1
|
Ren J, Huang P, Wang F. IGSF8 is a potential target for the treatment of gliomas. Asian J Surg 2024; 47:3883-3891. [PMID: 38453613 DOI: 10.1016/j.asjsur.2024.02.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Immunoglobulin superfamily member 8, or IGSF8, is a member of the recently identified immunoglobulin family of proteins. It is mostly produced on cell membranes and has a unique transmembrane structure. It has recently been demonstrated that there is a strong correlation between the expression variation of IGSF8 and the growth of gliomas. Therefore, we used data from the TCGA and CGGA databases to evaluate the function of IGSF8. METHODS The TCGA and GTEx data sets' RNA-seq data were utilized to examine IGSF8 expression. The Gene Cards database was utilized to get IGSF8 protein data. The Cluster Profiler data package was used to carry out the IGSF8 enrichment study. The GO and KEGG databases were used to examine the relationship between IGSF8 and cellular physiological and biochemical processes. The TCGA immune cell infiltration scores were obtained from online databases and published studies. Clinical survival data from TCGA and CGGA were used to investigate the predictive significance of IGSF8. RESULTS TGGA revealed that the majority of cancers had differential expression of IGSF8. IGSF8 was discovered to be enriched in numerous significant pathways in tumor cells by GO and KEGG. Moreover, a strong correlation was seen between the expression of IGSF8 and the immunomodulatory interactions that occur between non-lymphocytes and lymphocytes. T-cell infiltration, immunological checkpoints, immune-activating and immune-suppressive genes, chemokines, and chemokine receptors were all strongly correlated with IGSF8 expression. Lastly, the TCGA and CGGA databases showed a strong correlation between IGSF8 and the grade and prognosis of gliomas. CONCLUSION According to our findings, IGSF8 may be a glioma marker. In order to control the immunological microenvironment, IGSF8 may cooperate with a number of immune checkpoints. This information may be utilized to create novel targeted immunotherapy medications.
Collapse
Affiliation(s)
- Jiaxing Ren
- Inner Mongolia Medical University Affiliated Hospital, Inner Mongolia, China.
| | - Ping Huang
- Inner Mongolia Medical University Affiliated Hospital, Inner Mongolia, China.
| | - Fei Wang
- Inner Mongolia Medical University Affiliated Hospital, Inner Mongolia, China.
| |
Collapse
|
2
|
Yuan M, Cao Z, Li Q, Liu R, Wang J, Xue W, Lyu Q. Fasting-induced miR-7a-5p in AgRP neurons regulates food intake. Metabolism 2024; 158:155959. [PMID: 38942170 DOI: 10.1016/j.metabol.2024.155959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE The molecular control of feeding after fasting is essential for maintaining energy homeostasis, while overfeeding usually leads to obesity. Identifying non-coding microRNAs (miRNAs) that control food intake could reveal new oligonucleotide-based therapeutic targets for treating obesity and its associated diseases. This study aims to identify a miRNA modulating food intake and its mechanism in neuronal regulation of food intake and energy homeostasis. METHODS A comprehensive genome-wide miRNA screening in the arcuate nucleus of the hypothalamus (ARC) of fasted mice and ad libitum mice was performed. Through stereotactic virus injections, intracerebroventricular injections, and miRNA sponge technology, miR-7a-5p was inhibited specifically in AgRP neurons and the central nervous system, and metabolic phenotypes were monitored. Quantitative real-time PCR, Western blotting, immunofluorescence, whole-cell patch-clamp recording, and luciferase reporter assay were used to investigate the mechanisms underlying miR-7a-5p's regulation of food intake. RESULTS We found a significant increase in miR-7a-5p levels after fasting. miR-7a-5p was highly expressed in the ARC, and inhibition of miR-7a-5p specifically in AgRP neurons reduced food intake and body weight gain. miR-7a-5p inhibited S6K1 gene expression by binding to its 3'-UTR. Furthermore, the knockdown of ribosomal S6 kinase 1 (S6K1) in AgRP neurons can partially reverse the effects caused by miR-7a-5p inhibition. Importantly, intracerebroventricular administration of the miR-7a-5p inhibitor could also reduce food intake and body weight gain. CONCLUSION Our findings suggest that miR-7a-5p responds to energy deficit and regulates food intake by fine-tuning mTOR1/S6K1 signaling in the AgRP neurons, which could be a promising oligonucleotide-based therapeutic target for treating obesity and its associated diseases.
Collapse
Affiliation(s)
- Mingyang Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Qian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China.
| | - Wenzhi Xue
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China; Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Qianqian Lyu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, SJTUSM, Shanghai, China.
| |
Collapse
|
3
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Cerda-Jara CA, Kim SJ, Thomas G, Farsi Z, Zolotarov G, Dube G, Deter A, Bahry E, Georgii E, Woehler A, Piwecka M, Rajewsky N. miR-7 controls glutamatergic transmission and neuronal connectivity in a Cdr1as-dependent manner. EMBO Rep 2024; 25:3008-3039. [PMID: 38831125 PMCID: PMC11239925 DOI: 10.1038/s44319-024-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.
Collapse
Affiliation(s)
- Cledi A Cerda-Jara
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Seung Joon Kim
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gwendolin Thomas
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Zohreh Farsi
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Giuliana Dube
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Aylina Deter
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Ella Bahry
- Helmholtz Imaging, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany Hannoversche Str. 28, 10115, Berlin, Germany
| | - Elisabeth Georgii
- Helmholtz AI, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Andrew Woehler
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Monika Piwecka
- Department of Non-Coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany.
| |
Collapse
|
5
|
Dearden L, Furigo IC, Pantaleão LC, Wong LWP, Fernandez-Twinn DS, de Almeida-Faria J, Kentistou KA, Carreira MV, Bidault G, Vidal-Puig A, Ong KK, Perry JRB, Donato J, Ozanne SE. Maternal obesity increases hypothalamic miR-505-5p expression in mouse offspring leading to altered fatty acid sensing and increased intake of high-fat food. PLoS Biol 2024; 22:e3002641. [PMID: 38833481 PMCID: PMC11149872 DOI: 10.1371/journal.pbio.3002641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
In utero exposure to maternal obesity programs increased obesity risk. Animal models show that programmed offspring obesity is preceded by hyperphagia, but the mechanisms that mediate these changes are unknown. Using a mouse model of maternal obesity, we observed increased intake of a high-fat diet (HFD) in offspring of obese mothers that precedes the development of obesity. Through small RNA sequencing, we identified programmed overexpression of hypothalamic miR-505-5p that is established in the fetus, lasts to adulthood and is maintained in hypothalamic neural progenitor cells cultured in vitro. Metabolic hormones and long-chain fatty acids associated with obesity increase miR-505-5p expression in hypothalamic neurons in vitro. We demonstrate that targets of miR-505-5p are enriched in fatty acid metabolism pathways and overexpression of miR-505-5p decreased neuronal fatty acid metabolism in vitro. miR-505-5p targets are associated with increased BMI in human genetic studies. Intra-cerebroventricular injection of miR-505-5p in wild-type mice increased HFD intake, mimicking the phenotype observed in offspring exposed to maternal obesity. Conversely, maternal exercise intervention in an obese mouse pregnancy rescued the programmed increase of hypothalamic miR-505-5p in offspring of obese dams and reduced HFD intake to control offspring levels. This study identifies a novel mechanism by which maternal obesity programs obesity in offspring via increased intake of high-fat foods.
Collapse
Affiliation(s)
- Laura Dearden
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Isadora C. Furigo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
- Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Lucas C. Pantaleão
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - L W. P. Wong
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Denise S. Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Juliana de Almeida-Faria
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
- University of Campinas, Faculty of Medical Sciences, Department of Pharmacology, Campinas, Brazil
| | | | - Maria V. Carreira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - John R. B. Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, Brazil
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, Cambridge, United Kingdom
| |
Collapse
|
6
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
7
|
Scoyni F, Sitnikova V, Giudice L, Korhonen P, Trevisan DM, Hernandez de Sande A, Gomez-Budia M, Giniatullina R, Ugidos IF, Dhungana H, Pistono C, Korvenlaita N, Välimäki NN, Kangas SM, Hiltunen AE, Gribchenko E, Kaikkonen-Määttä MU, Koistinaho J, Ylä-Herttuala S, Hinttala R, Venø MT, Su J, Stoffel M, Schaefer A, Rajewsky N, Kjems J, LaPierre MP, Piwecka M, Jolkkonen J, Giniatullin R, Hansen TB, Malm T. ciRS-7 and miR-7 regulate ischemia-induced neuronal death via glutamatergic signaling. Cell Rep 2024; 43:113862. [PMID: 38446664 DOI: 10.1016/j.celrep.2024.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.
Collapse
Affiliation(s)
- Flavia Scoyni
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Davide M Trevisan
- Department of Biosciences and Nutrition, Karolinska Institute, 17177 Stockholm, Sweden
| | | | - Mireia Gomez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Cristiana Pistono
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | | | - Anniina E Hiltunen
- Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Emma Gribchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Minna U Kaikkonen-Määttä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland; Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus, Denmark; Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Anne Schaefer
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6504, USA; Max Planck Institute, Biology of Ageing, 50931 Cologne, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Thomas B Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| |
Collapse
|
8
|
Chen C, Guo M, Zhao X, Zhao J, Chen L, He Z, Xu L, Zha Y. MicroRNA-7: A New Intervention Target for Inflammation and Related Diseases. Biomolecules 2023; 13:1185. [PMID: 37627250 PMCID: PMC10452300 DOI: 10.3390/biom13081185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA that can regulate physiological and pathological processes through post-transcriptional regulatory gene expression. As an important member of the miRNAs family, microRNA-7 (miR-7) was first discovered in 2001 to play an important regulatory role in tissue and organ development. Studies have shown that miR-7 participates in various tissue and organ development processes, tumorigenesis, aging, and other processes by regulating different target molecules. Notably, a series of recent studies have determined that miR-7 plays a key regulatory role in the occurrence of inflammation and related diseases. In particular, miR-7 can affect the immune response of the body by influencing T cell activation, macrophage function, dendritic cell (DC) maturation, inflammatory body activation, and other mechanisms, which has important potential application value in the intervention of related diseases. This article reviews the current regulatory role of miR-7 in inflammation and related diseases, including viral infection, autoimmune hepatitis, inflammatory bowel disease, and encephalitis. It expounds on the molecular mechanism by which miR-7 regulates the occurrence of inflammatory diseases. Finally, the existing problems and future development directions of miR-7-based intervention on inflammation and related diseases are discussed to provide new references and help strengthen the understanding of the pathogenesis of inflammation and related diseases, as well as the development of new strategies for clinical intervention.
Collapse
Affiliation(s)
- Chao Chen
- School of Medicine, Guizhou University, Guiyang 550025, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Xu Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Longqing Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Specifc Key Laboratory of Gene Detection and Treatment of Guizhou Province, Zunyi 563000, China
| | - Yan Zha
- School of Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|