1
|
Bird LE, Xu B, Hobbs AD, Ziegler AR, Scott NE, Newton P, Thomas DR, Edgington-Mitchell LE, Newton HJ. Coxiella burnetii manipulates the lysosomal protease cathepsin B to facilitate intracellular success. Nat Commun 2025; 16:3844. [PMID: 40274809 PMCID: PMC12022341 DOI: 10.1038/s41467-025-59283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
The obligate intracellular bacterium Coxiella burnetii establishes an intracellular replicative niche termed the Coxiella-containing vacuole (CCV), which has been characterised as a bacterially modified phagolysosome. How C. burnetii withstands the acidic and degradative properties of this compartment is not well understood. We demonstrate that the key lysosomal protease cathepsin B is actively and selectively removed from C. burnetii-infected cells through a mechanism involving the Dot/Icm type IV-B secretion system effector CvpB. Overexpression of cathepsin B leads to defects in CCV biogenesis and bacterial replication, indicating that removal of this protein represents a strategy to reduce the hostility of the intracellular niche. In addition, we show that C. burnetii infection of mammalian cells induces the secretion of a wider cohort of lysosomal proteins, including cathepsin B, to the extracellular milieu via a mechanism dependent on retrograde traffic. This study reveals that C. burnetii is actively modulating the hydrolase cohort of its replicative niche to promote intracellular success and demonstrates that infection incites the secretory pathway to maintain lysosomal homoeostasis.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Bangyan Xu
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew D Hobbs
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Alexander R Ziegler
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Patrice Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - David R Thomas
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Pharmacology at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Kariminejad A, Pouya F, Ahangari F, Talebi S, Afroozan F, Verheijen FW, Najmabadi H, Jacobs EH. Biallelic Variant in LYSET Associated With Mucolipidosis II-Like Phenotype. Am J Med Genet A 2025:e64063. [PMID: 40171858 DOI: 10.1002/ajmg.a.64063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
Dysostosis multiplex is a skeletal dysplasia often associated with lysosomal storage disorders (LSDs) such as mucopolysaccharidoses (MPS) and mucolipidoses (ML). Recently, pathogenic variants in the LYSET gene have been linked to a novel disorder resembling mucolipidosis types II/III (MLII/III). We report two Iranian brothers with homozygous pathogenic variants in LYSET (c.197dupA) who exhibit clinical, enzymatic, and radiographic features strikingly similar to MLII. Our findings reinforce the similarity between LYSET-related phenotypes and MLII, aligning with previously described cases. We propose the term "LYSET-related mucolipidosis" to describe this disorder and emphasize the importance of including LYSET in the genetic diagnostic panel for MLII/III-like presentations.
Collapse
Affiliation(s)
| | - Farzaneh Pouya
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Saeed Talebi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fariba Afroozan
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hossein Najmabadi
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare & Rehabilitation Science, Tehran, Iran
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Doray B, Jennings BC, Yang X, Liu L, Venkatarangan V, Kornfeld S, Li M. LYSET facilitates integration of both the N- and C-terminal transmembrane helices/cytoplasmic domains of GlcNAc-1-phosphotransferase. Mol Biol Cell 2025; 36:br12. [PMID: 39937677 PMCID: PMC12005095 DOI: 10.1091/mbc.e24-08-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
LYSET is a recently identified Golgi transmembrane (TM) protein, and inactivating mutations in the LYSET gene phenocopy mucolipidosis II (MLII), the lysosomal storage disease caused by loss of function of GlcNAc-1-phosphotransferase αβ (GNPTαβ), which tags lysosomal hydrolases with the mannose 6-phosphate (M6P) tag for delivery to lysosomes. It is conceivable that LYSET facilitates integration of both hydrophilic TM helices (TMHs) of GNPTαβ and retain the latter in the Golgi, although this has only been directly demonstrated for the N-terminal TMH wherein a membrane-stabilized GNPTαβ variant restores lysosomal function in cells lacking LYSET. Here we show that the C-terminal TMH of GNPTαβ also contributes to LYSET-mediated Golgi retention. In addition, disease-causing patient mutations in the N-terminal TMH of GNPTαβ, which increase the hydrophilicity of the helix, are partly rescued by overexpression of LYSET. Finally, we show that a membrane-stabilized GNPTαβ variant, despite overcoming the requirement for LYSET, still requires COPI-mediated recycling via the N-terminal cytosolic domain (CD) for GNPTαβ retention and function in the Golgi.
Collapse
Affiliation(s)
- Baraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lin Liu
- M6P Therapeutics, St. Louis, MO 63108
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Liang J, Liu H, Lv G, Chen X, Yang Z, Hu K, Sun H. Exploring the molecular mechanisms of tirzepatide in alleviating metabolic dysfunction-associated fatty liver in mice through integration of metabolomics, lipidomics, and proteomics. Lipids Health Dis 2025; 24:8. [PMID: 39794823 PMCID: PMC11720920 DOI: 10.1186/s12944-024-02416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Clinical studies have suggested that tirzepatide may also possess hepatoprotective effects; however, the molecular mechanisms underlying this association remain unclear. In our study, we performed biochemical analyses of serum and histopathological examinations of liver tissue in mice. To preliminarily explore the molecular mechanisms of tirzepatide on metabolic dysfunction-associated fatty liver disease (MAFLD), liquid chromatography-mass spectrometry (LC-MS) was employed for comprehensive metabolomic, lipidomic, and proteomic analyses in MAFLD mice fed a high-fat diet (HFD). The results demonstrated that tirzepatide significantly reduced serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), as well as hepatic triglycerides (TG) and total cholesterol (TC), indicating its efficacy in treating MAFLD. Further findings revealed that tirzepatide reduced fatty acid uptake by downregulating Cd36 and Fabp2/4, as well as enhance the mitochondrial-lysosomal function by upregulating Lamp1/2. In addition, tirzepatide promoted cholesterol efflux and reduced cholesterol reabsorption by upregulating the expression of Hnf4a, Abcg5, and Abcg8. These results suggest that tirzepatide exerts its therapeutic effects on MAFLD by reducing fatty acid uptake, promoting cholesterol excretion, and enhancing mitochondrial-lysosomal function, providing a theoretical basis for a comprehensive understanding of tirzepatide.
Collapse
Affiliation(s)
- Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Guo Lv
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhaoshou Yang
- The First Affiliated Hospital, The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Hongyan Sun
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Feng Y, Huang Y, Zhao X, Sheng H, Su X, Yin X, Li L, Zhang W. Clinical and molecular characteristics of 20 Chinese probands with Mucolipidosis type II and III alpha/beta. BMC Pediatr 2024; 24:830. [PMID: 39710647 DOI: 10.1186/s12887-024-05223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/07/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Mucolipidosis (ML) II and III alpha/beta are lysosomal disorders caused by mutations in the GNPTAB gene which encodes the alpha and beta subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase. METHOD To explore the clinical and molecular characteristics of the 20 ML II and III alpha/beta patients, clinical data was collected and GNPTAB gene was analyzed by nest PCR and direct Sanger-sequencing. The activity of several lysosomal enzymes was measured in the plasma. RESULTS Among the 20 ML II and III alpha/beta patients, 6 patients were classified as ML II and 14 as ML III alpha/beta. The main clinical manifestations were joint stiffness, skeletal deformity, mental retardation and short stature. Bone X-ray examination showed radiological changes. The plasma arylsulfatase A and hexosaminidase A enzyme activities increased significantly. Urinary glycosaminoglycan values were normal. We detected mutations in GNPTAB in 35 of 40 alleles (87.5%). Mutation c.2715 + 1G > A and c.2404 C > T (p.Gln802Ter) were the most prevalent variants, accounting for 14.3% and 11.4%, respectively. Five novel mutations c.3335 + 5G > A, c.1284 + 1G > A, c.571 + 4 A > G, c.1634_1635delAA (p.Lys545Serfs*16) and c.1582T > C(p.Cys528Arg) were identified. CONCLUSION Our study expands the spectrum of GNPTAB gene in China. Mutation c.2715 + 1G > A was the most prevalent mutation in our study. The novel mutation c.1284 + 1G > A might be a severe mutation associated with ML II.
Collapse
Affiliation(s)
- Yuyu Feng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Yonglan Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xueying Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Xi Yin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Liu Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China
| | - Wen Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
6
|
Song JH, Jang S, Choi JW, Hwang S, Kim KH, Kim HY, Park SC, Lee W, Lee JY. Characterization of Site-Specific N- and O-Glycopeptides from Recombinant Spike and ACE2 Glycoproteins Using LC-MS/MS Analysis. Int J Mol Sci 2024; 25:13649. [PMID: 39769415 PMCID: PMC11678118 DOI: 10.3390/ijms252413649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development. The glycosylation of these proteins influences their structure and function. This underscores the need for detailed site-specific glycoproteomic analysis. In this study, we characterized the N- or O-glycosylation profiles of the recombinant receptor-binding domain (RBD) of spike protein and ACE2 proteins expressed from Expi293F cells, as well as the S2 subunit of spike protein expressed in plant (N. benthamiana) cells. Using a high-resolution Orbitrap Eclipse Tribrid mass spectrometer equipped with the Ultimate 3000 RSLCnano and I-GPA (Integrated GlycoProteome Analyzer) developed in a previous study, 148 N- and 28 O-glycopeptides from RBD, 71 N-glycopeptides from the S2 subunit, and 139 N-glycopeptides from ACE2 were characterized. In addition, we report post-translational modifications (PTMs) of glycan, including mannose-6-phosphate (M6P) and GlcNAc-1-phosphate-6-O-mannose in N-glycan of RBD and ACE2, and O-acetylation in O-glycan of RBD, identified for the first time in these recombinant proteins. The relative abundance distribution according to glycosites and glycan types were analyzed by quantified site-specific N- and O (only from RBD)-glycopeptides from RBD, S2, and ACE2 using I-GPA. Asn331 for RBD, Asn1098 for S2, and Asn103 for ACE2 were majorly N-glycosylated, and dominant glycan-type was complex from RBD and ACE2 and high-mannose from S2. These findings will provide valuable insights into the glycosylation patterns that influence protein function and immunogenicity and offer new perspectives for the development of vaccines and antibody-based therapies against COVID-19.
Collapse
Affiliation(s)
- Ju Hwan Song
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.H.S.)
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Sangeun Jang
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.H.S.)
| | - Jin-Woong Choi
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.H.S.)
| | - Seoyoung Hwang
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.H.S.)
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hye-Yeon Kim
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sun Cheol Park
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Wonbin Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Ju Yeon Lee
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.H.S.)
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Yang X, Doray B, Venkatarangan V, Jennings BC, Henn D, Liang J, Zhao H, Zhang W, Zhang B, Yu L, Chen L, Kornfeld S, Li M. Molecular Insights into the Regulation of GNPTAB by TMEM251. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627003. [PMID: 39677738 PMCID: PMC11643035 DOI: 10.1101/2024.12.05.627003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In vertebrates, newly synthesized lysosomal enzymes traffick to lysosomes through the mannose-6-phosphate (M6P) pathway. The Golgi membrane protein TMEM251 was recently discovered to regulate lysosome biogenesis by controlling the level of GlcNAc-1-phosphotransferase (GNPT). However, its precise function remained unclear. In this study, we demonstrate that TMEM251 is a two-transmembrane protein indispensable for GNPT stability, cleavage by Site-1-Protease (S1P), and enzymatic activity. We reconcile conflicting models by showing that TMEM251 enhances GNPT cleavage and prevents its mislocalization to lysosomes for degradation. We further establish that TMEM251 achieves this by interacting with GOLPH3 and retromer complexes to anchor the TMEM251-GNPT complex at the Golgi. Alanine mutagenesis identified F4XXR7 motif in TMEM251's N-tail for GOLPH3 binding. Together, our findings uncover TMEM251's multi-faceted role in stabilizing GNPT, retaining it at the Golgi, and ensuring the fidelity of the M6P pathway, thereby providing insights into its molecular function.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Current address: Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin C. Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaxuan Liang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haikun Zhao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linchen Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liang Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Mo 63110, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Brauer BK, Chen Z, Beirow F, Li J, Meisinger D, Capriotti E, Schweizer M, Wagner L, Wienberg J, Hobohm L, Blume L, Qiao W, Narimatsu Y, Carette JE, Clausen H, Winter D, Braulke T, Jabs S, Voss M. GOLPH3 and GOLPH3L maintain Golgi localization of LYSET and a functional mannose 6-phosphate transport pathway. EMBO J 2024; 43:6264-6290. [PMID: 39587297 PMCID: PMC11649813 DOI: 10.1038/s44318-024-00305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Glycosylation, which plays an important role in modifying lipids and sorting of proteins, is regulated by asymmetric intra-Golgi distribution and SPPL3-mediated cleavage of Golgi enzymes. We found that cells lacking LYSET/TMEM251, a retention factor for Golgi N-acetylglucosamine-1-phosphotransferase (GNPT), display SPPL3-dependent hypersecretion of the Golgi membrane protein B4GALT5. We demonstrate that in wild-type cells B4GALT5 is tagged with mannose 6-phosphate (M6P), a sorting tag typical of soluble lysosomal hydrolases. Hence, M6P-tagging of B4GALT5 may represent a novel degradative lysosomal pathway. We also observed B4GALT5 hypersecretion and prominent destabilization of LYSET-GNPT complexes, impaired M6P-tagging, and disturbed maturation and trafficking of lysosomal enzymes in multiple human cell lines lacking the COPI adaptors GOLPH3 and GOLPH3L. Mechanistically, we identified LYSET as a novel, atypical client of GOLPH3/GOLPH3L. Thus, by ensuring the cis-Golgi localization of the LYSET-GNPT complex and maintaining its Golgi polarity, GOLPH3/GOLPH3L is essential for the integrity of the M6P-tagging machinery and homeostasis of lysosomes.
Collapse
Affiliation(s)
- Berit K Brauer
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Zilei Chen
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Felix Beirow
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | | | - Emanuela Capriotti
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
| | - Lea Wagner
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | | | - Laura Hobohm
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Lukas Blume
- Institute of Biochemistry, Kiel University, Kiel, Germany
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yoshiki Narimatsu
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Matthias Voss
- Institute of Biochemistry, Kiel University, Kiel, Germany.
| |
Collapse
|
9
|
Tang YH, Liu YS, Fujita M. Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Glycoconj J 2024; 41:395-405. [PMID: 39382616 PMCID: PMC11735522 DOI: 10.1007/s10719-024-10169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Lysosomal storage diseases (LSDs) are genetic disorders caused by mutations in lysosomal enzymes, lysosomal membrane proteins or genes related to intracellular transport that result in impaired lysosomal function. Currently, the primary treatment for several LSDs is enzyme replacement therapy (ERT), which involves intravenous administration of the deficient lysosomal enzymes to ameliorate symptoms. The efficacy of ERT largely depends on the mannose-6-phosphate (M6P) modification of the N-glycans associated with the enzyme, as M6P is a marker for the recognition and trafficking of lysosomal enzymes. In cells, N-glycan processing and M6P modification occur in the endoplasmic reticulum and Golgi apparatus. This is a complex process involving multiple enzymes. In the trans-Golgi network (TGN), M6P-modified enzymes are recognized by the cation-independent mannose-6-phosphate receptor (CIMPR) and transported to the lysosome to exert their activities. In this study, we used the 9th domain of CIMPR, which exhibits a high affinity for M6P binding, and fused it with the Fc domain of human immunoglobulin G1 (IgG1). The resulting fusion protein specifically binds to M6P-modified proteins. This provides a tool for the rapid detection and concentration of M6P-containing recombinant enzymes to assess the effectiveness of ERT. The advantages of this approach include its high specificity and sensitivity and may lead to the development of new treatments for LSDs.
Collapse
Affiliation(s)
- Yu-He Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
10
|
Akaaboune SR, Javed A, Bui S, Wierenga A, Wang Y. GRASP55 Regulates Sorting and Maturation of the Lysosomal Enzyme β-Hexosaminidase A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618769. [PMID: 39464054 PMCID: PMC11507844 DOI: 10.1101/2024.10.16.618769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The Golgi apparatus plays a crucial role in the delivery of lysosomal enzymes. Golgi Reassembly Stacking Proteins, GRASP55 and GRASP65, are vital for maintaining Golgi structure and function. GRASP55 depletion results in the missorting and secretion of the lysosomal enzyme Cathepsin D (Xiang et al ., 2013), though the mechanisms remain unclear. In this study, we conducted secretomic analyses of GRASP55 knockout (KO) cells and found a significant increase in lysosome-associated proteins in the extracellular medium. Using the lysosomal beta-hexosaminidase subunit alpha (HEXA) as a model, we found that GRASP55 depletion disrupted normal trafficking and processing of HEXA, resulting in increased secretion of the immature (pro-form) HEXA into the extracellular milieu, along with decreased levels of the mature form and enzymatic activity within the cell. GRASP55 depletion significantly reduced the complex formation between HEXA and mannose-6-phosphate (M6P) receptors (MPR), despite no overall change in MPR expression. And finally, we found there was a notable reduction in the expression of GNPTAB, leading to a reduction in M6P modification of HEXA, hindering its efficient targeting to lysosomes. These findings reveal the role of GRASP55 in regulating lysosomal enzyme dynamics, emphasizing its role in the sorting and trafficking of lysosomal proteins.
Collapse
|
11
|
Bhat M, Nambiar A, Edakkandiyil L, Abraham IM, Sen R, Negi M, Manjithaya R. A genetically-encoded fluorescence-based reporter to spatiotemporally investigate mannose-6-phosphate pathway. Mol Biol Cell 2024; 35:mr6. [PMID: 38888935 PMCID: PMC11321044 DOI: 10.1091/mbc.e23-09-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders, neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically-encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatiotemporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.
Collapse
Affiliation(s)
- Mallika Bhat
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Irine Maria Abraham
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ritoprova Sen
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Mamta Negi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Professor and chair, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
12
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
13
|
Braulke T, Carette JE, Palm W. Lysosomal enzyme trafficking: from molecular mechanisms to human diseases. Trends Cell Biol 2024; 34:198-210. [PMID: 37474375 DOI: 10.1016/j.tcb.2023.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Lysosomes degrade and recycle macromolecules that are delivered through the biosynthetic, endocytic, and autophagic routes. Hydrolysis of the different classes of macromolecules is catalyzed by about 70 soluble enzymes that are transported from the Golgi apparatus to lysosomes in a mannose 6-phosphate (M6P)-dependent process. The molecular machinery that generates M6P tags for receptor-mediated targeting of lysosomal enzymes was thought to be understood in detail. However, recent studies on the M6P pathway have identified a previously uncharacterized core component, yielded structural insights in known components, and uncovered functions in various human diseases. Here we review molecular mechanisms of lysosomal enzyme trafficking and discuss its relevance for rare lysosomal disorders, cancer, and viral infection.
Collapse
Affiliation(s)
- Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wilhelm Palm
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Liu Q, Wang W, Xu L, Zhang Q, Wang H. The host mannose-6-phosphate pathway and viral infection. Front Cell Infect Microbiol 2024; 14:1349221. [PMID: 38357444 PMCID: PMC10865371 DOI: 10.3389/fcimb.2024.1349221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Viruses, despite their simple structural composition, engage in intricate and complex interactions with their hosts due to their parasitic nature. A notable demonstration of viral behavior lies in their exploitation of lysosomes, specialized organelles responsible for the breakdown of biomolecules and clearance of foreign substances, to bolster their own replication. The man-nose-6-phosphate (M6P) pathway, crucial for facilitating the proper transport of hydrolases into lysosomes and promoting lysosome maturation, is frequently exploited for viral manipulation in support of replication. Recently, the discovery of lysosomal enzyme trafficking factor (LYSET) as a pivotal regulator within the lysosomal M6P pathway has introduced a fresh perspective on the intricate interplay between viral entry and host factors. This groundbreaking revelation illuminates unexplored dimensions of these interactions. In this review, we endeavor to provide a thorough overview of the M6P pathway and its intricate interplay with viral factors during infection. By consolidating the current understanding in this field, our objective is to establish a valuable reference for the development of antiviral drugs that selectively target the M6P pathway.
Collapse
Affiliation(s)
- Qincheng Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Weiqi Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Liwei Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| | - Qisheng Zhang
- Shanghai Sino Organoid Lifesciences Co., Ltd., Shanghai, China
| | - Hongna Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou, China
| |
Collapse
|
16
|
Chen Y, He J, Jin T, Zhang Y, Ou Y. Functional enrichment analysis of LYSET and identification of related hub gene signatures as novel biomarkers to predict prognosis and immune infiltration status of clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:16905-16929. [PMID: 37740762 PMCID: PMC10645642 DOI: 10.1007/s00432-023-05280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE The latest research shows that the lysosomal enzyme trafficking factor (LYSET) encoded by TMEM251 is a key regulator of the amino acid metabolism reprogramming (AAMR) and related pathways significantly correlate with the progression of some tumors. The purpose of this study was to explore the potential pathways of the TMEM251 in clear cell renal cell carcinoma (ccRCC) and establish related predictive models based on the hub genes in these pathways for prognosis and tumor immune microenvironment (TIME). METHODS We obtained mRNA expression data and clinical information of ccRCC samples from The Cancer Genome Atlas (TCGA), E-MATE-1980, and immunotherapy cohorts. Single-cell sequencing data (GSE152938) were downloaded from the Gene Expression Omnibus (GEO) database. We explored biological pathways of the LYSET by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of TMEM251-coexpression genes. The correlation of LYSET-related pathways with the prognosis was conducted by Gene Set Variation Analysis (GSVA) and unsupervised cluster analysis. The least absolute shrinkage and selection operator (LASSO) and Cox regression were used to identify hub prognostic genes and construct the risk score. Immune infiltration analysis was conducted by CIBERSORTx and Tumor Immune Estimation Resource (TIMER) databases. The predictive value of the risk score and hub prognostic genes on immunotherapy responsiveness was analyzed through the tumor mutation burden (TMB) score, immune checkpoint expression, and survival analysis. Immunohistochemistry (IHC) was finally used to verify the expressions of hub prognostic genes. RESULTS The TMEM251 was found to be significantly correlated with some AAMR pathways. AAGAB, ENTR1, SCYL2, and WDR72 in LYSET-related pathways were finally identified to construct a risk score model. Immune infiltration analysis showed that LYSET-related gene signatures significantly influenced the infiltration of some vital immune cells such as CD4 + cells, NK cells, M2 macrophages, and so on. In addition, the constructed risk score was found to be positively correlated with TMB and some common immune checkpoint expressions. Different predictive values of these signatures for Nivolumab therapy responsiveness were also uncovered in immunotherapy cohorts. Finally, based on single-cell sequencing analysis, the TMEM251 and the hub gene signatures were found to be expressed in tumor cells and some immune cells. Interestingly, IHC verification showed a potential dual role of four hub genes in ccRCC progression. CONCLUSION The novel predictive biomarkers we built may benefit clinical decision-making for ccRCC. Our study may provide some evidence that LYSET-related gene signatures could be novel potential targets for treating ccRCC and improving immunotherapy efficacy. Our nomogram might be beneficial to clinical choices, but the results need more experimental verifications in the future.
Collapse
Affiliation(s)
- Yuxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Jinhang He
- First Clinical Medical College, Chongqing Medical University, Chongqing, China
| | - Tian Jin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
17
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
18
|
Venkatarangan V, Zhang W, Yang X, Thoene J, Hahn SH, Li M. ER-associated degradation in cystinosis pathogenesis and the prospects of precision medicine. J Clin Invest 2023; 133:e169551. [PMID: 37561577 PMCID: PMC10541201 DOI: 10.1172/jci169551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Cystinosis is a lysosomal storage disease that is characterized by the accumulation of dipeptide cystine within the lumen. It is caused by mutations in the cystine exporter, cystinosin. Most of the clinically reported mutations are due to the loss of transporter function. In this study, we identified a rapidly degrading disease variant, referred to as cystinosin(7Δ). We demonstrated that this mutant is retained in the ER and degraded via the ER-associated degradation (ERAD) pathway. Using genetic and chemical inhibition methods, we elucidated the roles of HRD1, p97, EDEMs, and the proteasome complex in cystinosin(7Δ) degradation pathway. Having understood the degradation mechanisms, we tested some chemical chaperones previously used for treating CFTR F508Δ and demonstrated that they could facilitate the folding and trafficking of cystinosin(7Δ). Strikingly, chemical chaperone treatment can reduce the lumenal cystine level by approximately 70%. We believe that our study conclusively establishes the connection between ERAD and cystinosis pathogenesis and demonstrates the possibility of using chemical chaperones to treat cystinosin(7Δ).
Collapse
Affiliation(s)
- Varsha Venkatarangan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Weichao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jess Thoene
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Si Houn Hahn
- University of Washington School of Medicine, Department of Pediatrics, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Qiao W, Richards CM, Jabs S. LYSET/TMEM251- a novel key component of the mannose 6-phosphate pathway. Autophagy 2023; 19:2143-2145. [PMID: 36633450 PMCID: PMC10283412 DOI: 10.1080/15548627.2023.2167376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Degradation of macromolecules delivered to lysosomes by processes such as autophagy or endocytosis is crucial for cellular function. Lysosomes require more than 60 soluble hydrolases in order to catabolize such macromolecules. These soluble hydrolases are tagged with mannose6-phosphate (M6P) moieties in sequential reactions by the Golgi-resident GlcNAc-1-phosphotransferase complex and NAGPA/UCE/uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase), which allows their delivery to endosomal/lysosomal compartments through trafficking mediated by cation-dependent and -independent mannose 6-phosphate receptors (MPRs). We and others recently identified TMEM251 as a novel regulator of the M6P pathway via independent genome-wide genetic screening strategies. We renamed TMEM251 to LYSET (lysosomal enzyme trafficking factor) to establish nomenclature reflective to this gene's function. LYSET is a Golgi-localized transmembrane protein important for the retention of the GlcNAc-1-phosphotransferase complex in the Golgi-apparatus. The current understanding of LYSET's importance regarding human biology is 3-fold: 1) highly pathogenic viruses that depend on lysosomal hydrolase activity require LYSET for infection. 2) The presence of LYSET is critical for cancer cell proliferation in nutrient-deprived environments in which extracellular proteins must be catabolized. 3) Inherited pathogenic alleles of LYSET can cause a severe inherited disease which resembles GlcNAc-1-phosphotransferase deficiency (i.e., mucolipidosis type II).Abbreviations: GlcNAc-1-PT: GlcNAc-1-phosphotransferase; KO: knockout; LSD: lysosomal storage disorder; LYSET: lysosomal enzyme trafficking factor; M6P: mannose 6-phosphate; MPRs: mannose-6-phosphate receptors, cation-dependent or -independent; MBTPS1/site-1 protease: membrane bound transcription factor peptidase, site 1; MLII: mucolipidosis type II; WT: wild-type.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M. Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sabrina Jabs
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
20
|
Zhang B, Yang X, Li M. LYSET/TMEM251/GCAF is critical for autophagy and lysosomal function by regulating the mannose-6-phosphate (M6P) pathway. Autophagy 2023; 19:1596-1598. [PMID: 36633445 PMCID: PMC10240974 DOI: 10.1080/15548627.2023.2167375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Vertebrate cells rely on mannose-6-phosphate (M6P) modifications to deliver most lumenal hydrolases to the lysosome. As a critical trafficking signal for lysosomal enzymes, the M6P biosynthetic pathway has been thoroughly investigated. However, its regulatory mechanism is largely unknown. Here, we summarize three recent studies that independently discovered LYSET/TMEM251/GCAF as a key regulator of the M6P pathway. LYSET/TMEM251 directly interacts with GNPT, the enzyme that catalyzes the transfer of M6P, and is critical for its activity and stability. Deleting LYSET/TMEM251 impairs the GNPT function and M6P modifications. Consequently, lysosomal enzymes are mistargeted for secretion. Defective lysosomes fail to degrade cargoes such as endocytic vesicles and autophagosomes, leading to a newly identified lysosomal storage disease in humans. These discoveries open up a new direction in the regulation of the M6P biosynthetic pathway.Abbreviations: ER: endoplasmic reticulum; GNPT: GlcNAc-1-phosphotransferase; KO: knockout; LMP: lysosome membrane protein; LYSET: lysosomal enzyme trafficking factor; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; M6P: mannose-6-phosphate; MBTPS1/S1P: membrane-bound transcription factor peptidase, site 1; MPR: mannose-6-phosphate receptor; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TGN: trans-Golgi network.
Collapse
Affiliation(s)
- Bokai Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xi Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Wang L, Shen HM. TMEM251, a new player in lysosomal enzyme trafficking. LIFE METABOLISM 2023; 2:loac039. [PMID: 39872736 PMCID: PMC11749558 DOI: 10.1093/lifemeta/loac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/30/2025]
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
22
|
Golgipathies reveal the critical role of the sorting machinery in brain and skeletal development. Nat Commun 2022; 13:7397. [PMID: 36456556 PMCID: PMC9715697 DOI: 10.1038/s41467-022-35101-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
|
23
|
Cui X, Yang Y, Zhang M, Liu S, Wang H, Jiao F, Bao L, Lin Z, Wei X, Qian W, Shi X, Su C, Qian Y. Transcriptomics and metabolomics analysis reveal the anti-oxidation and immune boosting effects of mulberry leaves in growing mutton sheep. Front Immunol 2022; 13:1088850. [PMID: 36936474 PMCID: PMC10015891 DOI: 10.3389/fimmu.2022.1088850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
Introduction Currently, the anti-oxidation of active ingredients in mulberry leaves (MLs) and their forage utilization is receiving increasing attention. Here, we propose that MLs supplementation improves oxidative resistance and immunity. Methods We conducted a trial including three groups of growing mutton sheep, each receiving fermented mulberry leaves (FMLs) feeding, dried mulberry leaves (DMLs) feeding or normal control feeding without MLs. Results Transcriptomic and metabolomic analyses revealed that promoting anti-oxidation and enhancing disease resistance of MLs is attributed to improved tryptophan metabolic pathways and reduced peroxidation of polyunsaturated fatty acids (PUFAs). Furthermore, immunity was markedly increased after FMLs treatment by regulating glycolysis and mannose-6-phosphate pathways. Additionally, there was better average daily gain in the MLs treatment groups. Conclusion These findings provide new insights for understanding the beneficial effects of MLs in animal husbandry and provide a theoretical support for extensive application of MLs in improving nutrition and health care values.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Chao Su
- *Correspondence: Chao Su, ; Yonghua Qian,
| | | |
Collapse
|