1
|
Xu P, Zhang R, Zhou Z, Xu H, Li Y, Yang M, Lin R, Wang Y, Huang X, Xie Q, Meng W. MARK2 regulates Golgi apparatus reorientation by phosphorylation of CAMSAP2 in directional cell migratio. eLife 2025; 14:RP105977. [PMID: 40333320 PMCID: PMC12058119 DOI: 10.7554/elife.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.
Collapse
Affiliation(s)
- Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical CollegeShantouChina
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruifan Lin
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Qi Xie
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Li CX, Zhao ZX, Su DB, Yin DC, Ye YJ. In vitro regulation of collective cell migration: Understanding the role of physical and chemical microenvironments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:23-40. [PMID: 39612952 DOI: 10.1016/j.pbiomolbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Collective cell migration is the primary mode of cellular movement during embryonic morphogenesis, tissue repair and regeneration, and cancer invasion. Distinct from single-cell migration, collective cell migration involves complex intercellular signaling cascades and force transmission. Consequently, cell collectives exhibit intricate and diverse migration patterns under the influence of the microenvironment in vivo. Investigating the patterns and mechanisms of collective cell migration within complex environmental factors in vitro is essential for elucidating collective cell migration in vivo. This review elucidates the influence of physical and chemical factors in vitro microenvironment on the migration patterns and efficiency of cell collectives, thereby enhancing our comprehension of the phenomenon. Furthermore, we concisely present the effects of characteristic properties of common biomaterials on collective cell migration during tissue repair and regeneration, as well as the features and applications of tumor models of different dimensions (2D substrate or 3D substrate) in vitro. Finally, we highlight the challenges facing the research of collective cell migration behaviors in vitro microenvironment and propose that modulating collective cell migration may represent a potential strategy to promote tissue repair and regeneration and to control tumor invasion and metastasis.
Collapse
Affiliation(s)
- Chang-Xing Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
3
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Shi W, Gupta S, Copos C, Mogilner A. Collective mechanics of small migrating cell groups. Semin Cell Dev Biol 2025; 166:1-12. [PMID: 39647189 DOI: 10.1016/j.semcdb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Migration of adhesive cell groups is a fundamental part of wound healing, development and carcinogenesis. Intense research has been conducted on mechanisms of collective migration of adhesive groups of cells. Here we focus on mechanical and mechanistic lessons from small migrating cell groups. We review forces and locomotory dynamics of two- and three-cell clusters, rotation of cell doublets, self-organization of one-dimensional cell trains, nascent efforts to understand three-dimensional collective migration and border cell clusters in Drosophila embryo.
Collapse
Affiliation(s)
- Wenzheng Shi
- Courant Institute, New York University, New York, NY 10012, USA.
| | - Selena Gupta
- Department of Biology, New York University, New York, NY 10012, USA.
| | - Calina Copos
- Departments of Biology and Mathematics, Northeastern University, Boston, MA 02115, USA.
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
5
|
Balaghi N, Fernandez-Gonzalez R. Waves of change: Dynamic actomyosin networks in embryonic development. Curr Opin Cell Biol 2024; 91:102435. [PMID: 39378575 DOI: 10.1016/j.ceb.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
As animals develop, molecules, cells, and cell ensembles move in beautifully orchestrated choreographies. Movement at each of these scales requires generation of mechanical force. In eukaryotic cells, the actomyosin cytoskeleton generates mechanical forces. Continuous advances in in vivo microscopy have enabled visualization and quantitative assessment of actomyosin dynamics and force generation, within and across cells, in living embryos. Recent studies reveal that actomyosin networks can form periodic waves in vivo. Here, we highlight contributions of actomyosin waves to molecular transport, cell movement, and cell coordination in developing embryos.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada. https://twitter.com/negberry
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
6
|
Xia J, Wang L, Lei F, Pan L, Liu L, Wan P. MicroRNA-34 disrupts border cell migration by targeting Eip74EF in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104724. [PMID: 39557284 DOI: 10.1016/j.jinsphys.2024.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Affiliation(s)
- Jingya Xia
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lina Wang
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Fengyun Lei
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lu Pan
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lijun Liu
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ping Wan
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China.
| |
Collapse
|
7
|
Šoštar M, Marinović M, Filić V, Pavin N, Weber I. Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae. PLoS Comput Biol 2024; 20:e1012025. [PMID: 39652619 DOI: 10.1371/journal.pcbi.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes. We observed that plasma membrane domains enriched in active Rac1 not only exhibited stable polarization, but also showed rotations and oscillations, whereas DGAP1 was depleted from these regions. To simulate the observed dynamics of the two proteins, we developed a mass-conserving reaction-diffusion model based on the circulation of Rac1 between the membrane and the cytoplasm coupled with its activation by GEFs, deactivation by GAPs and interaction with DGAP1. Our theoretical model accurately reproduced the experimentally observed dynamic patterns, including the predominant anti-correlation between active Rac1 and DGAP1. Significantly, the model predicted a new colocalization regime of these two proteins in polarized cells, which we confirmed experimentally. In summary, our results improve the understanding of Rac1 dynamics and reveal how the occurrence and transitions between different regimes depend on biochemical reaction rates, protein levels and cell size. This study not only expands our knowledge of the behavior of Rac1 GTPases in D. discoideum amoebae but also demonstrates how specific modes of interaction between Rac1 and its effector DGAP1 lead to their counterintuitively anti-correlated dynamics.
Collapse
Affiliation(s)
- Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
Takaya K, Imbe Y, Wang Q, Okabe K, Sakai S, Aramaki-Hattori N, Kishi K. Rac1 inhibition regenerates wounds in mouse fetuses via altered actin dynamics. Sci Rep 2024; 14:27213. [PMID: 39516580 PMCID: PMC11549422 DOI: 10.1038/s41598-024-78395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Mammalian wounds leave visible scars, and there are no methods for complete regeneration. However, mouse fetuses regenerate their skin, including epidermal and dermal structures, up to embryonic day (E)13. This regeneration pattern requires the formation of actin cables in the wound margin epithelium; however, the molecular mechanisms are not fully understood. Rac1 alters actin in cells and is involved in the formation of filopodia. We investigated whether actin remodeling and skin regeneration patterns can be reproduced through the regulation of Rac1 signaling. Rac1 expression was downregulated in E13 wounds and upregulated after E15 when scars remained. NSC23766, a Rac1-specific inhibitor, altered actin dynamics at the cell margin from filopodia formation to cable formation and inhibited the migration of mouse epidermal keratinocyte, PAM212, by Rac1 signaling suppression. NSC23766 suppressed Rac1 activity and completely regenerated the fetal mouse wounds, even at E14, by changing actin dynamics. Knocked-out Rac1 transgenic mice experienced delayed epithelialization of wounds with suppressed epidermal migration in adults; however, in fetuses, complete wound regeneration via Rac1 signal suppression was observed. Therefore, Rac1 suppression in the wound epidermis can achieve regenerative wound healing in fetuses and may be a potential candidate for healing scars.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuka Imbe
- Faculty of Pharmacy, Keio University, Shiba, Minatoku, Tokyo, Japan
| | - Qi Wang
- Faculty of Pharmacy, Keio University, Shiba, Minatoku, Tokyo, Japan
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
9
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. Biol Open 2024; 13:bio060615. [PMID: 39162010 PMCID: PMC11360141 DOI: 10.1242/bio.060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce a novel agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the respective contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism contributing to an increase in migratory speed of the tissue. Model outcomes are validated experimentally using mesendoderm tissue explants.
Collapse
Affiliation(s)
- Tien Comlekoglu
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Bette J. Dzamba
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Gustavo G. Pacheco
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - David R. Shook
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - T. J. Sego
- Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - James A. Glazier
- Department of Intelligent Systems Engineering and The Biocomplexity Institute, Indiana University, Bloomington, IN 47408, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Douglas W. DeSimone
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
10
|
Li S, Liu ZY, Li H, Zhou S, Liu J, Sun N, Yang KF, Dougados V, Mangeat T, Belguise K, Feng XQ, Liu Y, Wang X. Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation. Nat Commun 2024; 15:3000. [PMID: 38589403 PMCID: PMC11001887 DOI: 10.1038/s41467-024-47236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.
Collapse
Affiliation(s)
- Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ningwei Sun
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Kai-Fu Yang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Vanessa Dougados
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Mangeat
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, 610072, Chengdu, Sichuan, P.R. China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
11
|
Chen L, Tao G, Yang M. Machine-learning-based prediction of a diagnostic model using autophagy-related genes based on RNA sequencing for patients with papillary thyroid carcinoma. Open Med (Wars) 2024; 19:20240896. [PMID: 38463514 PMCID: PMC10921443 DOI: 10.1515/med-2024-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer and belongs to the category of malignant tumors of the thyroid gland. Autophagy plays an important role in PTC. The purpose of this study is to develop a novel diagnostic model using autophagy-related genes (ARGs) in patients. In this study, RNA sequencing data of PTC samples and normal samples were obtained from GSE33630 and GSE29265. Then, we analyzed GSE33630 datasets and identified 127 DE-ARGs. Functional enrichment analysis suggested that 127 DE-ARGs were mainly enriched in pathways in cancer, protein processing in endoplasmic reticulum, toll-like receptor pathway, MAPK pathway, apoptosis, neurotrophin signaling pathway, and regulation of autophagy. Subsequently, CALCOCO2, DAPK1, and RAC1 among the 127 DE-ARGs were identified as diagnostic genes by support vector machine recursive feature elimination and least absolute shrinkage and selection operator algorithms. Then, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 and its diagnostic value was confirmed in GSE29265 and our cohorts. Importantly, CALCOCO2 may be a critical regulator involved in immune microenvironment because its expression was related to many types of immune cells. Overall, we developed a novel diagnostic model using CALCOCO2, DAPK1, and RAC1 which can be used as diagnostic markers of PTC.
Collapse
Affiliation(s)
- Lin Chen
- Department of Endocrinology and Metabolism, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| | - Gaofeng Tao
- Department of Medicine and Education, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| | - Mei Yang
- Department of Endocrinology and Metabolism, People’s Hospital of Chongqing Liang jiang New Area, Chongqing, China
| |
Collapse
|
12
|
Comlekoglu T, Dzamba BJ, Pacheco GG, Shook DR, Sego TJ, Glazier JA, Peirce SM, DeSimone DW. Modeling the roles of cohesotaxis, cell-intercalation, and tissue geometry in collective cell migration of Xenopus mesendoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562601. [PMID: 37904937 PMCID: PMC10614848 DOI: 10.1101/2023.10.16.562601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Collectively migrating Xenopus mesendoderm cells are arranged into leader and follower rows with distinct adhesive properties and protrusive behaviors. In vivo, leading row mesendoderm cells extend polarized protrusions and migrate along a fibronectin matrix assembled by blastocoel roof cells. Traction stresses generated at the leading row result in the pulling forward of attached follower row cells. Mesendoderm explants removed from embryos provide an experimentally tractable system for characterizing collective cell movements and behaviors, yet the cellular mechanisms responsible for this mode of migration remain elusive. We introduce an agent-based computational model of migrating mesendoderm in the Cellular-Potts computational framework to investigate the relative contributions of multiple parameters specific to the behaviors of leader and follower row cells. Sensitivity analyses identify cohesotaxis, tissue geometry, and cell intercalation as key parameters affecting the migration velocity of collectively migrating cells. The model predicts that cohesotaxis and tissue geometry in combination promote cooperative migration of leader cells resulting in increased migration velocity of the collective. Radial intercalation of cells towards the substrate is an additional mechanism to increase migratory speed of the tissue. Summary Statement We present a novel Cellular-Potts model of collective cell migration to investigate the relative roles of cohesotaxis, tissue geometry, and cell intercalation on migration velocity of Xenopus mesendoderm.
Collapse
|
13
|
Emery G. [I lead, follow me! How cells coordinate during collective migrations.]. Med Sci (Paris) 2023; 39:619-624. [PMID: 37695151 DOI: 10.1051/medsci/2023095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
During development and wound healing, cells frequently move in a so-called "collective cell migration" process. The same type of migration is used by some cancer cells during metastasis formation. A powerful model to study collective cell migration is the border cell cluster in Drosophila as it allows the observation and manipulation of a collective cell migration in its normal environment. This review describes the molecular machinery used by the border cells to migrate directionally, focusing on the mechanisms used to detect and reacts to chemoattractants, and to organise the group in leader and follower cells.
Collapse
Affiliation(s)
- Gregory Emery
- Unité de recherche en transport vésiculaire et signalisation cellulaire, Institut pour la recherche en immunologie et en cancérologie de l'université de Montréal (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada - Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
14
|
Ma N, Xu E, Luo Q, Song G. Rac1: A Regulator of Cell Migration and A Potential Target for Cancer Therapy. Molecules 2023; 28:molecules28072976. [PMID: 37049739 PMCID: PMC10096471 DOI: 10.3390/molecules28072976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cell migration is crucial for physiological and pathological processes such as morphogenesis, wound repair, immune response and cancer invasion/metastasis. There are many factors affecting cell migration, and the regulatory mechanisms are complex. Rac1 is a GTP-binding protein with small molecular weight belonging to the Rac subfamily of the Rho GTPase family. As a key molecule in regulating cell migration, Rac1 participates in signal transduction from the external cell to the actin cytoskeleton and promotes the establishment of cell polarity which plays an important role in cancer cell invasion/metastasis. In this review, we firstly introduce the molecular structure and activity regulation of Rac1, and then summarize the role of Rac1 in cancer invasion/metastasis and other physiological processes. We also discuss the regulatory mechanisms of Rac1 in cell migration and highlight it as a potential target in cancer therapy. Finally, the current state as well as the future challenges in this area are considered. Understanding the role and the regulatory mechanism of Rac1 in cell migration can provide fundamental insights into Rac1-related cancer progression and further help us to develop novel intervention strategies for cancer therapy in clinic.
Collapse
|
15
|
Lei F, Xu X, Huang J, Su D, Wan P. Drosophila RhoGAP18B regulates actin cytoskeleton during border cell migration. PLoS One 2023; 18:e0280652. [PMID: 36662713 PMCID: PMC9858088 DOI: 10.1371/journal.pone.0280652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Drosophila RhoGAP18B was identified as a negative regulator of small GTPase in the behavioral response to ethanol. However, the effect of RhoGAP18B on cell migration is unknown. Here, we report that RhoGAP18B regulates the migration of border cells in Drosophila ovary. The RhoGAP18B gene produces four transcripts and encodes three translation isoforms. We use different RNAi lines to knockdown each RhoGAP18B isoform, and find that knockdown of RhoGAP18B-PA, but not PC or PD isoform, blocks border cell migration. Knockdown of RhoGAP18B-PA disrupts the asymmetric distribution of F-actin in border cell cluster and increases F-actin level. Furthermore, RhoGAP18B-PA may act on Rac to regulate F-actin organization. Our data indicate that RhoGAP18B shows isoform-specific regulation of border cell migration.
Collapse
Affiliation(s)
- Fengyun Lei
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaoqing Xu
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jianhua Huang
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Dan Su
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Wan
- Laboratory of Molecular Biology, School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
16
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|