1
|
Wang J, Wu L, Tian Z, Chen J. Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncol Lett 2025; 29:307. [PMID: 40337608 PMCID: PMC12056481 DOI: 10.3892/ol.2025.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/04/2025] [Indexed: 05/09/2025] Open
Abstract
HNSCC includes nasopharyngeal, laryngeal and oral cancers, and its pathogenesis is influenced by various factors. As an essential part of the ubiquitin (Ub)-proteasome system (UPS), deubiquitinating enzymes (DUBs) maintain the homeostasis of Ub molecules and influence the physiological functions of cells and disease processes by removing ubiquitinated proteins. Accumulating evidence has confirmed that the aberrant expression of DUBs is involved in cell proliferation, metastasis, and apoptosis during the development of HNSCC, with some acting as oncogenes and others as tumor-suppressor genes. In this review, the DUBs implicated in HNSCC were summarized and the mechanisms underlying abnormal DUBs expression in signaling pathways were discussed. In addition, given the important role of DUBs in tumorigenesis, recent studies were reviewed and agonists and inhibitors of DUBs were summarized to identify more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhifeng Tian
- Cancer Center, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
2
|
Kazi NH, Klink N, Gallant K, Kipka GM, Gersch M. Chimeric deubiquitinase engineering reveals structural basis for specific inhibition of the mitophagy regulator USP30. Nat Struct Mol Biol 2025:10.1038/s41594-025-01534-4. [PMID: 40325251 DOI: 10.1038/s41594-025-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/12/2025] [Indexed: 05/07/2025]
Abstract
The mitochondrial deubiquitinase ubiquitin-specific protease (USP) 30 negatively regulates PINK1-parkin-driven mitophagy. Whether enhanced mitochondrial quality control through inhibition of USP30 can protect dopaminergic neurons is currently being explored in a clinical trial for Parkinson's disease. However, the molecular basis for specific inhibition of USP30 by small molecules has remained elusive. Here we report the crystal structure of human USP30 in complex with a specific inhibitor, enabled by chimeric protein engineering. Our study uncovers how the inhibitor extends into a cryptic pocket facilitated by a compound-induced conformation of the USP30 switching loop. Our work underscores the potential of exploring induced pockets and conformational dynamics to obtain deubiquitinase inhibitors and identifies residues facilitating specific inhibition of USP30. More broadly, we delineate a conceptual framework for specific USP deubiquitinase inhibition based on a common ligandability hotspot in the Leu73 ubiquitin binding site and on diverse compound extensions. Collectively, our work establishes a generalizable chimeric protein-engineering strategy to aid deubiquitinase crystallization and enables structure-based drug design with relevance to neurodegeneration.
Collapse
Affiliation(s)
- Nafizul Haque Kazi
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kai Gallant
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
3
|
Liu P, Chen Z, Guo Y, He Q, Pan C. Recent advances in small molecule inhibitors of deubiquitinating enzymes. Eur J Med Chem 2025; 287:117324. [PMID: 39908798 DOI: 10.1016/j.ejmech.2025.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Proteins play a pivotal role in maintaining cellular homeostasis. Their degradation primarily orchestrated through the ubiquitin-proteasome system (UPS) and cellular autophagy. Dysfunction of the UPS is associated with various human diseases, including cancer, autoimmune disorders, and neurodegenerative conditions. Consequently, the UPS has emerged as a promising therapeutic target. Deubiquitinases (DUBs) have garnered significant attention as potential targets for therapeutic intervention due to their role in modulating protein stability and function. This review focuses on recent advancements of DUBs, particularly their relevance in the UPS and their potential as drug targets. Notably, inhibitors targeting specific DUBs, such as USP1, USP7, USP14, and USP30 have shown promise in preclinical and clinical studies for cancer therapy. Additionally, DUB inhibitors have been involved in novel therapeutic approaches lately, including as targets for proteolysis-targeting chimeras (PROTACs) or as tools in deubiquitinase-targeting chimeras (DUBTACs).
Collapse
Affiliation(s)
- Pengwei Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Zhengyang Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Yiting Guo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| |
Collapse
|
4
|
Zimmermann T, Feng J, Fischer S, de Campos LJ, Pinheiro FR, Sotriffer C, Conda-Sheridan M, Decker M. Structural Optimization of Covalent Inhibitors for Deubiquitinase ChlaDUB1 of Chlamydia trachomatis as Antibiotic Agents. J Med Chem 2025; 68:5400-5425. [PMID: 40020077 DOI: 10.1021/acs.jmedchem.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The cysteine protease ChlaDUB1 has proven to be a promising new target for antichlamydial therapy. This deubiquitinase manipulates protein homeostasis of the infected human host cell, concealing the chlamydial infection. In this study, we optimized a previously identified scaffold of covalently acting ChlaDUB1 inhibitors using a combination of docking, synthesis and in vitro enzymatic screening. This led to a reduction of the inhibitor size while simultaneously improving activity at ChlaDUB1 to 1 μM and enhancing the rate of target inhibition. We identified a hitherto unobserved inhibition mechanism at ChlaDUB1 and narrowed it down to a particular substitution pattern by chemical derivatization. Finally, both antichlamydial activity and cytotoxicity of the lead compounds were determined. Hereby, we present comprehensive structure-activity relationships and detailed kinetic studies that identified a small molecule lead compound for specific antichlamydial therapy, which showed drastically lowered cytotoxicity compared to previously described compounds.
Collapse
Affiliation(s)
- Thomas Zimmermann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Simon Fischer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Felipe Ramos Pinheiro
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Park HB, Kim H, Han D. In-Depth Proteome Profiling of the Hippocampus of LDLR Knockout Mice Reveals Alternation in Synaptic Signaling Pathway. Proteomics 2025; 25:e202400152. [PMID: 39548955 DOI: 10.1002/pmic.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
The low-density lipoprotein receptor (LDLR) is a major apolipoprotein receptor that regulates cholesterol homeostasis. LDLR deficiency is associated with cognitive impairment by the induction of synaptopathy in the hippocampus. Despite the close relationship between LDLR and neurodegenerative disorders, proteomics research for protein profiling in the LDLR knockout (KO) model remains insufficient. Therefore, understanding LDLR KO-mediated differential protein expression within the hippocampus is crucial for elucidating a role of LDLR in neurodegenerative disorders. In this study, we conducted first-time proteomic profiling of hippocampus tissue from LDLR KO mice using tandem mass tag (TMT)-based MS analysis. LDLR deficiency induces changes in proteins associated with the transport of diverse molecules, and activity of kinase and catalyst within the hippocampus. Additionally, significant alterations in the expression of components in the major synaptic pathways were found. Furthermore, these synaptic effects were verified using a data-independent acquisition (DIA)-based proteomic method. Our data will serve as a valuable resource for further studies to discover the molecular function of LDLR in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, South Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Vuorinen A, Kennedy CR, McPhie KA, McCarthy W, Pettinger J, Skehel JM, House D, Bush JT, Rittinger K. Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation. Commun Chem 2025; 8:12. [PMID: 39809917 PMCID: PMC11732987 DOI: 10.1038/s42004-025-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.
Collapse
Affiliation(s)
- Aini Vuorinen
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Cassandra R Kennedy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katherine A McPhie
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - William McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | | | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Stevenage, Hertfordshire, UK.
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
Ficarro SB, Marto ZH, Girardi NM, Deng D, Maisonet IJ, Adelmant G, Fleming LE, Sharafi M, Tavares I, Zhao A, Kim H, Seo HS, Dhe-Paganon S, Buhrlage SJ, Marto JA. Open-source electrophilic fragment screening platform to identify chemical starting points for UCHL1 covalent inhibitors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100198. [PMID: 39622293 DOI: 10.1016/j.slasd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Target-based screening of covalent fragment libraries with mass spectrometry has emerged as a powerful strategy to identify chemical starting points for small molecule inhibitors or find new binding pockets on proteins of interest. These libraries span diverse chemical space with a modest number of compounds. Screening covalent fragments against purified protein targets reduces the demands on the mass spectrometer with respect to absolute throughput, detection limit, and dynamic range. Given these relaxed analytical requirements, we sought to develop an open-source, medium-throughput mass spectrometry system for target-based covalent fragment screening. Our platform comprises automated, dual LC desalting columns integrated with electrospray ionization for rapid sample introduction and mass spectrometry detection. The system is operated through a simple Python graphical user interface running on commodity microcontroller boards which allow integration with diverse liquid chromatography and mass spectrometry instruments. We provide scripts for fragment pooling, construction of sample batches, along with routines for data processing and visualization. The system enables primary screening of ∼10,000 covalent fragments per day in pooled format. In a proof-of-concept study we executed primary and secondary screens to identify 27 hit fragments against UCHL1, a deubiquitinating enzyme that is emerging as a drug target of interest across multiple clinical indications. We validated and triaged these covalent compounds through a series of orthogonal biochemical and chemoproteomic assays. The most promising chloroacetamide covalent fragment inhibited UCHL1 activity in vitro (IC50 < 5 µM) and exhibited dose-dependent binding along with good selectivity against 57 cellular DUBs as quantified by activity-based protein profiling.
Collapse
Affiliation(s)
- Scott B Ficarro
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zachary H Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicholas M Girardi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Dingyu Deng
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabella Jaen Maisonet
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura E Fleming
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mona Sharafi
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Isidoro Tavares
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew Zhao
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - HyoJeon Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Chemical Biology Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology and the Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Ghorbani F, You S, Grabovyi GA, Hong M, Lindsey G, Chatterjee AK, Bollong MJ. Scalable Thiol Reactivity Profiling Identifies Azetidinyl Oxadiazoles as Cysteine-Targeting Electrophiles. J Am Chem Soc 2024; 146:32333-32342. [PMID: 39541547 PMCID: PMC11995717 DOI: 10.1021/jacs.4c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cysteine reactive groups are a mainstay in the design of covalent drugs and probe molecules, yet only a handful of electrophiles are routinely used to target this amino acid. Here, we report the development of scalable thiol reactivity (STRP), a method which enables the facile interrogation of large chemical libraries for intrinsic reactivity with cysteine. High throughput screening using STRP identified the azetidinyl oxadiazole as a moiety that selectively reacts with cysteine through a ring opening-based mechanism, capable of covalently engaging cysteine residues broadly across the human proteome. We show the utility of this reactive group with the discovery of an azetidinyl oxadiazole containing a small molecule that augments the catalytic activity of the deubiquitinase UCHL1 in vitro and in cells by covalently modifying a cysteine distal to its enzymatic active site. This study adds a novel cysteine targeting group to the electrophilic lexicon and provides robust methodology to rapidly surveil libraries for reactivity with cysteine.
Collapse
Affiliation(s)
| | - Shaochen You
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Gennadii A. Grabovyi
- Calibr-Skaggs Institute for Innovative Medicines, Scripps Research, San Diego, CA, USA 92037
| | - Mannkyu Hong
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Garrett Lindsey
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
| | - Arnab K. Chatterjee
- Department of Chemistry, Scripps Research, San Diego, CA, USA 92037
- Calibr-Skaggs Institute for Innovative Medicines, Scripps Research, San Diego, CA, USA 92037
| | | |
Collapse
|
10
|
Qin B, Chen X, Wang F, Wang Y. DUBs in Alzheimer's disease: mechanisms and therapeutic implications. Cell Death Discov 2024; 10:475. [PMID: 39562545 DOI: 10.1038/s41420-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis. DUBs specifically remove ubiquitin tags from proteins marked for degradation, thereby averting their proteasomal breakdown. Several DUBs have demonstrated their capacity to regulate the levels of Aβ and Tau by modulating their degree of ubiquitination, underscoring their potential as therapeutic targets for AD. In this context, we present a comprehensive review of AD-associated DUBs and elucidate their physiological roles. Moreover, we delve into the current advancements in developing inhibitors targeting these DUBs, including the determination of cocrystal structures with their respective targets. Additionally, we assess the therapeutic efficacy of these inhibitors in AD, aiming to establish a theoretical foundation for future AD treatments.
Collapse
Affiliation(s)
- Biying Qin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaodong Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China.
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, Hebei, China.
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, Shandong, China.
| |
Collapse
|
11
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
12
|
Zhang M, Li J, Liu S, Zhou F, Zhang L. UCHL5 is a putative prognostic marker in renal cell carcinoma: a study of UCHL family. MOLECULAR BIOMEDICINE 2024; 5:28. [PMID: 39034372 PMCID: PMC11265068 DOI: 10.1186/s43556-024-00192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
A macroscopic perspective is indispensable for understanding the intricate relationship between deubiquitinases and tumorigenesis. Proteomics has been proposed as a viable approach for elucidating the complex role of deubiquitylation in cellular progression. Instead of studying the function of a single ubiquitinase, research on a deubiquitinase family with similar catalytic core(s) may provide a new perspective for the pathological understanding of cancer. The Ubiquitin C-terminal hydrolase L (UCHL) family consists of four members: UCHL1, UCHL3, UCHL5, and BRAC1 associated protein-1 (BAP1), and they have been implicated in tumorigenesis and metastasis. Some members are considered hallmarks of intracranial lesions, colon cancer, chromatin remodeling, and histone stability. The present study uncovered an unknown correlation between the UCHL family and renal cancer. We discovered that UCHLs exhibit diverse regulatory effects in renal cancer, establishing connections between the renal cancer and truncated gene mutations, mitochondrial energetic metastasis, immune cell infiltration, and chromosomal stability of UCHLs family. Notably, we found that the increase of UCHL5 expression in renal cancer cells decreases the antigen processing and presentation of RCC tumor-infiltrating B cells. Further research identified that the expression of UCHL5 in RCC tumors is correlated with transport proteins, which led us to find that the abundance of UCHL5 in the blood of late-stage renal cell cancer patients is upregulated from 18 ng/L to 500 ng/L. Therefore, we propose that the abundance of UCHL5 in patients' blood can be a possible indicator of poor prognosis for renal cell cancer.
Collapse
Affiliation(s)
- Mengdi Zhang
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jingxian Li
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Sijia Liu
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310058, PR China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, PR China
| | - Long Zhang
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
13
|
Zimmermann T, Feng J, de Campos LJ, Knight LA, Schlötzer J, Ramirez YA, Schwickert K, Zehe M, Adler TB, Schirmeister T, Kisker C, Sotriffer C, Conda-Sheridan M, Decker M. Structure-Based Design and Synthesis of Covalent Inhibitors for Deubiquitinase and Acetyltransferase ChlaDUB1 of Chlamydia trachomatis. J Med Chem 2024; 67:10710-10742. [PMID: 38897928 DOI: 10.1021/acs.jmedchem.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Upon infection by an intracellular pathogen, host cells activate apoptotic pathways to limit pathogen replication. Consequently, efficient proliferation of the obligate intracellular pathogen Chlamydia trachomatis, a major cause of trachoma and sexually transmitted diseases, depends on the suppression of host cell apoptosis. C. trachomatis secretes deubiquitinase ChlaDUB1 into the host cell, leading among other interactions to the stabilization of antiapoptotic proteins and, thus, suppression of host cell apoptosis. Targeting the bacterial effector protein may, therefore, lead to new therapeutic possibilities. To explore the active site of ChlaDUB1, an iterative cycle of computational docking, synthesis, and enzymatic screening was applied with the aim of lead structure development. Hereby, covalent inhibitors were developed, which show enhanced inhibition with a 22-fold increase in IC50 values compared to previous work. Comprehensive insights into the binding prerequisites to ChlaDUB1 are provided, establishing the foundation for an additional specific antichlamydial therapy by small molecules.
Collapse
Affiliation(s)
- Thomas Zimmermann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Jiachen Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Luana Janaína de Campos
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Lindsey A Knight
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jan Schlötzer
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-Universität Würzburg (JMU), 97080 Wurzburg, Germany
| | - Yesid A Ramirez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Markus Zehe
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Thomas B Adler
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, Julius-Maximilians-Universität Würzburg (JMU), 97080 Wurzburg, Germany
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg (JMU), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
14
|
Xu Z, Zhang N, Shi L. Potential roles of UCH family deubiquitinases in tumorigenesis and chemical inhibitors developed against them. Am J Cancer Res 2024; 14:2666-2694. [PMID: 39005671 PMCID: PMC11236784 DOI: 10.62347/oege2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) are a large group of proteases that reverse ubiquitination process and maintain protein homeostasis. The DUBs have been classified into seven subfamilies according to their primary sequence and structural similarity. As a small subfamily of DUBs, the ubiquitin C-terminal hydrolases (UCHs) subfamily only contains four members including UCHL1, UCHL3, UCHL5, and BRCA1-associated protein-1 (BAP1). Despite sharing the deubiquitinase activity with a similar catalysis mechanism, the UCHs exhibit distinctive biological functions which are mainly determined by their specific subcellular localization and partner substrates. Besides, growing evidence indicates that the UCH enzymes are involved in human malignancies. In this review, the structural information and biological functions of the UCHs are briefly described. Meanwhile, the roles of these enzymes in tumorigenesis and the discovered inhibitors against them are also summarized to give an insight into the cancer therapy with the potential alternative strategy.
Collapse
Affiliation(s)
- Zhuo Xu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
- University of The Chinese Academy of Sciences19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
15
|
Mondal M, Cao F, Conole D, Auner HW, Tate EW. Discovery of potent and selective activity-based probes (ABPs) for the deubiquitinating enzyme USP30. RSC Chem Biol 2024; 5:439-446. [PMID: 38725909 PMCID: PMC11078216 DOI: 10.1039/d4cb00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024] Open
Abstract
Ubiquitin-specific protease 30 (USP30) is a deubiquitinating enzyme (DUB) localized at the mitochondrial outer membrane and involved in PINK1/Parkin-mediated mitophagy, pexophagy, BAX/BAK-dependent apoptosis, and IKKβ-USP30-ACLY-regulated lipogenesis/tumorigenesis. A USP30 inhibitor, MTX652, has recently entered clinical trials as a potential treatment for mitochondrial dysfunction. Small molecule activity-based probes (ABPs) for DUBs have recently emerged as powerful tools for in-cell inhibitor screening and DUB activity analysis, and here, we report the first small molecule ABPs (IMP-2587 and IMP-2586) which can profile USP30 activity in cells. Target engagement studies demonstrate that IMP-2587 and IMP-2586 engage active USP30 at nanomolar concentration after only 10 min incubation time in intact cells, dependent on the presence of the USP30 catalytic cysteine. Interestingly, proteomics analyses revealed that DESI1 and DESI2, small ubiquitin-related modifier (SUMO) proteases, can also be engaged by these probes, further suggesting a novel approach to develop DESI ABPs.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Holger W Auner
- Department of Immunology and Inflammation, Imperial College London Du Cane Road London W12 0NN UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
16
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
17
|
Schmidt M, Grethe C, Recknagel S, Kipka GM, Klink N, Gersch M. N-Cyanopiperazines as Specific Covalent Inhibitors of the Deubiquitinating Enzyme UCHL1. Angew Chem Int Ed Engl 2024; 63:e202318849. [PMID: 38239128 DOI: 10.1002/anie.202318849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Cyanamides have emerged as privileged scaffolds in covalent inhibitors of deubiquitinating enzymes (DUBs). However, many compounds with a cyanopyrrolidine warhead show cross-reactivity toward small subsets of DUBs or toward the protein deglycase PARK7/DJ-1, hampering their use for the selective perturbation of a single DUB in living cells. Here, we disclose N'-alkyl,N-cyanopiperazines as structures for covalent enzyme inhibition with exceptional specificity for the DUB UCHL1 among 55 human deubiquitinases and with effective target engagement in cells. Notably, transitioning from 5-membered pyrrolidines to 6-membered heterocycles eliminated PARK7 binding and introduced context-dependent reversibility of the isothiourea linkage to the catalytic cysteine of UCHL1. Compound potency and specificity were analysed by a range of biochemical assays and with a crystal structure of a cyanopiperazine in covalent complex with UCHL1. The structure revealed a compound-induced conformational restriction of the cross-over loop, which underlies the observed inhibitory potencies. Through the rationalization of specificities of different cyanamides, we introduce a framework for the investigation of protein reactivity of bioactive nitriles of this compound class. Our results represent an encouraging case study for the refining of electrophilic compounds into chemical probes, emphasizing the potential to engineer specificity through subtle chemical modifications around the warhead.
Collapse
Affiliation(s)
- Mirko Schmidt
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Christian Grethe
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| |
Collapse
|
18
|
Zhang A, Zhang H, Wang R, He H, Song B, Song R. Bactericidal bissulfone B 7 targets bacterial pyruvate kinase to impair bacterial biology and pathogenicity in plants. SCIENCE CHINA. LIFE SCIENCES 2024; 67:391-402. [PMID: 37987940 DOI: 10.1007/s11427-023-2449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 11/22/2023]
Abstract
The prevention and control of rice bacterial leaf blight (BLB) disease has not yet been achieved due to the lack of effective agrochemicals and available targets. Herein, we develop a series of novel bissulfones and a novel target with a unique mechanism to address this challenge. The developed bissulfones can control Xanthomonas oryzae pv. oryzae (Xoo), and 2-(bis(methylsulfonyl)methylene)-N-(4-chlorophenyl) hydrazine-1-carboxamide (B7) is more effective than the commercial drugs thiodiazole copper (TC) and bismerthiazol (BT). Pyruvate kinase (PYK) in Xoo has been identified for the first time as the target protein of our bissulfone B7. PYK modulates bacterial virulence via a CRP-like protein (Clp)/two-component system regulatory protein (regR) axis. The elucidation of this pathway facilitates the use of B7 to reduce PYK expression at the transcriptional level, block PYK activity at the protein level, and impair the interaction within the PYK-Clp-regR complex via competitive inhibition, thereby attenuating bacterial biology and pathogenicity. This study offers insights into the molecular and mechanistic aspects underlying anti-Xoo strategies that target PYK. We believe that these valuable discoveries will be used for bacterial disease control in the future.
Collapse
Affiliation(s)
- Awei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Haizhen Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ronghua Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hongfu He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Buneeva O, Medvedev A. Ubiquitin Carboxyl-Terminal Hydrolase L1 and Its Role in Parkinson's Disease. Int J Mol Sci 2024; 25:1303. [PMID: 38279302 PMCID: PMC10816476 DOI: 10.3390/ijms25021303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), also known as Parkinson's disease protein 5, is a highly expressed protein in the brain. It plays an important role in the ubiquitin-proteasome system (UPS), where it acts as a deubiquitinase (DUB) enzyme. Being the smallest member of the UCH family of DUBs, it catalyzes the reaction of ubiquitin precursor processing and the cleavage of ubiquitinated protein remnants, thus maintaining the level of ubiquitin monomers in the brain cells. UCHL1 mutants, containing amino acid substitutions, influence catalytic activity and its aggregability. Some of them protect cells and transgenic mice in toxin-induced Parkinson's disease (PD) models. Studies of putative protein partners of UCHL1 revealed about sixty individual proteins located in all major compartments of the cell: nucleus, cytoplasm, endoplasmic reticulum, plasma membrane, mitochondria, and peroxisomes. These include proteins related to the development of PD, such as alpha-synuclein, amyloid-beta precursor protein, ubiquitin-protein ligase parkin, and heat shock proteins. In the context of the catalytic paradigm, the importance of these interactions is not clear. However, there is increasing understanding that UCHL1 exhibits various effects in a catalytically independent manner through protein-protein interactions. Since this protein represents up to 5% of the soluble protein in the brain, PD-related changes in its structure will have profound effects on the proteomes/interactomes in which it is involved. Growing evidence is accumulating that the role of UCHL1 in PD is obviously determined by a balance of canonic catalytic activity and numerous activity-independent protein-protein interactions, which still need better characterization.
Collapse
Affiliation(s)
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia;
| |
Collapse
|
20
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
21
|
Conole D, Cao F, Am Ende CW, Xue L, Kantesaria S, Kang D, Jin J, Owen D, Lohr L, Schenone M, Majmudar JD, Tate EW. Discovery of a Potent Deubiquitinase (DUB) Small-Molecule Activity-Based Probe Enables Broad Spectrum DUB Activity Profiling in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202311190. [PMID: 37779326 DOI: 10.1002/anie.202311190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Deubiquitinases (DUBs) are a family of >100 proteases that hydrolyze isopeptide bonds linking ubiquitin to protein substrates, often leading to reduced substrate degradation through the ubiquitin proteasome system. Deregulation of DUB activity has been implicated in many diseases, including cancer, neurodegeneration and auto-inflammation, and several have been recognized as attractive targets for therapeutic intervention. Ubiquitin-derived covalent activity-based probes (ABPs) provide a powerful tool for DUB activity profiling, but their large recognition element impedes cellular permeability and presents an unmet need for small molecule ABPs which can account for regulation of DUB activity in intact cells or organisms. Here, through comprehensive chemoproteomic warhead profiling, we identify cyanopyrrolidine (CNPy) probe IMP-2373 (12) as a small molecule pan-DUB ABP to monitor DUB activity in physiologically relevant live cells. Through proteomics and targeted assays, we demonstrate that IMP-2373 quantitatively engages more than 35 DUBs across a range of non-toxic concentrations in diverse cell lines. We further demonstrate its application to quantification of changes in intracellular DUB activity during pharmacological inhibition and during MYC deregulation in a model of B cell lymphoma. IMP-2373 thus offers a complementary tool to ubiquitin ABPs to monitor dynamic DUB activity in the context of disease-relevant phenotypes.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
- Present address: Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Liang Xue
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Sheila Kantesaria
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Dahye Kang
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Jun Jin
- BioDuro, No.233 North FuTe Rd., WaiGaoQiao Free Trade Zone, Shanghai, 200131, P.R. China
| | - Dafydd Owen
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Linda Lohr
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Monica Schenone
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
| |
Collapse
|
22
|
O'Dea R, Kazi N, Hoffmann-Benito A, Zhao Z, Recknagel S, Wendrich K, Janning P, Gersch M. Molecular basis for ubiquitin/Fubi cross-reactivity in USP16 and USP36. Nat Chem Biol 2023; 19:1394-1405. [PMID: 37443395 PMCID: PMC10611586 DOI: 10.1038/s41589-023-01388-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Ubiquitin and ubiquitin-like proteins typically use distinct machineries to facilitate diverse functions. The immunosuppressive ubiquitin-like protein Fubi is synthesized as an N-terminal fusion to a ribosomal protein (Fubi-S30). Its proteolytic maturation by the nucleolar deubiquitinase USP36 is strictly required for translationally competent ribosomes. What endows USP36 with this activity, how Fubi is recognized and whether other Fubi proteases exist are unclear. Here, we report a chemical tool kit that facilitated the discovery of dual ubiquitin/Fubi cleavage activity in USP16 in addition to USP36 by chemoproteomics. Crystal structures of USP36 complexed with Fubi and ubiquitin uncover its substrate recognition mechanism and explain how other deubiquitinases are restricted from Fubi. Furthermore, we introduce Fubi C-terminal hydrolase measurements and reveal a synergistic role of USP16 in Fubi-S30 maturation. Our data highlight how ubiquitin/Fubi specificity is achieved in a subset of human deubiquitinases and open the door to a systematic investigation of the Fubi system.
Collapse
Affiliation(s)
- Rachel O'Dea
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Nafizul Kazi
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Alicia Hoffmann-Benito
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Zhou Zhao
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Kim Wendrich
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
23
|
Tang JH, Shu QY, Guo YY, Zhu H, Li YM. Cell-Permeable Ubiquitin and Histone Tools for Studying Post-translational Modifications. Chembiochem 2023; 24:e202300169. [PMID: 37060212 DOI: 10.1002/cbic.202300169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/16/2023]
Abstract
Protein post-translational modifications (PTMs) regulate nearly all biological processes in eukaryotic cells, and synthetic PTM protein tools are widely used to detect the activity of the related enzymes and identify the interacting proteins in cell lysates. Recently, the study of these enzymes and the interacting proteome has been accomplished in live cells using cell-permeable PTM protein tools. In this concept, we will introduce cell penetrating techniques, the syntheses of cell-permeable PTM protein tools, and offer some future perspective.
Collapse
Affiliation(s)
- Jia-Hui Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Qing-Yao Shu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Yan Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Huixia Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
24
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
25
|
Jia Q, Wang H, Xiao X, Sun Y, Tan X, Chai J, Yang Y, Yin Z, Li M, Wang K, Liu J. UCHL1 acts as a prognostic factor and promotes cancer stemness in cervical squamous cell carcinoma. Pathol Res Pract 2023; 247:154574. [PMID: 37257242 DOI: 10.1016/j.prp.2023.154574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The incidence and death rate of cervical cancer rank fourth among female malignant tumors worldwide. A growing number of researches are devoted to exploring more effective treatment methods and cancer stem cells (CSCs) are thought to be a potential therapeutic target in cervical cancer. In our study, we focused on the expression and function of UCHL1 in cervical squamous cell carcinoma (CESC). METHODS We detected and the expression of UCHL1 in 134 CESC patients through immunohistochemistry and further confirm UCHL1 was a prognostic factor by univariate and multivariate analysis. Then, according to TCGA database for CESC, we found that UCHL1 expression correlated with the markers associated with CSCs (CD133, ABCG2 and SOX2). Therefore, we used western blot and spheroid formation assays to future evaluate the function of UCHL1 on cancer stemness in C-33A and SiHa cell lines. At the same time, we detected the cell proliferation, migration and invasion change by CCK-8 assay, scratch assay and transwell assay, when UCHL1 was knockdown or overexpressed. Finally, xenograft models were used to examine the effect of UCHL1 in vivo. RESULTS We found the expression of UCHL1 in mRNA and protein was higher in tumor than in paired normal tissue and was a prognostic factor in CESC. The UCHL1 high expression group showed a shorter survival in the overall survival. According to TCGA database, the expression of UCHL1 was correlated with CD133, ABCG2 and SOX2. The results of sphere-forming ability and CSCs related markers expression were showed UCHL1 promoted cancer stemness in CESC. Similarly, CCK-8 assay, scratch assay and transwell assay were applied to demonstrate that overexpression of UCHL1 promoted the proliferation, migration and invasion in SiHa, but when UCHL1 was knockdown in C-33A, the function of UCHL1 displayed the opposite result. Finally, knockdown UCHL1 inhibited CESC tumor propagation in xenograft models. CONCLUSION Our results suggest that UCHL1 is a prognostic factor and correlated with cancer stemness, proliferation, migration and invasion of CESC, which may provide a novel therapeutic strategy for CESC treatment.
Collapse
Affiliation(s)
- Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Hongjie Wang
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Xin Xiao
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Yameng Sun
- Department of Military and Special medicine, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Xiao Tan
- Center of Medical Security, No. 971 Hospital of the PLA Navy, Qingdao, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yanru Yang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhiyong Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Ke Wang
- Department of Reproductive Medicine, Xi'an Gaoxin Hospital, Xi'an, China.
| | - Jin Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|