1
|
Zhang J, Li H, Li L, Wu J, Song L, Liu X, Pan Z, Zhou C, Li W, Liu Z, Jiao M, Hu M, Dong Z, Zhang H, Shi B, Wang Y, Wang D, Carter B, Zhao S, Ren G, Zhao Y, Zhang Y. Super RNA Pol II domains enhance minor ZGA through 3D interaction to ensure the integrity of major transcriptional waves in late-ZGA mammals. CELL GENOMICS 2025:100856. [PMID: 40315839 DOI: 10.1016/j.xgen.2025.100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
Zygotic genome activation (ZGA) occurs at distinct stages across mammals, with mice initiating ZGA at the 2-cell stage and bovines and humans activating the process in the 4- to 8-cell stages. RNA polymerase II (RNA Pol II) gradually initiates ZGA in mice, but regulation in late-ZGA species remains unclear. Here, RNA Pol II profiling in bovine embryos identified strong intergenic clusters that boost minor ZGA gene expression via chromatin interactions and are named super RNA Pol II domains (SPDs). CRISPRi perturbation of SPDs in bovine embryos decreases the expression of minor ZGA genes, whereas the knockdown of these genes disrupts major ZGA and embryogenesis. Rapid enhancement of minor ZGA genes also occurs in human embryos. Alternatively, mouse and porcine oocytes precociously express these minor ZGA genes without SPDs. Thus, SPDs appear to be an adaptation in bovine embryos, promoting minor ZGA gene expression to comparable levels as early-ZGA species, illuminating species-specific regulation of ZGA timing.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Hengkuan Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Linmi Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Wu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Linjie Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangyuan Pan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Zhou
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410000, China
| | - Wenying Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Zixiao Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mingyang Hu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Zhenyu Dong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Debao Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Benjamin Carter
- Department of Biochemistry, Purdue University, 175 S University Street, West Lafayette, IN 47907, USA
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
| | - Gang Ren
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yunxia Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Yazhouwan National Laboratory, 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Ning D, Deng Y, Gao T, Yang Y, Chen G, Tian SZ, Zheng M. TF-chRDP: a method for simultaneously capturing transcription factor binding chromatin-associated RNA, DNA and protein. Front Cell Dev Biol 2025; 13:1561540. [PMID: 40123855 PMCID: PMC11925928 DOI: 10.3389/fcell.2025.1561540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Transcription factors (TFs) play a crucial role in the regulation of gene expression and the structural organization of chromatin. They interact with proteins, RNA, and chromatin DNA to exert their functions. Therefore, an efficient and straightforward experimental approach that simultaneously captures the interactions of transcription factors with DNA, RNA, and proteins is essential for studying these regulatory proteins. In this study, we developed a novel method, TF-chRDP (Transcription Factor binding Chromatin-associated RNA, DNA, and Protein), which allows for the concurrent capture of these biomolecules in a single experiment. We enriched chromatin complexes using specific antibodies and divided the chromatin into three fractions: one for DNA library preparation to analyze the genomic binding sites of transcription factors, another for RNA library preparation to investigate the RNA associated with transcription factor binding, and the third for proteomic analysis to identify protein cofactors interacting with transcription factors. We applied this method to study the transcription factor p53 and its associated chromatin complexes. The results demonstrated high specificity in the enrichment of DNA, RNA and proteins. This method provides an efficient tool for simultaneously capturing chromatin-associated RNA, DNA and protein bound to specific TF, making it particularly useful for analyzing the role of protein-DNA-RNA complexes in transcriptional regulation.
Collapse
Affiliation(s)
- Duo Ning
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuqing Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tong Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Gengzhan Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Simon Zhongyuan Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Meizhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Zheng H, Xu Q, Ji D, Yang B, Ji X. CTDP1 and RPB7 stabilize Pol II and permit reinitiation. Nat Commun 2025; 16:2161. [PMID: 40038320 PMCID: PMC11880454 DOI: 10.1038/s41467-025-57513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
The mechanisms governing the termination and subsequent reinitiation of RNA polymerase II (Pol II) remain poorly understood. Here we find that depletion of RPB7 leads to the destabilization of Pol II's largest subunit, RPB1. This destabilization is influenced by the loop regions of RPB7, CDK9, the C-terminal domain (CTD) of RPB1, and its linker region. The stabilization process of RPB1 is regulated by the E3 ubiquitin ligase Cullin 3. Additionally, RPB7 interacts with the phosphatase CTDP1, which is crucial for maintaining RPB1 stability. RPB7 is also vital for the reinitiation of Pol II, engages with RNA processing factors, and is localized to the RNA exit channel of the Pol II complex. The absence of RPB7 compromises RNA processing. We propose that RPB7 recruits CTDP1 to dephosphorylate Pol II, enhancing its stability and facilitating efficient reinitiation, adding an emerging dimension to transcriptional regulation.
Collapse
Affiliation(s)
- Haonan Zheng
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qiqin Xu
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Dexun Ji
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Boqin Yang
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- State Key Laboratory of Gene Function and Modulation Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Mukherjee A, Kapoor M, Shankta K, Fallacaro S, Carter RD, Ratchasanmuang P, Haloush YI, Mir M. A cluster of RNA Polymerase II molecules is stably associated with an active gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637507. [PMID: 39990393 PMCID: PMC11844394 DOI: 10.1101/2025.02.10.637507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In eukaryotic nuclei, transcription is associated with discrete foci of RNA Polymerase II (RNAPII) molecules. How these clusters interact with genes and their impact on transcriptional activity remain heavily debated. Here we take advantage of the naturally occurring increase in transcriptional activity during Zygotic Genome Activation (ZGA) in Drosophila melanogaster embryos to characterize the functional roles of RNAPII clusters in a developmental context. Using single-molecule tracking and lattice light-sheet microscopy, we find that RNAPII cluster formation depends on transcription initiation and that cluster lifetimes are reduced upon transcription elongation. We show that single clusters are stably associated with active gene loci during transcription and that cluster intensities are strongly correlated with transcriptional output. Our data suggest that prior to ZGA, RNAPII clusters prime genes for activation, whereas after ZGA, clusters are composed mostly of elongating molecules at individual genes.
Collapse
Affiliation(s)
- Apratim Mukherjee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Manya Kapoor
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Kareena Shankta
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Roy and Diana Vagelos Program in Life Sciences and Management, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Samantha Fallacaro
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine; Philadelphia, PA 19104, USA
| | - Raymond D. Carter
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Biochemistry, Biophysics, and Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Puttachai Ratchasanmuang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Yara I. Haloush
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Cao YF, Wang H, Sun Y, Tong BB, Shi WQ, Peng L, Zhang YM, Wu YQ, Fu T, Zou HY, Zhang K, Xu LY, Li EM. Nuclear ANLN regulates transcription initiation related Pol II clustering and target gene expression. Nat Commun 2025; 16:1271. [PMID: 39894879 PMCID: PMC11788435 DOI: 10.1038/s41467-025-56645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Anillin (ANLN), a mitotic protein that regulates contractile ring assembly, has been reported as an oncoprotein. However, the function of ANLN in cancer cells, especially in the nucleus, has not been fully understood. Here, we report a role of nuclear ANLN in gene transcriptional regulation. We find that nuclear ANLN directly interacts with the RNA polymerase II (Pol II) large subunit to form transcriptional condensates. ANLN enhances initiated Pol II clustering and promotes Pol II CTD phase separation. Short-term depletion of ANLN alters the chromatin binding and enhancer-mediated transcriptional activity of Pol II. The target genes of ANLN-Pol II axis are involved in oxidoreductase activity, Wnt signaling and cell differentiation. THZ1, a super-enhancer inhibitor, specifically inhibits ANLN-Pol II clustering, target gene expression and esophageal squamous cell carcinoma (ESCC) cell proliferation. Our results reveal the function of nuclear ANLN in transcriptional regulation, providing a theoretical basis for ESCC treatment.
Collapse
Affiliation(s)
- Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hui Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Sun
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bei-Bei Tong
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Wen-Qi Shi
- Department of Plastic Surgery and Burns Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, 515051, Guangdong, China
| | - Liu Peng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yi-Meng Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yu-Qiu Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Teng Fu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hua-Yan Zou
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Li-Yan Xu
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Cancer Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- The Laboratory for Cancer Molecular Biology, Shantou Academy of Medical Sciences, Shantou, 515041, Guangdong, China.
- Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou, 515041, Guangdong, China.
| |
Collapse
|
6
|
Webster CP, Hall B, Crossley OM, Dauletalina D, King M, Lin YH, Castelli LM, Yang ZL, Coldicott I, Kyrgiou-Balli E, Higginbottom A, Ferraiuolo L, De Vos KJ, Hautbergue GM, Shaw PJ, West RJ, Azzouz M. RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD. Life Sci Alliance 2025; 8:e202402757. [PMID: 39638345 PMCID: PMC11629685 DOI: 10.26508/lsa.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
A G4C2 hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models. Therefore, decreasing RAN-DPRs may be of therapeutic benefit in the context of C9ALS/FTD. In this study, we found that C9ALS/FTD patients have reduced expression of the AAA+ family members RuvBL1 and RuvBL2, which have both been implicated in aggregate clearance. We report that overexpression of RuvBL1, but to a greater extent RuvBL2, reduced C9orf72-associated DPRs in a range of in vitro systems including cell lines, primary neurons from the C9-500 transgenic mouse model, and patient-derived iPSC motor neurons. In vivo, we further demonstrated that RuvBL2 overexpression and consequent DPR reduction in our Drosophila model was sufficient to rescue a number of DPR-related motor phenotypes. Thus, modulating RuvBL levels to reduce DPRs may be of therapeutic potential in C9ALS/FTD.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Bradley Hall
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Olivia M Crossley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Dana Dauletalina
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marianne King
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ergita Kyrgiou-Balli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ryan Jh West
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation and Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Zhang Z, Gao Y, Qian Y, Wei B, Jiang K, Sun Z, Zhang F, Yang M, Baldi S, Yu X, Zuo Y, Ren S. The Lyn/RUVBL1 Complex Promotes Colorectal Cancer Liver Metastasis by Regulating Arachidonic Acid Metabolism Through Chromatin Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406562. [PMID: 39665272 PMCID: PMC11792055 DOI: 10.1002/advs.202406562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Liver metastasis is a common cause of death in colorectal cancer (CRC) patients, but epigenetic remodeling and metabolic reprogramming for CRC liver metastasis remain unclear. The study revealed that the Lyn/RUVBL1 complex is highly expressed in CRC and is closely correlated with liver metastasis. On the one hand, ATAC-seq and HiCut suggested that Lyn/RUVBL1 regulates the expression of TRIB3 through the POL II-mediated chromatin conformation of TRIB3 and thus the expression of β-catenin. This promotes the proliferation and migration of CRC through β-catenin-mediated upregulation of MMP9 and VEGF. On the other hand, metabolomics revealed that Lyn/RUVBL1 regulates the expression of PGE2 through the enzyme COX2, thereby promoting arachidonic acid (AA) metabolism. CUT-Tag showed that Lyn/RUVBL1 silencing reduces the H3K27ac level in the COX2 promoter. Then, it is found that COX2 is regulated by the transcription factor FOXA1. Lyn/RUVBL1 modulates AA metabolism by regulating the chromatin accessibility of FOXA1. AA metabolism promotes the metastasis of CRC by affecting β-catenin nuclear translocation and upregulating MMP9 and VEGF. These findings suggest that the Lyn/RUVBL1 complex mediates epigenetic remodeling to regulate the metabolic reprogramming of AA, highlighting its role in promoting the metastasis of CRC.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of General SurgeryThe Second Hospital of Dalian Medical UniversityDalian116023China
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Yina Gao
- Department of General SurgeryThe Second Hospital of Dalian Medical UniversityDalian116023China
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Yuanyuan Qian
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Bowen Wei
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Kexin Jiang
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Zhiwei Sun
- Department of General SurgeryThe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Feifan Zhang
- Department of General SurgeryThe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Mingming Yang
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Salem Baldi
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Xiaoqi Yu
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Yunfei Zuo
- Department of Clinical BiochemistryCollege of Laoratory Medicine, Dalian Medical UniversityDalian116044China
| | - Shuangyi Ren
- Department of General SurgeryThe Second Hospital of Dalian Medical UniversityDalian116023China
| |
Collapse
|
8
|
Xing M, Li Y, Zhang Y, Zhou J, Ma D, Zhang M, Tang M, Ouyang T, Zhang F, Shi X, Sun J, Chen Z, Zhang WJ, Zhang S, Xie X. Paraventricular hypothalamic RUVBL2 neurons suppress appetite by enhancing excitatory synaptic transmission in distinct neurocircuits. Nat Commun 2024; 15:8939. [PMID: 39414808 PMCID: PMC11484884 DOI: 10.1038/s41467-024-53258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
The paraventricular hypothalamus (PVH) is crucial for food intake control, yet the presynaptic mechanisms underlying PVH neurons remain unclear. Here, we show that RUVBL2 in the PVH is significantly reduced during energy deficit, and knockout (KO) of PVH RUVBL2 results in hyperphagic obesity in mice. RUVBL2-expressing neurons in the PVH (PVHRUVBL2) exert the anorexigenic effect by projecting to the arcuate hypothalamus, the dorsomedial hypothalamus, and the parabrachial complex. We further demonstrate that PVHRUVBL2 neurons form the synaptic connections with POMC and AgRP neurons in the ARC. PVH RUVBL2 KO impairs the excitatory synaptic transmission by reducing presynaptic boutons and synaptic vesicles near active zone. Finally, RUVBL2 overexpression in the PVH suppresses food intake and protects against diet induced obesity. Together, this study demonstrates an essential role for PVH RUVBL2 in food intake control, and suggests that modulation of synaptic plasticity could be an effective way to curb appetite and obesity.
Collapse
Affiliation(s)
- Mingming Xing
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yang Li
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Juemou Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Danting Ma
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Mengqi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Minglei Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Ting Ouyang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fumiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaofeng Shi
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Weiping J Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Shuli Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
9
|
Wang L, Nuñez YZ, Kranzler HR, Zhou H, Gelernter J. Whole-exome sequencing study of opioid dependence offers novel insights into the contributions of exome variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.15.24313713. [PMID: 39371181 PMCID: PMC11451610 DOI: 10.1101/2024.09.15.24313713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Opioid dependence (OD) is epidemic in the United States and it is associated with a variety of adverse health effects. Its estimated heritability is ∼50%, and recent genome-wide association studies have identified more than a dozen common risk variants. However, there are no published studies of rare OD risk variants. In this study, we analyzed whole-exome sequencing data from the Yale-Penn cohort, comprising 2,100 participants of European ancestry (EUR; 1,321 OD cases) and 1,790 of African ancestry (AFR; 864 cases). A novel low-frequency variant (rs746301110) in the RUVBL2 gene was identified in EUR ( p =6.59×10 -10 ). Suggestive associations ( p <1×10 -5 ) were observed in TMCO3 in EUR, in NEIL2 and CFAP44 in AFR, and in FAM210B in the cross-ancestry meta-analysis. Gene-based collapsing tests identified SLC22A10 , TMCO3 , FAM90A1 , DHX58 , CHRND , GLDN , PLAT , H1-4 , COL3A1 , GPHB5 and QPCTL as top genes ( p <1×10 -4 ) with most associations attributable to rare variants and driven by the burden of predicted loss-of-function and missense variants. This study begins to fill the gap in our understanding of the genetic architecture of OD, providing insights into the contribution of rare coding variants and potential targets for future functional studies and drug development.
Collapse
|
10
|
Yi W, Dziadowicz SA, Mangano RS, Wang L, McBee J, Frisch SM, Hazlehurst LA, Adjeroh DA, Hu G. Molecular Signatures of CB-6644 Inhibition of the RUVBL1/2 Complex in Multiple Myeloma. Int J Mol Sci 2024; 25:9022. [PMID: 39201707 PMCID: PMC11354775 DOI: 10.3390/ijms25169022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM). In this work, we defined transcriptional signatures corresponding to CB-6644 treatment in MM cells and determined underlying epigenetic changes in terms of chromatin accessibility. CB-6644 upregulated biological processes related to interferon response and downregulated those linked to cell proliferation in MM cells. Transcriptional regulator inference identified E2Fs as regulators for downregulated genes and MED1 and MYC as regulators for upregulated genes. CB-6644-induced changes in chromatin accessibility occurred mostly in non-promoter regions. Footprinting analysis identified transcription factors implied in modulating chromatin accessibility in response to CB-6644 treatment, including ATF4/CEBP and IRF4. Lastly, integrative analysis of transcription responses to various chemical compounds of the molecular signature genes from public gene expression data identified CB-5083, a p97 inhibitor, as a synergistic candidate with CB-6644 in MM cells, but experimental validation refuted this hypothesis.
Collapse
Affiliation(s)
- Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Rachel S. Mangano
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Joseph McBee
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Steven M. Frisch
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA;
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
11
|
Graves D, Akkerman N, Fulham L, Helwer R, Pelka P. Molecular insights into type I interferon suppression and enhanced pathogenicity by species B human adenoviruses B7 and B14. mBio 2024; 15:e0103824. [PMID: 38940561 PMCID: PMC11323573 DOI: 10.1128/mbio.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Human adenoviruses (HAdVs) are small DNA viruses that generally cause mild disease. Certain strains, particularly those belonging to species B HAdVs, can cause severe pneumonia and have a relatively high mortality rate. Little is known about the molecular aspects of how these highly pathogenic species affect the infected cell and how they suppress innate immunity. The present study provides molecular insights into how species B adenoviruses suppress the interferon signaling pathway. Our study shows that these viruses, unlike HAdV-C2, are resistant to type I interferon. This resistance likely arises due to the highly efficient suppression of interferon-stimulated gene expression. Unlike in HAdV-C2, HAdV-B7 and B14 sequester STAT2 and RNA polymerase II from interferon-stimulated gene promoters in infected cells. This results in suppressed interferon- stimulated gene activation. In addition, we show that RuvBL1 and RuvBL2, cofactors important for RNA polymerase II recruitment to promoters and interferon-stimulated gene activation, are redirected to the cytoplasm forming high molecular weight complexes that, likely, are unable to associate with chromatin. Proteomic analysis also identified key differences in the way these viruses affect the host cell, providing insights into species B-associated high pathogenicity. Curiously, we observed that at the level of protein expression changes to the infected cell, HAdV-C2 and B7 were more similar than those of the same species, B7 and B14. Collectively, our study represents the first such study of innate immune suppression by the highly pathogenic HAdV-B7 and B14, laying an important foundation for future investigations.IMPORTANCEHuman adenoviruses form a large family of double-stranded DNA viruses known for a variety of usually mild diseases. Certain strains of human adenovirus cause severe pneumonia leading to much higher mortality and morbidity than most other strains. The reasons for this enhanced pathogenicity are unknown. Our study provides a molecular investigation of how these highly pathogenic strains might inactivate the interferon signaling pathway, highlighting the lack of sensitivity of these viruses to type I interferon in general while providing a global picture of how viral changes in cellular proteins drive worse disease outcomes.
Collapse
Affiliation(s)
- Drayson Graves
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Bao L, Zhu J, Shi T, Jiang Y, Li B, Huang J, Ji X. Increased transcriptional elongation and RNA stability of GPCR ligand binding genes unveiled via RNA polymerase II degradation. Nucleic Acids Res 2024; 52:8165-8183. [PMID: 38842922 DOI: 10.1093/nar/gkae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
RNA polymerase II drives mRNA gene expression, yet our understanding of Pol II degradation is limited. Using auxin-inducible degron, we degraded Pol II's RPB1 subunit, resulting in global repression. Surprisingly, certain genes exhibited increased RNA levels post-degradation. These genes are associated with GPCR ligand binding and are characterized by being less paused and comprising polycomb-bound short genes. RPB1 degradation globally increased KDM6B binding, which was insufficient to explain specific gene activation. In contrast, RPB2 degradation repressed nearly all genes, accompanied by decreased H3K9me3 and SUV39H1 occupancy. We observed a specific increase in serine 2 phosphorylated Pol II and RNA stability for RPB1 degradation-upregulated genes. Additionally, α-amanitin or UV treatment resulted in RPB1 degradation and global gene repression, unveiling subsets of upregulated genes. Our findings highlight the activated transcription elongation and increased RNA stability of signaling genes as potential mechanisms for mammalian cells to counter RPB1 degradation during stress.
Collapse
Affiliation(s)
- Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tingxin Shi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Vogt M, Dudvarski Stankovic N, Cruz Garcia Y, Hofstetter J, Schneider K, Kuybu F, Hauck T, Adhikari B, Hamann A, Rocca Y, Grysczyk L, Martin B, Gebhardt-Wolf A, Wiegering A, Diefenbacher M, Gasteiger G, Knapp S, Saur D, Eilers M, Rosenfeldt M, Erhard F, Vos SM, Wolf E. Targeting MYC effector functions in pancreatic cancer by inhibiting the ATPase RUVBL1/2. Gut 2024; 73:1509-1528. [PMID: 38821858 PMCID: PMC11347226 DOI: 10.1136/gutjnl-2023-331519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.
Collapse
Affiliation(s)
- Markus Vogt
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Nevenka Dudvarski Stankovic
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Yiliam Cruz Garcia
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Katharina Schneider
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Filiz Kuybu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Theresa Hauck
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bikash Adhikari
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Anton Hamann
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yamila Rocca
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Lara Grysczyk
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Benedikt Martin
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Anneli Gebhardt-Wolf
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - Armin Wiegering
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Markus Diefenbacher
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL/CPC-M), Munich, Germany
- Ludwig-Maximilian-Universität München (LMU), Munich, Germany
| | - Georg Gasteiger
- Max Planck Research Group and Institute of Systems Immunology, University of Würzburg, Würzburg, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dieter Saur
- Institute of Translational Cancer Research, TUM School of Medicine and Health, Munich, Germany
| | - Martin Eilers
- Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | | | - Florian Erhard
- Computational Systems Virology and Bioinformatics, Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elmar Wolf
- Cancer Systems Biology Group, Chair of Biochemistry and Molecular Biology, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| |
Collapse
|
14
|
Lodwick JE, Shen R, Erramilli S, Xie Y, Roganowicz K, Kossiakoff AA, Zhao M. Structural Insights into the Roles of PARP4 and NAD + in the Human Vault Cage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601040. [PMID: 38979142 PMCID: PMC11230398 DOI: 10.1101/2024.06.27.601040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Vault is a massive ribonucleoprotein complex found across Eukaryota. The major vault protein (MVP) oligomerizes into an ovular cage, which contains several minor vault components (MVCs) and is thought to transport transiently bound "cargo" molecules. Vertebrate vaults house a poly (ADP-ribose) polymerase (known as PARP4 in humans), which is the only MVC with known enzymatic activity. Despite being discovered decades ago, the molecular basis for PARP4's interaction with MVP remains unclear. In this study, we determined the structure of the human vault cage in complex with PARP4 and its enzymatic substrate NAD + . The structures reveal atomic-level details of the protein-binding interface, as well as unexpected NAD + -binding pockets within the interior of the vault cage. In addition, proteomics data show that human vaults purified from wild-type and PARP4-depleted cells interact with distinct subsets of proteins. Our results thereby support a model in which PARP4's specific incorporation into the vault cage helps to regulate vault's selection of cargo and its subcellular localization. Further, PARP4's proximity to MVP's NAD + -binding sites could support its enzymatic function within the vault.
Collapse
|
15
|
Serra-Bardenys G, Blanco E, Escudero-Iriarte C, Serra-Camprubí Q, Querol J, Pascual-Reguant L, Morancho B, Escorihuela M, Tissera NS, Sabé A, Martín L, Segura-Bayona S, Verde G, Aiese Cigliano R, Millanes-Romero A, Jerónimo C, Cebrià-Costa JP, Nuciforo P, Simonetti S, Viaplana C, Dienstmann R, Oliveira M, Peg V, Stracker TH, Arribas J, Canals F, Villanueva J, Di Croce L, García de Herreros A, Tian TV, Peiró S. LOXL2-mediated chromatin compaction is required to maintain the oncogenic properties of triple-negative breast cancer cells. FEBS J 2024; 291:2423-2448. [PMID: 38451841 DOI: 10.1111/febs.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).
Collapse
Affiliation(s)
- Gemma Serra-Bardenys
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Institut Bonanova FP Sanitaria, Consorci Mar Parc de Salut de Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura Pascual-Reguant
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Anna Sabé
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Luna Martín
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Gaetano Verde
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, Spain
| | - Celia Jerónimo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institut de Recherches Cliniques de Montréal, Canada
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Mafalda Oliveira
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Vicente Peg
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Travis H Stracker
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
16
|
Ryu K, Park G, Cho WK. Emerging insights into transcriptional condensates. Exp Mol Med 2024; 56:820-826. [PMID: 38658705 PMCID: PMC11059374 DOI: 10.1038/s12276-024-01228-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Eukaryotic transcription, a fundamental process that governs cell-specific gene expression, has long been the subject of extensive investigations in the fields of molecular biology, biochemistry, and structural biology. Recent advances in microscopy techniques have led to a fascinating concept known as "transcriptional condensates." These dynamic assemblies are the result of a phenomenon called liquid‒liquid phase separation, which is driven by multivalent interactions between the constituent proteins in cells. The essential proteins associated with transcription are concentrated in transcriptional condensates. Recent studies have shed light on the temporal dynamics of transcriptional condensates and their potential role in enhancing the efficiency of transcription. In this article, we explore the properties of transcriptional condensates, investigate how they evolve over time, and evaluate the significant impact they have on the process of transcription. Furthermore, we highlight innovative techniques that allow us to manipulate these condensates, thus demonstrating their responsiveness to cellular signals and their connection to transcriptional bursting. As our understanding of transcriptional condensates continues to grow, they are poised to revolutionize our understanding of eukaryotic gene regulation.
Collapse
Affiliation(s)
- Kwangmin Ryu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Gunhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
17
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Cheng R, Zhou S, K C R, Lizarazo S, Mouli L, Jayanth A, Liu Q, Van Bortle K. A Combinatorial Regulatory Platform Determines Expression of RNA Polymerase III Subunit RPC7α ( POLR3G) in Cancer. Cancers (Basel) 2023; 15:4995. [PMID: 37894362 PMCID: PMC10605170 DOI: 10.3390/cancers15204995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
RNA polymerase III (Pol III) subunit RPC7α, which is encoded by POLR3G in humans, has been linked to both tumor growth and metastasis. Accordantly, high POLR3G expression is a negative prognostic factor in multiple cancer subtypes. To date, the mechanisms underlying POLR3G upregulation have remained poorly defined. We performed a large-scale genomic survey of mRNA and chromatin signatures to predict drivers of POLR3G expression in cancer. Our survey uncovers positive determinants of POLR3G expression, including a gene-internal super-enhancer bound with multiple transcription factors (TFs) that promote POLR3G expression, as well as negative determinants that include gene-internal DNA methylation, retinoic-acid induced differentiation, and MXD4-mediated disruption of POLR3G expression. We show that novel TFs identified in our survey, including ZNF131 and ZNF207, functionally enhance POLR3G expression, whereas MXD4 likely obstructs MYC-driven expression of POLR3G and other growth-related genes. Integration of chromatin architecture and gene regulatory signatures identifies additional factors, including histone demethylase KDM5B, as likely influencers of POLR3G gene activity. Taken together, our findings support a model in which POLR3G expression is determined with multiple factors and dynamic regulatory programs, expanding our understanding of the circuitry underlying POLR3G upregulation and downstream consequences in cancer.
Collapse
Affiliation(s)
- Ruiying Cheng
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (R.C.); (S.Z.)
| | - Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (R.C.); (S.Z.)
| | - Rajendra K C
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Leela Mouli
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (A.J.)
| | - Anshita Jayanth
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (A.J.)
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA;
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (R.C.); (S.Z.)
- School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (L.M.); (A.J.)
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Huang J, Bao L, Zhu J, Ji X. Protocol for quantitative analysis of RNA 3'-end processing induced by disassociated subunits using chromatin-associated RNA-seq data. STAR Protoc 2023; 4:102356. [PMID: 37329510 PMCID: PMC10300391 DOI: 10.1016/j.xpro.2023.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/19/2023] Open
Abstract
Sequencing chromatin-associated RNA using libraries from the chromatin fraction makes it possible to characterize RNA processing driven by disassociated subunits. Here, we present an experimental strategy and computational pipeline for processing chromatin-associated RNA-seq data to detect and quantify readthrough transcripts. We describe steps for constructing degron mouse embryonic stem cells, detecting readthrough genes, data processing, and data analysis. This protocol can be adapted to various biological scenarios and other types of nascent RNA-seq, such as TT-seq. For complete details on the use and execution of this protocol, please refer to Li et al. (2023).1.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Tian K, Wang R, Huang J, Wang H, Ji X. Subcellular localization shapes the fate of RNA polymerase III. Cell Rep 2023; 42:112941. [PMID: 37556328 DOI: 10.1016/j.celrep.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
RNA polymerase III (Pol III) plays a vital role in transcription and as a viral-DNA sensor, but how it is assembled and distributed within cells remains poorly understood. Here, we show that Pol III is assembled with chaperones in the cytoplasm and forms transcription-dependent protein clusters upon transport into the nucleus. The largest subunit (RPC1) depletion through an auxin-inducible degron leads to rapid degradation and disassembly of Pol III complex in the nucleus and cytoplasm, respectively. This generates a pool of partially assembled Pol III intermediates, which can be rapidly mobilized into the nucleus upon the restoration of RPC1. Our study highlights the critical role of subcellular localization in determining Pol III's fate and provides insight into the dynamic regulation of nuclear Pol III levels and the origin of cytoplasmic Pol III complexes involved in mediating viral immunity.
Collapse
Affiliation(s)
- Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Tian Y, Dong D, Wang Z, Wu L, Park JY, Wei GH, Wang L. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression. Am J Hum Genet 2023; 110:1289-1303. [PMID: 37541187 PMCID: PMC10432188 DOI: 10.1016/j.ajhg.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Genome-wide association studies along with expression quantitative trait locus (eQTL) mapping have identified hundreds of single-nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9,133 guide RNAs (gRNAs) to cover 2,166 candidate SNP loci implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in screening (FDR < 0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (p value = 1.2 × 10-16 and 3.2 × 10-7, respectively). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing confirmed that the rs60464856 G allele leads to elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where the HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in a xenograft mouse model. Gene-set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. Increased expression of RUVBL1 and activation of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Dandan Dong
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lang Wu
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine, Shanghai Medical College of Fudan University, Shanghai, China; Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China; Disease Networks Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
22
|
Tian Y, Dong D, Wang Z, Wu L, Park JY, Wei GH, Wang L. Combined CRISPRi and proteomics screening reveal a cohesin-CTCF-bound allele contributing to increased expression of RUVBL1 and prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524405. [PMID: 36711639 PMCID: PMC9882314 DOI: 10.1101/2023.01.18.524405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genome-wide association studies along with expression quantitative trait loci (eQTL) mapping have identified hundreds of single nucleotide polymorphisms (SNPs) and their target genes in prostate cancer (PCa), yet functional characterization of these risk loci remains challenging. To screen for potential regulatory SNPs, we designed a CRISPRi library containing 9133 guide RNAs (gRNAs) to target 2,166 candidate SNP sites implicated in PCa and identified 117 SNPs that could regulate 90 genes for PCa cell growth advantage. Among these, rs60464856 was covered by multiple gRNAs significantly depleted in the screening (FDR<0.05). Pooled SNP association analysis in the PRACTICAL and FinnGen cohorts showed significantly higher PCa risk for the rs60464856 G allele (pvalue=1.2E-16 and 3.2E-7). Subsequent eQTL analysis revealed that the G allele is associated with increased RUVBL1 expression in multiple datasets. Further CRISPRi and xCas9 base editing proved the rs60464856 G allele leading to an elevated RUVBL1 expression. Furthermore, SILAC-based proteomic analysis demonstrated allelic binding of cohesin subunits at the rs60464856 region, where HiC dataset showed consistent chromatin interactions in prostate cell lines. RUVBL1 depletion inhibited PCa cell proliferation and tumor growth in xenograft mouse model. Gene set enrichment analysis suggested an association of RUVBL1 expression with cell-cycle-related pathways. An increased expression of RUVBL1 and activations of cell-cycle pathways were correlated with poor PCa survival in TCGA datasets. Together, our CRISPRi screening prioritized about one hundred regulatory SNPs essential for prostate cell proliferation. In combination with proteomics and functional studies, we characterized the mechanistic role of rs60464856 and RUVBL1 in PCa progression.
Collapse
|
23
|
Li Y, Huang J, Bao L, Zhu J, Duan W, Zheng H, Wang H, Jiang Y, Liu W, Zhang M, Yu Y, Yi C, Ji X. RNA Pol II preferentially regulates ribosomal protein expression by trapping disassociated subunits. Mol Cell 2023; 83:1280-1297.e11. [PMID: 36924766 DOI: 10.1016/j.molcel.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/12/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023]
Abstract
RNA polymerase II (RNA Pol II) has been recognized as a passively regulated multi-subunit holoenzyme. However, the extent to which RNA Pol II subunits might be important beyond the RNA Pol II complex remains unclear. Here, fractions containing disassociated RPB3 (dRPB3) were identified by size exclusion chromatography in various cells. Through a unique strategy, i.e., "specific degradation of disassociated subunits (SDDS)," we demonstrated that dRPB3 functions as a regulatory component of RNA Pol II to enable the preferential control of 3' end processing of ribosomal protein genes directly through its N-terminal domain. Machine learning analysis of large-scale genomic features revealed that the little elongation complex (LEC) helps to specialize the functions of dRPB3. Mechanistically, dRPB3 facilitates CBC-PCF11 axis activity to increase the efficiency of 3' end processing. Furthermore, RPB3 is dynamically regulated during development and diseases. These findings suggest that RNA Pol II gains specific regulatory functions by trapping disassociated subunits in mammalian cells.
Collapse
Affiliation(s)
- Yuanjun Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wenjia Duan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weiwei Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiling Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Yu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Ren Z, Chen AJ, Zong Q, Du Z, Guo Q, Liu T, Chen W, Gao L. Microbiome Signature of Endophytes in Wheat Seed Response to Wheat Dwarf Bunt Caused by Tilletia controversa Kühn. Microbiol Spectr 2023; 11:e0039022. [PMID: 36625645 PMCID: PMC9927297 DOI: 10.1128/spectrum.00390-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa. Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen's teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen (T. controversa) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen (T. controversa) infection.
Collapse
Affiliation(s)
- Zhaoyu Ren
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, People’s Republic of China
| | - Qianqian Zong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qingyuan Guo
- Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|