080-mediated FPR1 inhibition as a potential treatment for atherosclerosis.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nan Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xueyu Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanyan Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaobing Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yulin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bin Gao
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - S Claiborne Johnston
- Department of Neurology, University of California, San Francisco, CA, 94143, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Xu Q, Authi KS, Kirpotina LN, Schepetkin IA, Quinn MT, Cilibrizzi A. Development of small-molecule fluorescent probes targeting neutrophils via N-formyl peptide receptors. RSC Med Chem 2025; 16:1397-1409. [PMID: 39886349 PMCID: PMC11775818 DOI: 10.1039/d4md00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
N-Formyl peptide receptors (FPRs) are membrane receptors that are abundantly expressed in innate immune cells, including neutrophils and platelets, demonstrating potential new targets for immune system regulation and the treatment of inflammatory conditions. We report here the development and bio-physical validation of new FPR imaging agents as effective tools to track FPR distribution, localisation and functions, ultimately helping to establish FPR exact roles and functions in pathological and physiological conditions. The new series of probes feature a small molecule-based FPR address system conjugated to suitable fluorophores, resulting in highly specific FPR agents, including a partial agonist endowed with high affinity (i.e. low/sub-nanomolar potency) on FPR-transfected cells and human neutrophils. Preliminary imaging studies via multiphoton microscopy demonstrate that the probes enable the visualisation of FPRs in live cells, thus representing valid bio-imaging tools for the analysis of FPR-mediated signalling, such as the activation of neutrophils in inflammatory events.
Collapse
Affiliation(s)
- Qi Xu
- Institute of Pharmaceutical Science, King's College London Stamford Street London SE1 9NH UK +44 (0) 20 7848 9532
| | - Kalwant S Authi
- BHF Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London London SE1 9NH UK
| | - Liliya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University Bozeman Montana 59717 USA
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University Bozeman Montana 59717 USA
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University Bozeman Montana 59717 USA
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London Stamford Street London SE1 9NH UK +44 (0) 20 7848 9532
| |
Collapse
|
3
|
Liu X, Zheng Y, Meng Z, Wang H, Zhang Y, Xue D. Gene Regulation of Neutrophils Mediated Liver and Lung Injury through NETosis in Acute Pancreatitis. Inflammation 2025; 48:393-411. [PMID: 38884700 DOI: 10.1007/s10753-024-02071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal emergencies, often resulting in self-digestion, edema, hemorrhage, and even necrosis of pancreatic tissue. When AP progresses to severe acute pancreatitis (SAP), it often causes multi-organ damage, leading to a high mortality rate. However, the molecular mechanisms underlying SAP-mediated organ damage remain unclear. This study aims to systematically mine SAP data from public databases and combine experimental validation to identify key molecules involved in multi-organ damage caused by SAP. Retrieve transcriptomic data of mice pancreatic tissue for AP, lung and liver tissue for SAP, and corresponding normal tissue from the Gene Expression Omnibus (GEO) database. Conduct gene differential analysis using Limma and DEseq2 methods. Perform enrichment analysis using the clusterProfiler package in R software. Score immune cells and immune status in various organs using single-sample gene set enrichment analysis (ssGSEA). Evaluate mRNA expression levels of core genes using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Validate serum amylase, TNF-α, IL-1β, and IL-6 levels in peripheral blood using enzyme-linked immunosorbent assay (ELISA), and detect the formation of neutrophil extracellular traps (NETs) in mice pancreatic, liver, and lung tissues using immunofluorescence. Differential analysis reveals that 46 genes exhibit expression dysregulation in mice pancreatic tissue for AP, liver and lung tissue for SAP, as well as peripheral blood in humans. Functional enrichment analysis indicates that these genes are primarily associated with neutrophil-related biological processes. ROC curve analysis indicates that 12 neutrophil-related genes have diagnostic potential for SAP. Immune infiltration analysis reveals high neutrophil infiltration in various organs affected by SAP. Single-cell sequencing analysis shows that these genes are predominantly expressed in neutrophils and macrophages. FPR1, ITGAM, and C5AR1 are identified as key genes involved in the formation of NETs and activation of neutrophils. qPCR and IHC results demonstrate upregulation of FPR1, ITGAM, and C5AR1 expression in pancreatic, liver, and lung tissues of mice with SAP. Immunofluorescence staining shows increased levels of neutrophils and NETs in SAP mice. Inhibition of NETs formation can alleviate the severity of SAP as well as the levels of inflammation in the liver and lung tissues. This study identified key genes involved in the formation of NETs, namely FPR1, ITGAM, and C5AR1, which are upregulated during multi-organ damage in SAP. Inhibition of NETs release effectively reduces the systemic inflammatory response and liver-lung damage in SAP. This research provides new therapeutic targets for the multi-organ damage associated with SAP.
Collapse
Affiliation(s)
- Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Zheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziang Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heming Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingmei Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Wang S, Lu K, Lin L, Li G, Han Y, Lin Z, Chu Q, Wu K, Liu P, Zhou G, Peng R, Luo C. Exploring the mechanism of berberine treatment for atherosclerosis combined with non-alcoholic fatty liver disease based on bioinformatic and experimental study. PLoS One 2024; 19:e0314961. [PMID: 39700090 DOI: 10.1371/journal.pone.0314961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Atherosclerosis (AS) and Non-alcoholic fatty liver disease (NAFLD) are chronic metabolic disorders with high prevalence and significant health impacts. Both conditions share common pathophysiological pathways including abnormal lipid metabolism and inflammation. Berberine (BBR), an isoquinoline alkaloid, is known for its beneficial effects on various metabolic and cardiovascular disorders. This study investigates BBR's impact on AS and NAFLD through bioinformatics analysis and experimental models. This study utilized various bioinformatics methods, including transcriptome analysis, weighted gene co-expression network analysis (WGCNA), machine learning, and molecular docking, to identify key genes and pathways involved in AS and NAFLD. Subsequently an animal model of AS combined with NAFLD was established using ApoE-/- mice fed a high-fat diet. The efficacy and mechanism of action of BBR were verified using methods such as hematoxylin and eosin (HE) staining, Oil Red O staining, and real-time quantitative PCR (RTqPCR). Through transcriptome analysis, WGCNA, and machine learning, this study identified 48 key genes involved in both AS and NAFLD. Function analysis revealed that the implicated genes were significantly involved in pathways like cytokine-cytokine receptor interaction, chemokine signaling, and IL-17 signaling pathway, suggesting their role in inflammation and immune responses. Single cell validation identified six key genes: dual specificity phosphatase 6 (DUSP6), chemokine ligand 3 (CCL3), complement component 5a receptor 1 (C5AR1), formyl peptide receptor 1 (FPR1), myeloid nuclear differentiation antigen (MNDA), and proviral integration site of murine 2(PIM2). Finally, molecular docking and animal experiments showed that BBR significantly reduced lipid deposits and inflammatory markers in liver and aortic tissues. In conclusion, BBR can improve AS combined with NAFLD by regulating genes like MNDA, PIM2, DUSP6, CCL3, C5AR1, and FPR1, with the mechanism related to inflammation control. The findings suggest potential clinical benefits of BBR in reducing the progression of both AS and NAFLD, warranting further investigation.
Collapse
Affiliation(s)
- Shushu Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kachun Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liwen Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaijie Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuxin Han
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhichao Lin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingmin Chu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Cardiology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunsheng Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Peijian Liu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Guiting Zhou
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Rui Peng
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Chuanjin Luo
- Cardiology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Gao J, Su G, Liu J, Song J, Chen W, Chai M, Xie X, Wang M, Liu J, Zhang Z. A Novel Compound Ligusticum Cycloprolactam Alleviates Neuroinflammation After Ischemic Stroke via the FPR1/NLRP3 Signaling Axis. CNS Neurosci Ther 2024; 30:e70158. [PMID: 39654367 PMCID: PMC11628748 DOI: 10.1111/cns.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Microglia/macrophages, as pivotal immune cells in the central nervous system (CNS), play a critical role in neuroinflammation associated with ischemic brain injury. Targeting their activation through pharmacological interventions represents a promising strategy to alleviate neurological deficits, thereby harboring significant implications for the prevention and treatment of ischemic stroke. Ligusticum cycloprolactam (LIGc), a novel monomeric derivative of traditional Chinese medicine, has shown potential as a therapeutic agent; however, its specific role in cerebral ischemic injury remains unclear. METHODS In vitro experiments utilized lipopolysaccharide (LPS)-induced inflammation models of RAW264.7 cells and primary mouse microglia. In vivo studies employed LPS-induced neuroinflammation models in mice and a transient middle cerebral artery occlusion (tMCAO) mouse model to evaluate the impact of LIGc on neuroinflammation and microglia/macrophage phenotypic alterations. Further elucidation of the molecular mechanisms underlying these effects was achieved through RNA-Seq analyses. RESULTS LIGc exhibited the capacity to attenuate LPS-induced production of pro-inflammatory markers in macrophages and microglia, facilitating their transition to an anti-inflammatory phenotype. In models of LPS-induced neuroinflammation and tMCAO, LIGc ameliorated pathological behaviors and neurological deficits while mitigating brain inflammation. RNA-seq analyses revealed formyl peptide receptor 1 (FPR1) as a critical mediator of LIGc's effects. Specifically, FPR1 enhances the pro-inflammatory phenotype of microglia/macrophages and inhibits their anti-inflammatory response by upregulating NLR family pyrin domain protein 3 (NLRP3) inflammasomes, thus aggravating inflammatory processes. Conversely, LIGc exerts anti-inflammatory effects by downregulating the FPR1/NLRP3 signaling axis. Furthermore, FPR1 overexpression or NLRP3 agonists reversed the effects of LIGc observed in this study. CONCLUSION Our findings suggest that LIGc holds promise in improving ischemic brain injury and neuroinflammation through modulation of microglia/macrophage polarization. Mechanistically, LIGc attenuates the pro-inflammatory phenotype and promotes the anti-inflammatory phenotype by targeting the FPR1/NLRP3 signaling pathway, ultimately reducing inflammatory responses and mitigating neurological damage.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Gang Su
- Institute of Genetics, School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Jifei Liu
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Jinyang Song
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Wei Chen
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Miao Chai
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Xiaodong Xie
- Institute of Genetics, School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| | - Junxi Liu
- Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouGansuChina
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital & Clinical Medical SchoolLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
6
|
Gao J, Su G, Liu J, Shen M, Zhang Z, Wang M. Formyl peptide receptors in the microglial activation: New perspectives and therapeutic potential for neuroinflammation. FASEB J 2024; 38:e70151. [PMID: 39520282 DOI: 10.1096/fj.202401927r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Secondary neurological impairment mediated by neuroinflammation is recognized as a crucial pathological factor in central nervous system (CNS) diseases. Currently, there exists a lack of specific therapies targeting neuroinflammation. Given that microglia constitute the primary immune cells involved in the neuroinflammatory response, a thorough comprehension of their role in CNS diseases is imperative for the development of efficacious treatments. Recent investigations have unveiled the significance of formyl peptide receptors (FPRs) in various neuroinflammatory diseases associated with microglial overactivation. Consequently, FPRs emerge as promising targets for modulating the neuroinflammatory response. This review aims to comprehensively explore the therapeutic potential of targeting FPRs in the management of microglia-mediated neuroinflammation. It delineates the molecular characteristics and functions of FPRs, elucidates their involvement in the inflammatory response linked to microglial overactivation, and synthesizes therapeutic strategies for regulating microglia-mediated neuroinflammation via FPR modulation, thereby charting a novel course for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Juan Gao
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jifei Liu
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
De Fenza M, Locri F, Plastino F, Chino M, Maglio O, Leone L, Gazzaroli G, Belleri M, Giacomini A, Kvanta A, André H, Pavone V, D’Alonzo D. Turn-Adopting Peptidomimetic as a Formyl Peptide Receptor-1 Antagonist. ACS Pharmacol Transl Sci 2024; 7:3476-3487. [PMID: 39539264 PMCID: PMC11555506 DOI: 10.1021/acsptsci.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The design, synthesis, and characterization of a new peptidomimetic acting as a formyl peptide receptor (FPR1) antagonist (N-19004) are herein reported. The molecule has been identified with docking studies of the highly potent FPR1 antagonist UPARANT on human receptor. N-19004 recapitulates all pharmacophoric groups necessary for recognition into a minimal structure, with a crucial role of the 2,6-diamino-thiophenyl scaffold mimicking the positions of Cα atoms of Arg residues in the turned Arg-Aib-Arg segment of UPARANT. N-19004 demonstrated to interfere with the biological properties of FPR1 both in vitro and in vivo. In a mouse model of choroidal neovascularization, N-19004 markedly reduced the size of laser-induced choroidal lesions, with reabsorption of the edema regions by a systemic administration route.
Collapse
Affiliation(s)
- Maria De Fenza
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Filippo Locri
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Flavia Plastino
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Chino
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Ornella Maglio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
- Institute
of Biostructures and Bioimaging (IBB), National
Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Giorgia Gazzaroli
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirella Belleri
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Anders Kvanta
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helder André
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vincenzo Pavone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| |
Collapse
|
8
|
Kwon WY, Jung YS, Suh GJ, Kim SH, Lee A, Kim JY, Kim H, Park H, Shin J, Kim T, Kim KS, Itagaki K, Hauser CJ. Removal of circulating mitochondrial N-formyl peptides via immobilized antibody therapy restores sepsis-induced neutrophil dysfunction. J Leukoc Biol 2024; 116:1169-1183. [PMID: 39107254 DOI: 10.1093/jleuko/qiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
During recovery from septic shock, circulating mitochondrial N-formyl peptides predispose to secondary infection by occupying formyl peptide receptor 1 on the neutrophil (polymorphonuclear leukocyte) membrane, suppressing cytosolic calcium ([Ca2+]i)-dependent responses to secondarily encountered bacteria. However, no study has yet investigated therapeutic clearance of circulating mitochondrial N-formyl peptides in clinical settings. Thus, we studied how to remove mitochondrial N-formyl peptides from septic-shock plasma and whether such removal could preserve cell-surface formyl peptide receptor 1 and restore sepsis-induced polymorphonuclear leukocyte dysfunction by normalizing [Ca2+]i flux. In in vitro model systems, mitochondrial N-formyl peptide removal rescued polymorphonuclear leukocyte formyl peptide receptor 1-mediated [Ca2+]i flux and chemotaxis that had been suppressed by prior mitochondrial N-formyl peptide exposure. However, polymorphonuclear leukocyte functional recovery occurred in a stepwise fashion over 30 to 90 min. Intracellular Ca2+-calmodulin appears to contribute to this delay. In ex vivo model, systems using blood samples obtained from patients with septic shock, antimitochondrial N-formyl peptide antibodies alone failed to eliminate mitochondrial N-formyl peptides from septic-shock plasma or inhibit mitochondrial N-formyl peptide activity. We therefore created a beads-based antimitochondrial N-formyl peptide antibody cocktail by combining protein A/sepharose with antibodies specific for the most potent human mitochondrial N-formyl peptide chemoattractants. The beads-based antimitochondrial N-formyl peptide antibody cocktail treatment successfully removed those active mitochondrial N-formyl peptides from septic-shock plasma. Furthermore, the beads-based antimitochondrial N-formyl peptide antibody cocktail treatment significantly restored chemotactic and bactericidal dysfunction of polymorphonuclear leukocytes obtained from patients with septic shock who developed secondary infections. By clearing circulating mitochondrial N-formyl peptides, the immobilized antimitochondrial N-formyl peptide antibody therapy prevented mitochondrial N-formyl peptide interactions with surface formyl peptide receptor 1, thereby restoring [Ca2+]i-dependent polymorphonuclear leukocyte antimicrobial function in clinical septic-shock environments. This approach may help prevent the development of secondary, nosocomial infections in patients recovering from septic shock.
Collapse
Affiliation(s)
- Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung Hee Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Areum Lee
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jeong Yeon Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hayoung Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Heesu Park
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jieun Shin
- Hospital Medicine Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| |
Collapse
|
9
|
Liu A, Liu Y, Chen G, Lyu W, Ye F, Wang J, Liao Q, Zhu L, Du Y, Ye RD. Structure of G protein-coupled receptor GPR1 bound to full-length chemerin adipokine reveals a chemokine-like reverse binding mode. PLoS Biol 2024; 22:e3002838. [PMID: 39466725 PMCID: PMC11515964 DOI: 10.1371/journal.pbio.3002838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024] Open
Abstract
Chemerin is an adipokine with chemotactic activity to a subset of leukocytes. Chemerin binds to 3 G protein-coupled receptors, including chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C chemokine receptor-like 2 (CCRL2). Here, we report that GPR1 is capable of Gi signaling when stimulated with full-length chemerin or its C-terminal nonapeptide (C9, YFPGQFAFS). We present high-resolution cryo-EM structures of Gi-coupled GPR1 bound to full-length chemerin and to the C9 peptide, respectively. C9 insertion into the transmembrane (TM) binding pocket is both necessary and sufficient for GPR1 signaling, whereas the full-length chemerin uses its bulky N-terminal core for interaction with a β-strand located at the N-terminus of GPR1. This interaction involves multiple β-strands of full-length chemerin, forming a β-sheet that serves as a "lid" for the TM binding pocket and is energetically expensive to remove as indicated by molecular dynamics simulations with free energy landscape analysis. Combining results from functional assays, our structural model explains why C9 is an activating peptide at GPR1 and how the full-length chemerin uses a "two-site" model for enhanced interaction with GPR1.
Collapse
Affiliation(s)
- Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Fang Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Junlin Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| |
Collapse
|
10
|
Gao Y, Frank M, Teusch N, Woschko D, Janiak C, Mándi A, Kurtán T, Hartmann R, Schiedlauske K, van Geelen L, Kalscheuer R, Kaiser J, Gertzen CGW, Gohlke H, Wang BG, Proksch P, Liu Z. Aplospojaveedins A-C, unusual sulfur-containing alkaloids produced by the endophytic fungus Aplosporella javeedii using OSMAC strategy. Front Microbiol 2024; 15:1458622. [PMID: 39397793 PMCID: PMC11466890 DOI: 10.3389/fmicb.2024.1458622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Three sulfur-containing alkaloids aplospojaveedins A-C (1-3) with a hitherto undescribed carbon skeleton comprising octahy-dronaphthalene, α, β-unsaturated lactam and glycine-cysteine moieties were isolated from Aplosporella javeedii. Their structures were elucidated by 1D and 2D NMR spectroscopy, HR-MS, X-ray diffraction analysis, DFT-NMR and TDDFT-ECD calculations. A plausible biosynthetic pathway and putative targets are described. The blind docking suggested that 1-3 may have functional effects on several putative targets such as the GPCR cannabinoid receptor 2 or the integrin α5β1 complex.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Dennis Woschko
- Institute of Inorganic and Structural Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Debrecen, Hungary
| | - Rudolf Hartmann
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katja Schiedlauske
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, Düsseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
12
|
Liu Y, Wang S, Zhang J, Sun Q, Xiao Y, Chen J, Yao M, Zhang G, Huang Q, Zhao T, Huang Q, Shi X, Feng C, Ai K, Bai Y. Reprogramming the myocardial infarction microenvironment with melanin-based composite nanomedicines in mice. Nat Commun 2024; 15:6651. [PMID: 39103330 PMCID: PMC11300711 DOI: 10.1038/s41467-024-50854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.
Collapse
Affiliation(s)
- Yamei Liu
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yi Xiao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, P.R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaojing Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Can Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
13
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
14
|
Qing M, Yang D, Shang Q, Li W, Zhou Y, Xu H, Chen Q. Humoral immune disorders affect clinical outcomes of oral lichen planus. Oral Dis 2024; 30:2337-2346. [PMID: 37392455 DOI: 10.1111/odi.14667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES The molecular characteristics of oral lichen planus (OLP) are still unclear, and it is not possible to distinguish the clinical outcome of OLP patients in a short period of time for follow-up. Here, we investigate the molecular characteristics of lesions in patients with stable lichen planus (SOLP) and recalcitrant erosive oral lichen planus (REOLP). METHODS Our clinical follow-up cohort was split into SOLP and REOLP groups based on the follow-up clinical data. The core modules associated with the clinical information were identified by weighted gene co-expression network analysis (WGCNA). The OLP cohort samples were divided into two groups by molecular typing, and a prediction model for OLP was created by training neural networks with the neuralnet package. RESULTS We screened 546 genes in five modules. After doing a molecular type of OLP, it was determined that B cells might have a significant impact on the clinical outcome of OLP. In addition, by means of machine learning, a prediction model was developed to predict the clinical regression of OLP with greater accuracy than the existing clinical diagnostic. CONCLUSIONS Our study revealed humoral immune disorders may make an important contribution to the clinical outcome of OLP.
Collapse
Affiliation(s)
- Maofeng Qing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Stomatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianhui Shang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
15
|
Deng L, Gillis JE, Chiu IM, Kaplan DH. Sensory neurons: An integrated component of innate immunity. Immunity 2024; 57:815-831. [PMID: 38599172 PMCID: PMC11555576 DOI: 10.1016/j.immuni.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
The sensory nervous system possesses the ability to integrate exogenous threats and endogenous signals to mediate downstream effector functions. Sensory neurons have been shown to activate or suppress host defense and immunity against pathogens, depending on the tissue and disease state. Through this lens, pro- and anti-inflammatory neuroimmune effector functions can be interpreted as evolutionary adaptations by host or pathogen. Here, we discuss recent and impactful examples of neuroimmune circuitry that regulate tissue homeostasis, autoinflammation, and host defense. Apparently paradoxical or conflicting reports in the literature also highlight the complexity of neuroimmune interactions that may depend on tissue- and microbe-specific cues. These findings expand our understanding of the nuanced mechanisms and the greater context of sensory neurons in innate immunity.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Jacob E Gillis
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
16
|
Zhangsun Z, Dong Y, Tang J, Jin Z, Lei W, Wang C, Cheng Y, Wang B, Yang Y, Zhao H. FPR1: A critical gatekeeper of the heart and brain. Pharmacol Res 2024; 202:107125. [PMID: 38438091 DOI: 10.1016/j.phrs.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
G protein-coupled receptors (GPCRs) are currently the most widely focused drug targets in the clinic, exerting their biological functions by binding to chemicals and activating a series of intracellular signaling pathways. Formyl-peptide receptor 1 (FPR1) has a typical seven-transmembrane structure of GPCRs and can be stimulated by a large number of endogenous or exogenous ligands with different chemical properties, the first of which was identified as formyl-methionine-leucyl-phenylalanine (fMLF). Through receptor-ligand interactions, FPR1 is involved in inflammatory response, immune cell recruitment, and cellular signaling regulation in key cell types, including neutrophils, neural stem cells (NSCs), and microglia. This review outlines the critical roles of FPR1 in a variety of heart and brain diseases, including myocardial infarction (MI), ischemia/reperfusion (I/R) injury, neurodegenerative diseases, and neurological tumors, with particular emphasis on the milestones of FPR1 agonists and antagonists. Therefore, an in-depth study of FPR1 contributes to the research of innovative biomarkers, therapeutic targets for heart and brain diseases, and clinical applications.
Collapse
Affiliation(s)
- Ziyin Zhangsun
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Institute of Neuroscience, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Airforce Medical University, 127 Changle West Road, Xi'an, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Changyu Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ying Cheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Baoying Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an 710038, China.
| |
Collapse
|
17
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
18
|
Kim EY, Dryer SE. Role of Formyl Peptide Receptors and β-Arrestin-1 in suPAR Signal Transduction in Mouse Podocytes: Interactions with αVβ3-Integrin. Cells 2024; 13:172. [PMID: 38247863 PMCID: PMC10814688 DOI: 10.3390/cells13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The soluble urokinase plasminogen activator receptor (suPAR) has been implicated in a wide range of pathological conditions including primary nephrotic syndromes and acute kidney injuries. suPAR can trigger transduction cascades in podocytes by outside-in activation of αVβ3-integrin, but there is evidence that the functional cell surface response element is actually a complex of different types of receptors, which may also include the receptor for advanced glycation end-products (RAGE) and formyl peptide receptors (FPRs). Here we observed that ROS accumulation and Src activation could be evoked by continuous 24 h exposure to either suPAR or the FPR agonist fMLF. Responses to suPAR and fMLF were completely blocked by either the FPR antagonist WRW4 or by the αV-integrin inhibitor cilengitide. Moreover, endogenous podocyte mouse Fpr1 co-immunoprecipitates with β3-integrin, suggesting that these receptors occur as a complex on the cell surface. suPAR- and fMLF-evoked activation of Src and ROS differed in time course. Thus, robust pertussis toxin (PTX)-sensitive responses were evoked by 60 min exposures to fMLF but not to suPAR. By contrast, responses to 24 h exposures to either suPAR or fMLF were PTX-resistant and were instead abolished by knockdown of β-arrestin-1 (BAR1). FPRs, integrins, and RAGE (along with various Toll-like receptors) can all function as pattern-recognition receptors that respond to "danger signals" associated with infections and tissue injury. The fact that podocytes express such a wide array of pattern-recognition receptors suggests that the glomerular filter is designed to change its function under certain conditions, possibly to facilitate clearance of toxic macromolecules.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
| | - Stuart E. Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA;
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
19
|
Park SJ, Greer PL, Lee N. From odor to oncology: non-canonical odorant receptors in cancer. Oncogene 2024; 43:304-318. [PMID: 38087050 DOI: 10.1038/s41388-023-02908-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Odorant receptors, traditionally associated with olfaction as chemoreceptors, have been increasingly recognized for their presence and diverse functions in various non-nasal tissues throughout the body. Beyond their roles in sensory perception, emerging evidence suggests a compelling interplay between odorant receptors and cancer progression as well. Alongside the canonical GPCR odorant receptors, dysregulation of non-canonical odorant receptors such as trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and membrane-spanning 4A family (MS4As) has been observed in various cancer types, suggesting their contributions to cancer progression. The roles of these non-canonical chemoreceptors in cancer are complex, with some receptors promoting tumorigenesis and others acting as tumor-suppressing factors upon activation, depending on the cancer type. These findings shed light on the potential of non-canonical odorant receptors as therapeutic targets and prognostic markers in cancer, inviting further exploration to unravel their precise mechanisms of action and implications in cancer biology. In this review, we provide a comprehensive overview of the intricate relationships between these chemoreceptors and various types of cancer, potentially paving the way for innovative odor-based therapeutics. Ultimately, this review discusses the potential development of novel therapeutic strategies targeting these non-canonical chemoreceptors.
Collapse
Affiliation(s)
- Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Namgyu Lee
- Department of Biomedical Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
20
|
Wu M, Ge Y, Wang E, Liao Q, Ren Z, Yu Y, Zhu G, Liu C, Zhang M, Su H, Shen H, Chen Y, Wang L, Wang Y, Li M, Bian Z, Chai J, Ye RD, Lu J. Enhancement of efferocytosis through biased FPR2 signaling attenuates intestinal inflammation. EMBO Mol Med 2023; 15:e17815. [PMID: 37994307 PMCID: PMC10701612 DOI: 10.15252/emmm.202317815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023] Open
Abstract
Efficient clearance of dying cells (efferocytosis) is an evolutionarily conserved process for tissue homeostasis. Genetic enhancement of efferocytosis exhibits therapeutic potential for inflammation resolution and tissue repair. However, pharmacological approaches to enhance efferocytosis remain sparse due to a lack of targets for modulation. Here, we report the identification of columbamine (COL) which enhances macrophage-mediated efferocytosis and attenuates intestinal inflammation in a murine colitis model. COL enhances efferocytosis by promoting LC3-associated phagocytosis (LAP), a non-canonical form of autophagy. Transcriptome analysis and pharmacological characterization revealed that COL is a biased agonist that occupies a part of the ligand binding pocket of formyl peptide receptor 2 (FPR2), a G-protein coupled receptor involved in inflammation regulation. Genetic ablation of the Fpr2 gene or treatment with an FPR2 antagonist abolishes COL-induced efferocytosis, anti-colitis activity and LAP. Taken together, our study identifies FPR2 as a potential target for modulating LC3-associated efferocytosis to alleviate intestinal inflammation and highlights the therapeutic value of COL, a natural and biased agonist of FPR2, in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ming‐Yue Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital)Third Military Medical University (Army Medical University)ChongqingChina
| | - Yun‐Jun Ge
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- Department of Basic Medical Science, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Er‐Jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Qi‐Wen Liao
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Zheng‐Yu Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Yang Yu
- Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacau SARChina
| | - Chun‐Ping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchUniversity of MacauMacau SARChina
| | - Meng‐Ni Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital)Third Military Medical University (Army Medical University)ChongqingChina
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacau SARChina
| | - Ye Chen
- Integrative Microecology Center, Department of Gastroenterology, Shenzhen HospitalSouthern Medical UniversityShenzhen, GuangzhouChina
| | - Lei Wang
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yi‐Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
| | - Min Li
- School of Chinese MedicineHong Kong Baptist UniversityHongkong SARChina
| | - Zhaoxiang Bian
- School of Chinese MedicineHong Kong Baptist UniversityHongkong SARChina
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital)Third Military Medical University (Army Medical University)ChongqingChina
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- The Second Affiliated Hospital, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Jia‐Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacau SARChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchUniversity of MacauMacau SARChina
| |
Collapse
|
21
|
Francavilla F, Sarcina F, Schepetkin IA, Kirpotina LN, Contino M, Schirizzi A, De Leonardis G, Khlebnikov AI, D'Alessandro R, Quinn MT, Lacivita E, Leopoldo M. Development of potent isoflavone-based formyl peptide receptor 1 (FPR1) antagonists and their effects in gastric cancer cell models. Eur J Med Chem 2023; 261:115854. [PMID: 37839346 PMCID: PMC10822168 DOI: 10.1016/j.ejmech.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Formyl peptide receptor-1 (FPR1) is a G protein-coupled chemoattractant receptor that plays a crucial role in the trafficking of leukocytes into the sites of bacterial infection and inflammation. Recently, FPR1 was shown to be expressed in different types of tumor cells and could play a significant role in tumor growth and invasiveness. Starting from the previously reported FPR1 antagonist 4, we have designed a new series of 4H-chromen-2-one derivatives that exhibited a substantial increase in FPR1 antagonist potency. Docking studies identified the key interactions for antagonist activity. The most potent compounds in this series (24a and 25b) were selected to study the effects of the pharmacological blockade of FPR1 in NCl-N87 and AGS gastric cancer cells. Both compounds potently inhibited cell growth through a combined effect on cell proliferation and apoptosis and reduced cell migration, while inducing an increase in angiogenesis, thus suggesting that FPR1 could play a dual role as oncogene and onco-suppressor.
Collapse
Affiliation(s)
- Fabio Francavilla
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Federica Sarcina
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Lilya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy.
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
22
|
Wang Y, Liu W, Xu Y, He X, Yuan Q, Luo P, Fan W, Zhu J, Zhang X, Cheng X, Jiang Y, Xu HE, Zhuang Y. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nat Chem Biol 2023; 19:1351-1360. [PMID: 37169960 DOI: 10.1038/s41589-023-01339-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
The complement receptors C3aR and C5aR1, whose signaling is selectively activated by anaphylatoxins C3a and C5a, are important regulators of both innate and adaptive immune responses. Dysregulations of C3aR and C5aR1 signaling lead to multiple inflammatory disorders, including sepsis, asthma and acute respiratory distress syndrome. The mechanism underlying endogenous anaphylatoxin recognition and activation of C3aR and C5aR1 remains elusive. Here we reported the structures of C3a-bound C3aR and C5a-bound C5aR1 as well as an apo-C3aR structure. These structures, combined with mutagenesis analysis, reveal a conserved recognition pattern of anaphylatoxins to the complement receptors that is different from chemokine receptors, unique pocket topologies of C3aR and C5aR1 that mediate ligand selectivity, and a common mechanism of receptor activation. These results provide crucial insights into the molecular understanding of C3aR and C5aR1 signaling and structural templates for rational drug design for treating inflammation disorders.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiyi Liu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ping Luo
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjia Fan
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingpeng Zhu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
23
|
Dmytriv TR, Tsiumpala SA, Semchyshyn HM, Storey KB, Lushchak VI. Mitochondrial dysfunction as a possible trigger of neuroinflammation at post-traumatic stress disorder (PTSD). Front Physiol 2023; 14:1222826. [PMID: 37942228 PMCID: PMC10628526 DOI: 10.3389/fphys.2023.1222826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that occurs in approximately 15% of people as a result of some traumatic events. The main symptoms are re-experiencing and avoidance of everything related to this event and hyperarousal. The main component of the pathophysiology of PTSD is an imbalance in the functioning of the hypothalamic-pituitary-adrenal axis (HPA) and development of neuroinflammation. In parallel with this, mitochondrial dysfunction is observed, as in many other diseases. In this review, we focus on the question how mitochondria may be involved in the development of neuroinflammation and its maintaining at PTSD. First, we describe the differences in the operation of the neuro-endocrine system during stress versus PTSD. We then show changes in the activity/expression of mitochondrial proteins in PTSD and how they can affect the levels of hormones involved in PTSD development, as well as how mitochondrial damage/pathogen-associated molecule patterns (DAMPs/PAMPs) trigger development of inflammation. In addition, we examine the possibility of treating PTSD-related inflammation using mitochondria as a target.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Sviatoslav A. Tsiumpala
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Halyna M. Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Kenneth B. Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
24
|
Mafra D, Kemp JA, Borges NA, Wong M, Stenvinkel P. Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins (Basel) 2023; 15:499. [PMID: 37624256 PMCID: PMC10467110 DOI: 10.3390/toxins15080499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Residual kidney function for patients with chronic kidney disease (CKD) is associated with better quality of life and outcome; thus, strategies should be implemented to preserve kidney function. Among the multiple causes that promote kidney damage, gut dysbiosis due to increased uremic toxin production and endotoxemia need attention. Several strategies have been proposed to modulate the gut microbiota in these patients, and diet has gained increasing attention in recent years since it is the primary driver of gut dysbiosis. In addition, medications and faecal transplantation may be valid strategies. Modifying gut microbiota composition may mitigate chronic kidney damage and preserve residual kidney function. Although various studies have shown the influential role of diet in modulating gut microbiota composition, the effects of this modulation on residual kidney function remain limited. This review discusses the role of gut microbiota metabolism on residual kidney function and vice versa and how we could preserve the residual kidney function by modulating the gut microbiota balance.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niteroi 24020-140, Brazil;
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niteroi 24020-140, Brazil;
| | - Natalia A. Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Michelle Wong
- Division of Nephrology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z1, Canada;
| | | |
Collapse
|
25
|
Chen K, Gong W, Huang J, Yoshimura T, Ming Wang J. Developmental and homeostatic signaling transmitted by the G-protein coupled receptor FPR2. Int Immunopharmacol 2023; 118:110052. [PMID: 37003185 PMCID: PMC10149111 DOI: 10.1016/j.intimp.2023.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023]
Abstract
Formyl peptide receptor 2 (FPR2) and its mouse counterpart Fpr2 are the members of the G protein-coupled receptor (GPCR) family. FPR2 is the only member of the FPRs that interacts with ligands from different sources. FPR2 is expressed in myeloid cells as well as epithelial cells, endothelial cells, neurons, and hepatocytes. During the past years, some unusual properties of FPR2 have attracted intense attention because FPR2 appears to possess dual functions by activating or inhibiting intracellular signal pathways based on the nature, concentration of the ligands, and the temporal and spatial settings of the microenvironment in vivo, the cell types it interacts with. Therefore, FPR2 controls an abundant array of developmental and homeostatic signaling cascades, in addition to its "classical" capacity to mediate the migration of hematopoietic and non-hematopoietic cells including malignant cells. In this review, we summarize recent development in FPR2 research, particularly in its role in diseases, therefore helping to establish FPR2 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jiaqiang Huang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA; College of Life Sciences, Beijing Jiaotong University, Beijing, PR China
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
26
|
Field DH, White JS, Warriner SL, Wright MH. A fluorescent photoaffinity probe for formyl peptide receptor 1 labelling in living cells. RSC Chem Biol 2023; 4:216-222. [PMID: 36908701 PMCID: PMC9994102 DOI: 10.1039/d2cb00199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Fluorescent ligands for G-protein coupled receptors (GPCRs) are valuable tools for studying the expression, pharmacology and modulation of these therapeutically important proteins in living cells. Here we report a fluorescent photoaffinity probe for Formyl peptide receptor 1 (FPR1), a critical component of the innate immune response to bacterial infection and a promising target in inflammatory diseases. We demonstrate that the probe binds and covalently crosslinks to FPR1 with good specificity at nanomolar concentrations in living cells and is a useful tool for visualisation and characterisation of this receptor.
Collapse
Affiliation(s)
- Devon H Field
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Jack S White
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Stuart L Warriner
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Megan H Wright
- Astbury Centre for Structural Molecular Biology, and the School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
27
|
Lin YK, Zhang F, Lei WJ, Gan XW, Li MD, Pan F, Wang WS, Sun K. Amnion-derived serum amyloid A1 participates in sterile inflammation of fetal membranes at parturition. Inflamm Res 2023; 72:797-812. [PMID: 36879064 DOI: 10.1007/s00011-023-01713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition. METHODS The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1). RESULTS SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1. CONCLUSIONS SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.
Collapse
Affiliation(s)
- Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Tikhonova I, Dyukina A, Shaykhutdinova E, Safronova V. Modified Signaling of Membrane Formyl Peptide Receptors in NADPH-Oxidase Regulation in Obesity-Resistant Mice. MEMBRANES 2023; 13:306. [PMID: 36984693 PMCID: PMC10058262 DOI: 10.3390/membranes13030306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The signaling of membrane receptors is modified in obesity characterized by low-grade inflammation. The obesity-resistant state of organisms is poorly understood. We analyzed the generation of reactive oxygen species (ROS) initiated though membrane formyl peptide receptors (Fpr1, Fpr2) in bone-marrow granulocytes of obesity-resistant mice (ORM). A chemiluminescence assay was used to assess NADPH-oxidase-related intensity of ROS generation. ORM were chosen from animals that received high-fat diets and had metric body parameters as controls (standard diet). High spontaneous ROS production was observed in ORM cells. The EC50 for responses to bacterial or mitochondrial peptide N-formyl-MLF was higher in ORM with and without inflammation vs. the same control groups, indicating an insignificant role of high-affinity Fpr1. Increased responses to synthetic peptide WKYMVM (Fpr2 agonist) were observed in controls with acute inflammation, but they were similar in other groups. Fpr2 was possibly partially inactivated in ORM owing to the inflammatory state. Weakened Fpr1 and Fpr2 signaling via MAPKs was revealed in ORM using specific inhibitors for p38, ERK1/2, and JNK. P38 signaling via Fpr2 was lower in ORM with inflammation. Thus, a high-fat diet modified FPRs' role and suppressed MAPK signaling in NADPH-oxidase regulation in ORM. This result can be useful to understand the immunological features of obesity resistance.
Collapse
Affiliation(s)
- Irina Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Alsu Dyukina
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| | - Elvira Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospect Nauki, 6, 142290 Pushchino, Russia
| | - Valentina Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia
| |
Collapse
|