1
|
Delalande F, Østergaard SR, Gogl G, Cousido-Siah A, McEwen AG, Men Y, Salimova F, Rohrbacher A, Kostmann C, Nominé Y, Vincentelli R, Eberling P, Carapito C, Travé G, Monsellier E. Holdup Multiplex Assay for High-Throughput Measurement of Protein-Ligand Affinity Constants Using a Mass Spectrometry Readout. J Am Chem Soc 2025; 147:10886-10902. [PMID: 40129024 DOI: 10.1021/jacs.4c11102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The accurate description and subsequent modeling of protein interactomes require quantification of their affinities at the proteome-wide scale. Here we develop and validate the Holdup Multiplex, a versatile assay with a mass spectrometry (MS) readout for profiling the affinities of a protein for large pools of peptides. The method can precisely quantify, in one single run, thousands of affinity constants over several orders of magnitude. The throughput, dynamic range, and sensitivity can be pushed to the performance limit of the MS readout. We applied the Holdup Multiplex to quantify in a few sample runs the affinities of the 14-3-3s, phosphoreader proteins highly abundant in humans, for 1000 different phosphopeptides. The seven human 14-3-3 isoforms were found to display similar specificities but staggered affinities, with 14-3-3γ being always the best binder and 14-3-3ε and σ being the weakest. Hundreds of new 14-3-3 binding sites were identified. We also identified dozens of 14-3-3 binding sites, some intervening in key signaling pathways, that were either stabilized or destabilized by the phytotoxin Fusicoccin-A. The results were corroborated by X-ray crystallography. Finally, we demonstrated the transferability of the Holdup Multiplex by quantifying the interactions of a PDZ domain for 5400 PBM peptides at once. The approach is applicable to any category of protein-binding ligands that can be quantifiable by mass spectrometry.
Collapse
Affiliation(s)
- François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - So Ren Østergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | - Gergo Gogl
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Alexandra Cousido-Siah
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yushi Men
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Farida Salimova
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Aurélien Rohrbacher
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS-Aix-Marseille Université, 13288 Marseille, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Elodie Monsellier
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| |
Collapse
|
2
|
Gagoski D, Rube HT, Rastogi C, Melo LAN, Li X, Voleti R, Shah NH, Bussemaker HJ. Accurate sequence-to-affinity models for SH2 domains from multi-round peptide binding assays coupled with free-energy regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.23.630085. [PMID: 39764007 PMCID: PMC11703206 DOI: 10.1101/2024.12.23.630085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence. Quantifying this sequence specificity is critical for deciphering phosphotyrosine-dependent signaling networks. In recent years, protein display technologies and deep sequencing have allowed researchers to profile SH2 domain binding across thousands of candidate ligands. Here, we present a concerted experimental and computational strategy that improves the predictive power of SH2 specificity profiling. Through multi-round affinity selection and deep sequencing with large randomized phosphopeptide libraries, we produce suitable data to train an additive binding free energy model that covers the full theoretical ligand sequence space. Our models can be used to predict signaling network connectivity and the impact of missense variants in phosphoproteins on SH2 binding.
Collapse
Affiliation(s)
- Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - H. Tomas Rube
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Applied Mathematics, University of California-Merced, Merced, CA, USA
| | - Chaitanya Rastogi
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lucas A. N. Melo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Xiaoting Li
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rashmi Voleti
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
4
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Broniarczyk J, Trejo-Cerro O, Massimi P, Kavčič N, Myers MP, Banks L. HPV-18 E6 enhances the interaction between EMILIN2 and SNX27 to promote WNT signaling. J Virol 2024; 98:e0073524. [PMID: 38874360 PMCID: PMC11265340 DOI: 10.1128/jvi.00735-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Oncogenic HPV E6 proteins have a PDZ-binding motif (PBM) which plays important roles in both the viral life cycle and tumor development. The PBM confers interaction with a large number of different PDZ domain-containing substrates, one of which is Sorting Nexin 27. This protein is part of the retromer complex and plays an important role in endocytic sorting pathways. It has been shown that at least two SNX27 interacting partners, GLUT1 and TANC2, are aberrantly trafficked due to the E6 PBM-dependent interaction with SNX27. To investigate further which other components of the endocytic trafficking pathway might be affected by the SNX27-HPV E6 interaction, we analyzed the SNX27 proteome interaction profile in a previously described HeLa cell line expressing GFP-SNX27, both in the presence and absence of the HPV-18 E6 oncoprotein. In this study, we identify a novel interacting partner of SNX27, secreted glycoprotein EMILIN2, whose release is blocked by HPV18 E6 in a PBM-dependent manner. Mechanistically, E6 can block EMILIN2 interaction with the WNT1 ligand, thereby enhancing WNT1 signaling and promoting cell proliferation. IMPORTANCE This study demonstrates that HPV E6 blocks EMILIN2 inhibition of WNT1 signaling, thereby enhancing cell proliferation in HPV-positive tumor cells. This involves a novel mechanism whereby the E6 PBM actually contributes toward enhancing the interaction between SNX27 and EMILIN2, suggesting that the mode of recognition of SNX27 by E6 and EMILIN2 is different. This is the first example of the E6 PBM altering a PDZ domain-containing protein to enhance potential substrate recognition.
Collapse
Affiliation(s)
- Justyna Broniarczyk
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nežka Kavčič
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Michael P. Myers
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
6
|
Zambo B, Edelweiss E, Morlet B, Negroni L, Pajkos M, Dosztanyi Z, Ostergaard S, Trave G, Laporte J, Gogl G. Uncovering the BIN1-SH3 interactome underpinning centronuclear myopathy. eLife 2024; 13:RP95397. [PMID: 38995680 PMCID: PMC11245310 DOI: 10.7554/elife.95397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.
Collapse
Affiliation(s)
- Boglarka Zambo
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Evelina Edelweiss
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Matyas Pajkos
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztanyi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Soren Ostergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, Maaloev, Denmark
| | - Gilles Trave
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Genetique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergo Gogl
- Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France
| |
Collapse
|
7
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation Code of Human Nucleophosmin Includes Four Cryptic Sites for Hierarchical Binding of 14-3-3 Proteins. J Mol Biol 2024; 436:168592. [PMID: 38702038 DOI: 10.1016/j.jmb.2024.168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
8
|
Montserrat-Gomez M, Gogl G, Carrasco K, Betzi S, Durbesson F, Cousido-Siah A, Kostmann C, Essig DJ, Strømgaard K, Østergaard S, Morelli X, Trave G, Vincentelli R, Bailly E, Borg JP. PDZome-wide and structural characterization of the PDZ-binding motif of VANGL2. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140989. [PMID: 38142947 DOI: 10.1016/j.bbapap.2023.140989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
VANGL2 is a core component of the non-canonical Wnt/Planar Cell Polarity signaling pathway that uses its highly conserved carboxy-terminal type 1 PDZ-binding motif (PBM) to bind a variety of PDZ proteins. In this study, we characterize and quantitatively assess the largest VANGL2 PDZome-binding profile documented so far, using orthogonal methods. The results of our holdup approach support VANGL2 interactions with a large panel of both long-recognized and unprecedented PDZ domains. Truncation and point mutation analyses of the VANGL2 PBM establish that, beyond the strict requirement of the P-0 / V521 and P-2 / T519 amino acids, upstream residues, including E518, Q516 and R514 at, respectively, P-3, P-5 and P-7 further contribute to the robustness of VANGL2 interactions with two distinct PDZ domains, SNX27 and SCRIBBLE-PDZ3. In agreement with these data, incremental amino-terminal deletions of the VANGL2 PBM causes its overall affinity to progressively decline. Moreover, the holdup data establish that the PDZome binding repertoire of VANGL2 starts to diverge significantly with the truncation of E518. A structural analysis of the SYNJ2BP-PDZ/VANGL2 interaction with truncated PBMs identifies a major conformational change in the binding direction of the PBM peptide after the P-2 position. Finally, we report that the PDZome binding profile of VANGL2 is dramatically rearranged upon phosphorylation of S517, T519 and S520. Our crystallographic approach illustrates how SYNJ2BP accommodates a S520-phosphorylated PBM peptide through the ideal positioning of two basic residues, K48 and R86. Altogether our data provides a comprehensive view of the VANGL2 PDZ network and how this network specifically responds to the post-translation modification of distinct PBM residues. These findings should prove useful in guiding future functional and molecular studies of the key PCP component VANGL2.
Collapse
Affiliation(s)
- Marta Montserrat-Gomez
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France
| | - Gergo Gogl
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Kendall Carrasco
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Stephane Betzi
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Fabien Durbesson
- Aix Marseille Université, CNRS, Architecture et fonction des macromolécules biologiques (AFMB), Marseille, France
| | - Alexandra Cousido-Siah
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Camille Kostmann
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Dominic J Essig
- Center for Biopharmaceuticals, Jagtvej 162, 2100 Copenhagen, Denmark; Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | | | - Søren Østergaard
- Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | - Xavier Morelli
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Integrative Structural & Chemical Biology, Marseille, France
| | - Gilles Trave
- Universite de Strasbourg, INSERM, CNRS, IGBMC, Department of Integrated Structural Biology, Illkirch, France
| | - Renaud Vincentelli
- Aix Marseille Université, CNRS, Architecture et fonction des macromolécules biologiques (AFMB), Marseille, France.
| | - Eric Bailly
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France.
| | - Jean-Paul Borg
- Aix Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, cell signaling and cancer', Marseille, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
9
|
Guillon C, Robert X, Gouet P. "It's Only a Model": When Protein Structure Predictions Need Experimental Validation, the Case of the HTLV-1 Tax Protein. Pathogens 2024; 13:241. [PMID: 38535584 PMCID: PMC10976231 DOI: 10.3390/pathogens13030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 02/11/2025] Open
Abstract
Human T-cell Leukemia Virus type 1 (HTLV-1) is a human retrovirus responsible for leukaemia in 5 to 10% of infected individuals. Among the viral proteins, Tax has been described as directly involved in virus-induced leukemogenesis. Tax is therefore an interesting therapeutic target. However, its 3D structure is still unknown and this hampers the development of drug-design-based therapeutic strategies. Several algorithms are available that can be used to predict the structure of proteins, particularly with the recent appearance of artificial intelligence (AI)-driven pipelines. Here, we review how the structure of Tax is predicted by several algorithms using distinct modelling strategies. We discuss the consequences for the understanding of Tax structure/function relationship, and more generally for the use of structure models for modular and/or flexible proteins, which are frequent in retroviruses.
Collapse
Affiliation(s)
- Christophe Guillon
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, 69007 Lyon, France; (X.R.); (P.G.)
| | | | | |
Collapse
|
10
|
Luebbert L, Hoang C, Kumar M, Pachter L. Fast and scalable querying of eukaryotic linear motifs with gget elm. Bioinformatics 2024; 40:btae095. [PMID: 38377393 PMCID: PMC10927331 DOI: 10.1093/bioinformatics/btae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
MOTIVATION Eukaryotic linear motifs (ELMs), or Short Linear Motifs, are protein interaction modules that play an essential role in cellular processes and signaling networks and are often involved in diseases like cancer. The ELM database is a collection of manually curated motif knowledge from scientific papers. It has become a crucial resource for investigating motif biology and recognizing candidate ELMs in novel amino acid sequences. Users can search amino acid sequences or UniProt Accessions on the ELM resource web interface. However, as with many web services, there are limitations in the swift processing of large-scale queries through the ELM web interface or API calls, and, therefore, integration into protein function analysis pipelines is limited. RESULTS To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the ELM database, we have extended the gget suite of Python and command line tools with a new module, gget elm, which does not rely on the ELM server for efficiently finding candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm increases accessibility to the information stored in the ELM database and allows scalable searches for motif-mediated interaction sites in the amino acid sequences. AVAILABILITY AND IMPLEMENTATION The manual and source code are available at https://github.com/pachterlab/gget.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Chi Hoang
- California Institute of Technology, Pasadena, CA 91125, United States
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
11
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation code of human nucleophosmin includes four cryptic sites for hierarchical binding of 14-3-3 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580064. [PMID: 38405961 PMCID: PMC10888825 DOI: 10.1101/2024.02.13.580064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A. Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V. Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B. Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
12
|
Zambo B, Gogl G, Morlet B, Eberling P, Negroni L, Moine H, Travé G. Comparative analysis of PDZ-binding motifs in the diacylglycerol kinase family. FEBS J 2024; 291:690-704. [PMID: 37942667 DOI: 10.1111/febs.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Diacylglycerol kinases (DGKs) control local and temporal amounts of diacylglycerol (DAG) and phosphatidic acid (PA) by converting DAG to PA through phosphorylation in cells. Certain DGK enzymes possess C-terminal sequences that encode potential PDZ-binding motifs (PBMs), which could be involved in their recruitment into supramolecular signaling complexes. In this study, we used two different interactomic approaches, quantitative native holdup (nHU) and qualitative affinity purification (AP), both coupled to mass spectrometry (MS) to investigate the PDZ partners associated with the potential PBMs of DGKs. Complementing these results with site-specific affinity interactomic data measured on isolated PDZ domain fragments and PBM motifs, as well as evolutionary conservation analysis of the PBMs of DGKs, we explored functional differences within different DGK groups. All our results indicate that putative PBM sequences of type II enzymes, namely DGKδ, DGKη, and DGKκ, are likely to be nonfunctional. In contrast, type IV enzymes, namely DGKζ and DGKι, possess highly promiscuous PBMs that interact with a set of PDZ proteins with very similar affinity interactomes. The combination of various interactomic assays and evolutionary analyses provides a useful strategy for identifying functional domains and motifs within diverse enzyme families.
Collapse
Affiliation(s)
- Boglarka Zambo
- Équipe Labellisée Ligue contre le cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergo Gogl
- Équipe Labellisée Ligue contre le cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gilles Travé
- Équipe Labellisée Ligue contre le cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
14
|
Castro-Cruz M, Lembo F, Borg JP, Travé G, Vincentelli R, Zimmermann P. The Human PDZome 2.0: Characterization of a New Resource to Test for PDZ Interactions by Yeast Two-Hybrid. MEMBRANES 2023; 13:737. [PMID: 37623798 PMCID: PMC10456741 DOI: 10.3390/membranes13080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
PSD95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal sequences of a plethora of membrane-associated proteins and influence their trafficking and signaling. We previously built a PDZ resource (PDZome) allowing us to unveil human PDZ interactions by Yeast two-hybrid. Yet, this resource is incomplete according to the current knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast two-hybrid, based on a PDZ library manually curated from online resources. The PDZome2.0 contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all boundaries were designed based on available PDZ structures. Using as bait the E6 oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0 outperforms the previous resource.
Collapse
Affiliation(s)
- Monica Castro-Cruz
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium;
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| | - Frédérique Lembo
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| | - Jean-Paul Borg
- Marseille Proteomics Platform, CRCM, Institute Paoli-Calmettes, Aix-Marseille Université, Inserm, CNRS, 13009 Marseille, France;
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 67404 Illkirch, France;
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, 13009 Marseille, France;
| | - Pascale Zimmermann
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium;
- Équipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, 13009 Marseille, France;
| |
Collapse
|
15
|
Davey NE, Simonetti L, Ivarsson Y. The next wave of interactomics: Mapping the SLiM-based interactions of the intrinsically disordered proteome. Curr Opin Struct Biol 2023; 80:102593. [PMID: 37099901 DOI: 10.1016/j.sbi.2023.102593] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
Short linear motifs (SLiMs) are a unique and ubiquitous class of protein interaction modules that perform key regulatory functions and drive dynamic complex formation. For decades, interactions mediated by SLiMs have accumulated through detailed low-throughput experiments. Recent methodological advances have opened this previously underexplored area of the human interactome to high-throughput protein-protein interaction discovery. In this article, we discuss that SLiM-based interactions represent a significant blind spot in the current interactomics data, introduce the key methods that are illuminating the elusive SLiM-mediated interactome of the human cell on a large scale, and discuss the implications for the field.
Collapse
Affiliation(s)
- Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | - Leandro Simonetti
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
16
|
Zhang M, Cao A, Lin L, Chen Y, Shang Y, Wang C, Zhang M, Zhu J. Phosphorylation-dependent recognition of diverse protein targets by the cryptic GK domain of MAGI MAGUKs. SCIENCE ADVANCES 2023; 9:eadf3295. [PMID: 37163606 PMCID: PMC10171801 DOI: 10.1126/sciadv.adf3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dynamic signal transduction requires the rapid assembly and disassembly of signaling complexes, often mediated by phosphoprotein binding modules. The guanylate kinase-like (GK) domain of the membrane-associated guanylate kinases (MAGUKs) is such a module orchestrating signaling at cellular junctions. The MAGI subfamily of MAGUKs contains a truncated GK domain with unknown structure and function, although they participate in diverse physiological and pathological processes. Here, we demonstrate that the truncated GK domain of MAGI2 interacts with its adjacent PDZ0 domain to form a structural supramodule capable of recognizing phosphoproteins. A conserved phosphorylation-dependent binding motif for PDZ0-GK is delineated, which leads to identification of a set of previously unknown binding partners. We explore the structure and function of the MAGI2-target complex with an inhibitory peptide derived from the consensus motif. Our work reveals an action mechanism of the cryptic MAGI GKs and broadens our understanding of the target recognition rules of phosphoprotein binding modules.
Collapse
Affiliation(s)
- Meng Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Aili Cao
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Chen
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yuan Shang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mingjie Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Lin J, Wang S, Wen L, Ye H, Shang S, Li J, Shu J, Zhou P. Targeting peptide-mediated interactions in omics. Proteomics 2023; 23:e2200175. [PMID: 36461811 DOI: 10.1002/pmic.202200175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Peptide-mediated interactions (PMIs) play a crucial role in cell signaling network, which are responsible for about half of cellular protein-protein associations in the human interactome and have recently been recognized as a new kind of promising druggable target for drug development and disease therapy. In this article, we give a systematic review regarding the proteome-wide discovery of PMIs and targeting druggable PMIs (dPMIs) with chemical drugs, self-inhibitory peptides (SIPs) and protein agents, particularly focusing on their implications and applications for therapeutic purpose in omics. We also introduce computational peptidology strategies used to model, analyze, and design PMI-targeted molecular entities and further extend the concepts of protein context, direct/indirect readout, and enthalpy/entropy effect involved in PMIs. Current issues and future perspective on this topic are discussed. There is still a long way to go before establishment of efficient therapeutic strategies to target PMIs on the omics scale.
Collapse
Affiliation(s)
- Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shaozhou Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Haiyang Ye
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Shuyong Shang
- Institute of Ecological Environment Protection, Chengdu Normal University, Chengdu, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
18
|
Evaluation of affinity-purification coupled to mass spectrometry approaches for capture of short linear motif-based interactions. Anal Biochem 2023; 663:115017. [PMID: 36526023 DOI: 10.1016/j.ab.2022.115017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Low affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested. We found that peptide pulldown can be an effective approach for SLiM validation, however, parameters such as protein abundance and competitive interactions can prevent the capture of known interactors. The use of tandem peptide repeats improved the capture and preservation of some interactions. When testing PRISMA, it failed to provide comparable results for model peptides that successfully pulled down known interactors using biotinylated peptide pulldown. Overall, in our hands, we find that albeit more laborious, biotin-peptide pulldown was more successful in terms of validation of known interactions. Our results highlight that the tested affinity-capture MS-based methods for validation of SLiM-based interactions from cell lysates are suboptimal, and we identified parameters for consideration for method development.
Collapse
|
19
|
Rogers JR, Nikolényi G, AlQuraishi M. Growing ecosystem of deep learning methods for modeling protein-protein interactions. Protein Eng Des Sel 2023; 36:gzad023. [PMID: 38102755 DOI: 10.1093/protein/gzad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Numerous cellular functions rely on protein-protein interactions. Efforts to comprehensively characterize them remain challenged however by the diversity of molecular recognition mechanisms employed within the proteome. Deep learning has emerged as a promising approach for tackling this problem by exploiting both experimental data and basic biophysical knowledge about protein interactions. Here, we review the growing ecosystem of deep learning methods for modeling protein interactions, highlighting the diversity of these biophysically informed models and their respective trade-offs. We discuss recent successes in using representation learning to capture complex features pertinent to predicting protein interactions and interaction sites, geometric deep learning to reason over protein structures and predict complex structures, and generative modeling to design de novo protein assemblies. We also outline some of the outstanding challenges and promising new directions. Opportunities abound to discover novel interactions, elucidate their physical mechanisms, and engineer binders to modulate their functions using deep learning and, ultimately, unravel how protein interactions orchestrate complex cellular behaviors.
Collapse
Affiliation(s)
- Julia R Rogers
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Gergő Nikolényi
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
20
|
Genera M, Colcombet-Cazenave B, Croitoru A, Raynal B, Mechaly A, Caillet J, Haouz A, Wolff N, Caillet-Saguy C. Interactions of the protein tyrosine phosphatase PTPN3 with viral and cellular partners through its PDZ domain: insights into structural determinants and phosphatase activity. Front Mol Biosci 2023; 10:1192621. [PMID: 37200868 PMCID: PMC10185773 DOI: 10.3389/fmolb.2023.1192621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
The human protein tyrosine phosphatase non-receptor type 3 (PTPN3) is a phosphatase containing a PDZ (PSD-95/Dlg/ZO-1) domain that has been found to play both tumor-suppressive and tumor-promoting roles in various cancers, despite limited knowledge of its cellular partners and signaling functions. Notably, the high-risk genital human papillomavirus (HPV) types 16 and 18 and the hepatitis B virus (HBV) target the PDZ domain of PTPN3 through PDZ-binding motifs (PBMs) in their E6 and HBc proteins respectively. This study focuses on the interactions between the PTPN3 PDZ domain (PTPN3-PDZ) and PBMs of viral and cellular protein partners. We solved the X-ray structures of complexes between PTPN3-PDZ and PBMs of E6 of HPV18 and the tumor necrosis factor-alpha converting enzyme (TACE). We provide new insights into key structural determinants of PBM recognition by PTPN3 by screening the selectivity of PTPN3-PDZ recognition of PBMs, and by comparing the PDZome binding profiles of PTPN3-recognized PBMs and the interactome of PTPN3-PDZ. The PDZ domain of PTPN3 was known to auto-inhibit the protein's phosphatase activity. We discovered that the linker connecting the PDZ and phosphatase domains is involved in this inhibition, and that the binding of PBMs does not impact this catalytic regulation. Overall, the study sheds light on the interactions and structural determinants of PTPN3 with its cellular and viral partners, as well as on the inhibitory role of its PDZ domain on its phosphatase activity.
Collapse
Affiliation(s)
- Mariano Genera
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Baptiste Colcombet-Cazenave
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- Sorbonne Université, Complexité du Vivant, F-75005, Paris, France
| | - Anastasia Croitoru
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform-C2RT, CNRS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ariel Mechaly
- Crystallography Platform-C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Joël Caillet
- CNRS, Institut de Biologie Physico-Chimique, Université Paris Cité, Paris, France
| | - Ahmed Haouz
- Crystallography Platform-C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nicolas Wolff
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
| | - Célia Caillet-Saguy
- Institut Pasteur, Université Paris Cité, Channel Receptors Unit, Paris, France
- *Correspondence: Célia Caillet-Saguy,
| |
Collapse
|
21
|
Zambo B, Morlet B, Negroni L, Trave G, Gogl G. Native holdup (nHU) to measure binding affinities from cell extracts. SCIENCE ADVANCES 2022; 8:eade3828. [PMID: 36542723 PMCID: PMC9770967 DOI: 10.1126/sciadv.ade3828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Characterizing macromolecular interactions is essential for understanding cellular processes, yet most methods currently used to detect protein interactions from cells are qualitative. Here, we introduce the native holdup (nHU) approach to estimate equilibrium binding constants of protein interactions directly from cell extracts. Compared to other pull-down-based assays, nHU requires less sample preparation and can be coupled to any analytical methods as readouts, such as Western blotting or mass spectrometry. We use nHU to explore interactions of SNX27, a cargo adaptor of the retromer complex and find good agreement between in vitro affinities and those measured directly from cell extracts using nHU. We discuss the strengths and limitations of nHU and provide simple protocols that can be implemented in most laboratories.
Collapse
Affiliation(s)
- Boglarka Zambo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch F-67404, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch F-67404, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch F-67404, France
| | - Gilles Trave
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch F-67404, France
- Corresponding author. (G.T.); (G.G.)
| | - Gergo Gogl
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, Illkirch F-67404, France
- Corresponding author. (G.T.); (G.G.)
| |
Collapse
|