1
|
Turner CD, Curran SP. Activated SKN-1 alters the aging trajectories of long-lived Caenorhabditis elegans mutants. Genetics 2025; 229:iyaf016. [PMID: 39874273 PMCID: PMC12005260 DOI: 10.1093/genetics/iyaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
In the presence of stressful environments, the SKN-1 cytoprotective transcription factor is activated to induce the expression of gene targets that can restore homeostasis. However, chronic activation of SKN-1 results in diminished health and a reduction of lifespan. Here, we demonstrate the necessity of modulating SKN-1 activity to maintain the longevity-promoting effects associated with genetic mutations that impair daf-2/insulin receptor signaling, the eat-2 model of dietary restriction, and glp-1-dependent loss of germ cell proliferation. A hallmark of animals with constitutive SKN-1 activation is the age-dependent loss of somatic lipids, and this phenotype is linked to a general reduction in survival in animals harboring the skn-1gf allele. Surprisingly, daf-2lf; skn-1gf double mutant animals do not redistribute somatic lipids, which suggests the insulin signaling pathway functions downstream of SKN-1 in the maintenance of lipid distribution. As expected, the eat-2lf allele, which independently activates SKN-1, continues to display somatic lipid depletion in older ages with and without the skn-1gf activating mutation. In contrast, the presence of the skn-1gf allele does not lead to somatic lipid redistribution in glp-1lf animals that lack a proliferating germline. Taken together, these studies support a genetic model where SKN-1 activity is an important regulator of lipid mobilization in response to nutrient availability that fuels the developing germline by engaging the daf-2/insulin receptor pathway.
Collapse
Affiliation(s)
- Chris D Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Liontis T, Senchuk MM, Zhu S, Jacob-Tomas S, Anglas U, Traa A, Soo SK, Van Raamsdonk JM. Intestine-specific disruption of mitochondrial superoxide dismutase extends longevity. Free Radic Biol Med 2025; 229:195-205. [PMID: 39827921 DOI: 10.1016/j.freeradbiomed.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen containing molecules that are generated by normal metabolism. While ROS can cause damage to the building blocks that make up cells, these molecules can also act as intracellular signals that promote longevity. The levels of ROS within the cell can be regulated by antioxidant enzymes, such as superoxide dismutase (SOD), which converts superoxide to hydrogen peroxide. Interestingly, our previous work has shown that disruption of the mitochondrial SOD gene sod-2 results in increased lifespan, suggesting that elevating levels of mitochondrial superoxide can promote longevity. To explore the molecular mechanisms involved, we determined the tissues in which disruption of sod-2 is necessary for lifespan extension and the tissues in which disruption of sod-2 is sufficient to extend lifespan. We found that tissue-specific restoration of SOD-2 expression in worms lacking SOD-2 could partially revert changes in fertility, embryonic lethality and resistance to stress, but did not inhibit the effects of sod-2 deletion on lifespan. Knocking down sod-2 expression using RNA interference specifically in the intestine, but not other tissues, was sufficient to extend longevity. Intestine-specific knockdown of sod-2 also increased resistance to heat stress while decreasing resistance to oxidative stress. Combined, these results indicate that disruption of sod-2 in neurons, intestine, germline, or muscle is not required for lifespan extension, but that decreasing sod-2 expression in just the intestine extends lifespan. This work defines the conditions required for disruption of mitochondrial superoxide dismutase to increase longevity.
Collapse
Affiliation(s)
- Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Shusen Zhu
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Suleima Jacob-Tomas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Ulrich Anglas
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Yang B, Manifold B, Han W, DeSousa C, Zhu W, Streets A, Titov DV. SRS microscopy identifies inhibition of vitellogenesis as a mediator of lifespan extension by caloric restriction in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.636008. [PMID: 40034647 PMCID: PMC11875241 DOI: 10.1101/2025.01.31.636008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The molecular mechanisms of aging are not fully understood. Here, we used label-free Stimulated Raman scattering (SRS) microscopy to investigate changes in proteins and lipids throughout the lifespan of C. elegans. We observed a dramatic buildup of proteins within the body cavity or pseudocoelom of aged adults that was blunted by interventions that extend lifespan: caloric restriction (CR) and the reduced insulin/insulin-like growth factor signaling (IIS) pathway. Using a combination of microscopy, proteomic analysis, and validation with mutant strains, we identified vitellogenins as the key molecular components of the protein buildup in the pseudocoelom. Vitellogenins shuttle nutrients from intestine to embryos and are homologous to human apolipoprotein B, the causal driver of cardiovascular disease. We then showed that CR and knockdown of vitellogenins both extend lifespan by >60%, but their combination has no additional effect on lifespan, suggesting that CR extends the lifespan of C. elegans in part by inhibiting vitellogenesis. The extensive dataset of more than 12,000 images stitched into over 350 whole-animal SRS images of C. elegans at different ages and subjected to different longevity intervention will be a valuable resource for researchers interested in aging.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Bryce Manifold
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Wuji Han
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Catherin DeSousa
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Wanyi Zhu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Denis V. Titov
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| |
Collapse
|
4
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2025; 47:877-902. [PMID: 39028454 PMCID: PMC11872967 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Ohta A, Morimoto C, Kamino S, Tezuka M. Temperature Acclimation and Cold Tolerance in Caenorhabditis Elegans are Regulated by Multiorgan Coordination. Zoolog Sci 2025; 42. [PMID: 39932747 DOI: 10.2108/zs240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/02/2024] [Indexed: 05/08/2025]
Abstract
To ensure survival and reproduction, organisms must continually adapt to environmental fluctuations, such as temperature, humidity, oxygen level, and salinity. Particularly, temperature profoundly influences biochemical reactions crucial for survival. Here, we present the mechanisms employed by the nematode Caenorhabditis elegans to anticipate and respond to cold temperatures. Our findings reveal that temperature is detected by specific neurons linked to various physiological processes in the gut, spermatheca, and muscles. Notably, the gut, a primary fat storage organ in C. elegans, regulates fat mobilization and accumulation in a temperature-dependent manner, thereby contributing to temperature adaptation. Furthermore, normal spermatogenetic mechanisms influence cold tolerance by modulating the responsiveness of thermosensory neurons to temperature changes. Considering our results together with recent reports, we suggest that a polyU-specific endoribonuclease expressed in muscle cells plays a role in cold tolerance through a non-cell-autonomous mechanism, possibly involving transportation intertissues. Thus, understanding cold tolerance and temperature acclimation in C. elegans can provide valuable insights on systemic physiological regulation in response to temperature fluctuations. Moreover, they could help elucidate the actions of thermosensory neurons and their downstream neuronal circuits or neuropeptides on the peripheral organs.
Collapse
Affiliation(s)
- Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan,
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Chinatsu Morimoto
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Seiya Kamino
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Moe Tezuka
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
6
|
Feng Y, Zhang X, Li J, Fu S, Xu W, Liu J, Yang Y, Chen T, Zhao Y, Li D, Zhang M, He Y. Ultra-small quercetin-based nanotherapeutics ameliorate acute liver failure by combatting inflammation/cellular senescence cycle. Theranostics 2025; 15:1035-1056. [PMID: 39776808 PMCID: PMC11700872 DOI: 10.7150/thno.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects. However, its extremely low aqueous solubility constrains its clinical efficacy in treating inflammation. Methods: We employed a simple and stable coordination method to synthesize ultra-small quercetin-Fe nanoparticles (QFN) by complexing quercetin with iron ions. The ROS-scavenging, anti-inflammatory, and anti-senescent effects of QFN were evaluated in vitro. A lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALF mice model was used to investigate the therapeutic effects of QFN in vivo, and transcriptomic analysis was conducted to elucidate the mechanisms underlying QFN-mediated hepatoprotection. Results: Our findings demonstrate that QFN possesses remarkable water solubility and highly efficient ROS-scavenging properties. In vitro, QFN effectively inhibits macrophage-mediated inflammation and mitigates hepatocyte senescence. In vivo, QFN significantly attenuates LPS/D-GalN-induced ALF by protecting against macrophage inflammation and cellular senescence, thereby disrupting the self-perpetuating cycle of inflammation and aging. Moreover, its potent ROS scavenging capacity not only suppresses cellular apoptosis but also facilitates liver regeneration. Transcriptomic analyses further reveal that QFN exerts its protective effects through the modulation of key pathways involved in cellular senescence and inflammation. Conclusions: In summary, our study characterizes QFN as a potent ROS-scavenging modulator that exhibits both anti-inflammatory and anti-senescent properties, effectively disrupting the detrimental feedback loop between inflammation and cellular senescence. QFN holds considerable potential as a therapeutic agent for the treatment of ALF and other pathologies associated with inflammation and aging.
Collapse
Affiliation(s)
- Yali Feng
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Xiaoli Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Juan Li
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Shan Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Weicheng Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
| | - Jinfeng Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yuan Yang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Tianyan Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yingren Zhao
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Dongmin Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi, 710061, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| |
Collapse
|
7
|
Veuthey T, Florman JT, Giunti S, Romussi S, De Rosa MJ, Alkema MJ, Rayes D. The neurohormone tyramine stimulates the secretion of an insulin-like peptide from the Caenorhabditis elegans intestine to modulate the systemic stress response. PLoS Biol 2025; 23:e3002997. [PMID: 39874242 PMCID: PMC11774402 DOI: 10.1371/journal.pbio.3002997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, insulin-3 (INS-3), plays a crucial role in modulating the response to various environmental stressors in C. elegans. ins-3 mutants display increased resistance to heat, oxidative stress, and starvation; however, this advantage is countered by slower reproductive development under favorable conditions. We find that ins-3 expression is downregulated in response to environmental stressors, whereas, the neurohormone tyramine, which is released during the acute flight response, increases ins-3 expression. We show that tyramine induces intestinal calcium (Ca2+) transients through the activation of the TYRA-3 receptor. Our data support a model in which tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine via the activation of a TYRA-3-Gαq-IP3 pathway. The release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO. These studies offer mechanistic insights into a brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stressors.
Collapse
Affiliation(s)
- Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Jeremy T. Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Stefano Romussi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
8
|
Zhou Y, Chen L, Wang M, Yang Y, Hu B, Li G, Wei F. Paroxetine promotes longevity via ser-7-dop-4-IIS axis in Caenorhabditis elegans. GeroScience 2024:10.1007/s11357-024-01492-7. [PMID: 39729241 DOI: 10.1007/s11357-024-01492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Paroxetine, a selective serotonin reuptake inhibitor, is widely used in the clinical treatment of depression. While several antidepressants show promise as geroprotectors, the role of paroxetine in aging remains unclear. In this study, we evaluated the lifespan extension effect of paroxetine in Caenorhabditis elegans (C. elegans) and elucidated the underlying mechanisms. The results showed that paroxetine can prolong lifespan concomitant extension of healthspan as indicated by increasing mobility and reducing lipofuscin accumulation, as well as confer protection to nematodes against different abiotic stresses. Paroxetine upregulated ser-7 expression and downregulated dop-4 expression. dop-4 RNA interference (RNAi) mimicked the beneficial effect of paroxetine on lifespan. Conversely, ser-7 RNAi abolished paroxetine-induced lifespan extension and the expression changes of dop-4 and genes related to insulin/insulin-like growth factor 1 signaling (IIS). Moreover, paroxetine exhibited a comparable lifespan extension effect to that observed in daf-2 or age-1 mutants; however, this effect was abolished in daf-16 mutant. Taken together, these results suggest that paroxetine promotes health and longevity in C. elegans through the ser-7-dop-4-IIS pathway, underscoring its potential as a geroprotector.
Collapse
Affiliation(s)
- Yiming Zhou
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Lijuan Chen
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Meijing Wang
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Yang Yang
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Bin Hu
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
| | - Guolin Li
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Fang Wei
- Center for Aging Biomedicine, College of Life Sciences, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University, 36 Lushan Road, Changsha, 410081, Hunan, China.
| |
Collapse
|
9
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
10
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Catalytic activities of wild-type C. elegans DAF-2 kinase and dauer-associated mutants. FEBS J 2024; 291:5435-5454. [PMID: 39428852 DOI: 10.1111/febs.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
DAF-2, the Caenorhabditis elegans insulin-like receptor homolog, regulates larval development, metabolism, stress response, and lifespan. The availability of numerous daf-2 mutant alleles has made it possible to elucidate the genetic mechanisms underlying these physiological processes. The DAF-2 pathway is significantly conserved with the human insulin/IGF-1 signaling pathway; it includes proteins homologous to human IRS, GRB-2, and PI3K, making it an important model to investigate human pathological conditions. We expressed and purified the kinase domain of wild-type DAF-2 to examine the catalytic activity and substrate specificity of the enzyme. Like the human insulin receptor kinase, DAF-2 kinase phosphorylates tyrosines within specific YxN or YxxM motifs, which are important for recruiting downstream effectors. DAF-2 kinase phosphorylated peptides derived from the YxxM and YxN motifs located in the C-terminal extension of the receptor tyrosine kinase, consistent with the idea that the DAF-2 receptor may possess independent signaling capacity. Unlike the human insulin or IGF-1 receptor kinases, DAF-2 kinase was poorly inhibited by the small-molecule inhibitor linsitinib. We also expressed and purified mutant kinases corresponding to daf-2 alleles that result in partial loss-of-function phenotypes in C. elegans. These mutations caused a complete loss of kinase function in vitro. Our biochemical investigations provide new insights into DAF-2 kinase function, and the approach should be useful for studying other mutations to shed light on DAF-2 signaling in C. elegans physiology.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, NY, USA
- Department of Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
11
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
12
|
Bodkhe R, Trang K, Hammond S, Jung DK, Shapira M. Emergence of dauer larvae in Caenorhabditis elegans disrupts continuity of host-microbiome interactions. FEMS Microbiol Ecol 2024; 100:fiae149. [PMID: 39516048 PMCID: PMC11590253 DOI: 10.1093/femsec/fiae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Nematodes are common in most terrestrial environments, where populations are often known to undergo cycles of boom and bust. Useful in such scenarios, nematodes present developmental programs of diapause, giving rise to stress-resistant larvae and enabling dispersal in search of new resources. Best studied in Caenorhabditis elegans, stress resistant dauer larvae emerge under adverse conditions, primarily starvation, and migrate to new niches where they can resume development and reproduce. Caenorhabditis elegans is a bacterivore but has been shown to harbor a persistent and characteristic gut microbiome. While much is known about the gut microbiome of reproducing C. elegans, what dauers harbor is yet unknown. This is of interest, as dauers are those that would enable transmission of microbes between nematode generations and geographical sites, maintaining continuity of host-microbe interactions. Using culture-dependent as well as sequencing-based approaches, we examined the gut microbiomes of dauers emerging following population growth on ten different natural-like microbially diverse environments as well as on two defined communities of known gut commensals and found that dauers were largely devoid of gut bacteria. These results suggest that host gut-microbiome interactions in C. elegans are not continuous across successive generations and may reduce the likelihood of long-term worm-microbe coevolution.
Collapse
Affiliation(s)
- Rahul Bodkhe
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Sabrina Hammond
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
14
|
Shi H, Gao X, Yu J, Zhang L, Fan B, Liu Y, Wang X, Fan S, Huang C. Isotschimgine promotes lifespan, healthspan and neuroprotection of Caenorhabditis elegans via the activation of nuclear hormone receptors. Biogerontology 2024; 26:2. [PMID: 39470855 DOI: 10.1007/s10522-024-10142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Isotschimgine (ITG) is a bornane-type monoterpenoid derivative naturally occurring in genus Ferula plants and propolis. Its effects on aging and the underlying mechanisms are not yet well understood. This study employed Caenorhabditis elegans (C. elegans) as a model organism to evaluate the potential of ITG in extending lifespan, enhancing healthspan, and promoting neuroprotection, while exploring the underlying mechanisms involved. The results showed that ITG extended the lifespan and healthspan of C. elegans, significantly enhanced stress resistance and detoxification functions. Studies on mutants and qPCR data indicated that ITG-mediated lifespan extension was modulated by the insulin/IGF-1 signaling pathway and nuclear hormone receptors. Furthermore, ITG markedly increased stress-responsive genes, including daf-16 and its downstream genes sod-3 and hsp-16.2, as well as NHR downstream detoxification-related genes cyp35a1, cyp35b3, cyp35c1, gst-4, pgp-3 and pgp-13. Additionally, ITG alleviated β-amyloid-induced paralysis and behavioral dysfunction in transgenic C. elegans strains. The neuroprotective efficacy of ITG was weakened by RNAi knockdown of nuclear hormone receptors daf-12 and nhr-8. Overall, our study identifies ITG as a potential compound for promoting longevity and neuroprotection, mediated through nuclear hormone receptors.
Collapse
Affiliation(s)
- Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bingbing Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
He W, Liu Z, Zhang H, Liu Q, Weng Z, Wang D, Guo W, Xu J, Wang D, Jiang Z, Gu A. Bisphenol S decreased lifespan and healthspan via insulin/IGF-1-like signaling-against mitochondrial stress in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117136. [PMID: 39353373 DOI: 10.1016/j.ecoenv.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol S (BPS) is widely presented and affects aging with unclear mechanisms. Here, we applied C. elegans to evaluate the effects of BPS on lifespan and healthspan and to investigate the underlying mechanisms. Both early-life and whole-life exposure to BPS at environmentally relevant doses (0.6, 6, 60 μg/L) significantly decreased lifespan, and healthspan (body bend, pharyngeal pumping, and lipofuscin accumulation). BPS exposure impaired mitochondrial structure and function, which promoted ROS production to induce oxidative stress. Furthermore, BPS increased expressions of the insulin/IGF-like signaling (IIS). Also, BPS inhibited expression of the IIS transcription factor daf-16 and its downstream anti-oxidative genes. Quercetin effectively improved BPS-induced oxidative stress byreversing BPS-regulated IIS/daf-16 pathway and anti-oxidative gene expressions. In daf-2 and daf-16 mutants, the effects of BPS and quercetin on lifespan, healthspan, oxidative stress, and anti-oxidative genes expressions were reversed, demonstrating the requirement of IIS/daf-16 for aging regulation. Molecular docking and molecular dynamics simulations confirmed the stable interaction between DAF-2 and BPS mainly via three residues (VAL1260, GLU1329, and MET1395), which was attenuated by quercetin. Our results highlighted that adverse effects of BPS on impairing lifespan and healthspan by affecting IIS/daf-16 function against mitochondrial stress, which could be inhibited by quercetin treatment. Thus, we first revealed the underlying mechanisms of BPS-induced aging and the potential treatment.
Collapse
Affiliation(s)
- Wenmiao He
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Zhiwei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongchao Zhang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Dongmei Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| | - Zhaoyan Jiang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
16
|
Molière A, Park JYC, Goyala A, Vayndorf EM, Zhang B, Hsiung KC, Jung Y, Kwon S, Statzer C, Meyer D, Nguyen R, Chadwick J, Thompson MA, Schumacher B, Lee SJV, Essmann CL, MacArthur MR, Kaeberlein M, David D, Gems D, Ewald CY. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. GeroScience 2024; 46:5015-5036. [PMID: 38900346 PMCID: PMC11335714 DOI: 10.1007/s11357-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.
Collapse
Affiliation(s)
- Adrian Molière
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Richard Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Clara L Essmann
- Bioinformatics and Molecular Genetics, Institute of Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
17
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
18
|
Gao SM, Qi Y, Zhang Q, Guan Y, Lee YT, Ding L, Wang L, Mohammed AS, Li H, Fu Y, Wang MC. Aging atlas reveals cell-type-specific effects of pro-longevity strategies. NATURE AGING 2024; 4:998-1013. [PMID: 38816550 PMCID: PMC11257944 DOI: 10.1038/s43587-024-00631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
Organismal aging involves functional declines in both somatic and reproductive tissues. Multiple strategies have been discovered to extend lifespan across species. However, how age-related molecular changes differ among various tissues and how those lifespan-extending strategies slow tissue aging in distinct manners remain unclear. Here we generated the transcriptomic Cell Atlas of Worm Aging (CAWA, http://mengwanglab.org/atlas ) of wild-type and long-lived strains. We discovered cell-specific, age-related molecular and functional signatures across all somatic and germ cell types. We developed transcriptomic aging clocks for different tissues and quantitatively determined how three different pro-longevity strategies slow tissue aging distinctively. Furthermore, through genome-wide profiling of alternative polyadenylation (APA) events in different tissues, we discovered cell-type-specific APA changes during aging and revealed how these changes are differentially affected by the pro-longevity strategies. Together, this study offers fundamental molecular insights into both somatic and reproductive aging and provides a valuable resource for in-depth understanding of the diversity of pro-longevity mechanisms.
Collapse
Affiliation(s)
- Shihong Max Gao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Qinghao Zhang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Youchen Guan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Molecular and Cellular Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Tang Lee
- Integrative Program of Molecular and Biochemical Science, Baylor College of Medicine, Houston, TX, USA
| | - Lang Ding
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Graduate Program in Chemical, Physical & Structural Biology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Aaron S Mohammed
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Yusi Fu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA.
| | - Meng C Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
19
|
Gao X, Yu J, Zhang L, Shi H, Yan Y, Han Y, Fang M, Liu Y, Wu C, Fan S, Huang C. Mulberrin extends lifespan in Caenorhabditis elegans through detoxification function. J Appl Toxicol 2024; 44:833-845. [PMID: 38291015 DOI: 10.1002/jat.4578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
Mulberrin, a naturally occurring flavone found in mulberry and Romulus Mori, exhibits diverse biological functions. Here, we showed that mulberrin extended both the lifespan and healthspan in C. elegans. Moreover, mulberrin increased the worms' resistance to toxicants and activated the expression of detoxification genes. The longevity-promoting effect of mulberrin was attenuated in nuclear hormone receptor (NHR) homologous nhr-8 and daf-12 mutants, indicating that the lifespan extending effects of mulberrin in C. elegans may depend on nuclear hormone receptors NHR-8/DAF-12. Further analyses revealed the potential associations between the longevity effects of mulberrin and the insulin/insulin-like growth factor signaling (IIS) and adenosine 5'-monophosphate-activated protein kinase (AMPK) pathways. Together, our findings suggest that mulberrin may prolong lifespan and healthspan by activating detoxification functions mediated by nuclear receptors.
Collapse
Affiliation(s)
- Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyuan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Mauro MS, Martin SL, Dumont J, Shirasu-Hiza M, Canman JC. Patterning, regulation, and role of FoxO/DAF-16 in the early embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594029. [PMID: 38798632 PMCID: PMC11118310 DOI: 10.1101/2024.05.13.594029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Insulin resistance and diabetes are associated with many health issues including higher rates of birth defects and miscarriage during pregnancy. Because insulin resistance and diabetes are both associated with obesity, which also affects fertility, the role of insulin signaling itself in embryo development is not well understood. A key downstream target of the insulin/insulin-like growth factor signaling (IIS) pathway is the forkhead family transcription factor FoxO (DAF-16 in C. elegans ). Here, we used quantitative live imaging to measure the patterning of endogenously tagged FoxO/DAF-16 in the early worm embryo. In 2-4-cell stage embryos, FoxO/DAF-16 initially localized uniformly to all cell nuclei, then became dramatically enriched in germ precursor cell nuclei beginning at the 8-cell stage. This nuclear enrichment in early germ precursor cells required germ fate specification, PI3K (AGE-1)- and PTEN (DAF-18)-mediated phospholipid regulation, and the deubiquitylase USP7 (MATH-33), yet was unexpectedly insulin receptor (DAF-2)- and AKT-independent. Functional analysis revealed that FoxO/DAF-16 acts as a cell cycle pacer for early cleavage divisions-without FoxO/DAF-16 cell cycles were shorter than in controls, especially in germ lineage cells. These results reveal the germ lineage specific patterning, upstream regulation, and cell cycle role for FoxO/DAF-16 during early C. elegans embryogenesis.
Collapse
|
21
|
Zang X, Wang Q, Zhang H, Zhang Y, Wang Z, Wu Z, Chen D. Knockdown of neuronal DAF-15/Raptor promotes healthy aging in C. elegans. J Genet Genomics 2024; 51:507-516. [PMID: 37951302 DOI: 10.1016/j.jgg.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The highly conserved target of rapamycin (TOR) pathway plays an important role in aging across species. Previous studies have established that inhibition of the TOR complex 1 (TORC1) significantly extends lifespan in Caenorhabditiselegans. However, it has not been clear whether TORC1 perturbation affects aging in a spatiotemporal manner. Here, we apply the auxin-inducible degradation tool to knock down endogenous DAF-15, the C. elegans ortholog of regulatory associated protein of TOR (Raptor), to characterize its roles in aging. Global or tissue-specific inhibition of DAF-15 during development results in various growth defects, whereas neuron-specific knockdown of DAF-15 during adulthood significantly extends lifespan and healthspan. The neuronal DAF-15 deficiency-induced longevity requires the intestinal activities of DAF-16/FOXO and PHA-4/FOXA transcription factors, as well as the AAK-2/AMP-activated protein kinase α catalytic subunit. Transcriptome profiling reveals that the neuronal DAF-15 knockdown promotes the expression of genes involved in protection. These findings define the tissue-specific roles of TORC1 in healthy aging and highlight the importance of neuronal modulation of aging.
Collapse
Affiliation(s)
- Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
22
|
Xu W, Liu J, Qi H, Si R, Zhao Z, Tao Z, Bai Y, Hu S, Sun X, Cong Y, Zhang H, Fan D, Xiao L, Wang Y, Li Y, Du Z. A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis. Nat Commun 2024; 15:2783. [PMID: 38555276 PMCID: PMC10981687 DOI: 10.1038/s41467-024-47055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.
Collapse
Affiliation(s)
- Weina Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruolin Si
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiju Tao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuchuan Bai
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoye Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Zhang Q, Tian Y, Fu Z, Wu S, Lan H, Zhou X, Shen W, Lou Y. The role of serum-glucocorticoid regulated kinase 1 in reproductive viability: implications from prenatal programming and senescence. Mol Biol Rep 2024; 51:376. [PMID: 38427115 PMCID: PMC10907440 DOI: 10.1007/s11033-024-09341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Organisms and cellular viability are of paramount importance to living creatures. Disruption of the balance between cell survival and apoptosis results in compromised viability and even carcinogenesis. One molecule involved in keeping this homeostasis is serum-glucocorticoid regulated kinase (SGK) 1. Emerging evidence points to a significant role of SGK1 in cell growth and survival, cell metabolism, reproduction, and life span, particularly in prenatal programming and reproductive senescence by the same token. Whether the hormone inducible SGK1 kinase is a major driver in the pathophysiological processes of prenatal programming and reproductive senescence? METHOD The PubMed/Medline, Web of Science, Embase/Ovid, and Elsevier Science Direct literature databases were searched for articles in English focusing on SGK1 published up to July 2023 RESULT: Emerging evidence is accumulating pointing to a pathophysiological role of the ubiquitously expressed SGK1 in the cellular and organismal viability. Under the regulation of specific hormones, extracellular stimuli, and various signals, SGK1 is involved in several biological processes relevant to viability, including cell proliferation and survival, cell migration and differentiation. In line, SGK1 contributes to the development of germ cells, embryos, and fetuses, whereas SGK1 inhibition leads to abnormal gametogenesis, embryo loss, and truncated reproductive lifespan. CONCLUTION SGK1 integrates a broad spectrum of effects to maintain the homeostasis of cell survival and apoptosis, conferring viability to multiple cell types as well as both simple and complex organisms, and thus ensuring appropriate prenatal development and reproductive lifespan.
Collapse
Affiliation(s)
- Qiying Zhang
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Ye Tian
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Zhujing Fu
- Jinhua Municipal Central Hospital, Jinhua, 321001, China
| | - Shuangyu Wu
- Medical School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huizhen Lan
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Xuanle Zhou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Wendi Shen
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China.
| |
Collapse
|
24
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
25
|
Li L, Liu Z, Hu H, Cai R, Bi J, Wang Q, Zhou X, Luo H, Zhang C, Wan R. Dendrobium Nobile Alcohol Extract Extends the Lifespan of Caenorhabditis elegans via hsf-1 and daf-16. Molecules 2024; 29:908. [PMID: 38398658 PMCID: PMC10891841 DOI: 10.3390/molecules29040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Dendrobium nobile is a traditional Chinese herb with anti-inflammatory, antioxidant, and neuroprotective properties. However, its antiaging effects are unclear. Herein, we studied the aging-related functions and the mechanism of action of the alcohol extract of Dendrobium nobile (DnAE) in the model organism Caenorhabditis elegans. The results indicated that 1 mg/mL DnAE slowed lipofuscin accumulation, decreased the levels of reactive oxygen species, elevated superoxide dismutase activity, enhanced oxidative and heat stress resistance, extended the lifespan of nematodes, protected their dopamine neurons from 6-hydroxydopamine-induced neurodegeneration, and reduced Aβ-induced neurotoxicity. DnAE upregulated the mRNA expression of the transcription factors DAF-16 and HSF-1, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2. However, it had no effect on the lifespan of DAF-16 mutants. Thus, DnAE can significantly extend lifespan, enhance heat stress tolerance, and delay age-related diseases through a DAF-16-dependent pathway.
Collapse
Affiliation(s)
- Linfeng Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhen Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Huiling Hu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Renming Cai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingdou Bi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qin Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Dazhou Vocational College of Chinese Medicine, Dazhou 635000, China
| | - Xiaogang Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Huairong Luo
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
26
|
Veuthey T, Giunti S, De Rosa MJ, Alkema M, Rayes D. The neurohormone tyramine stimulates the secretion of an Insulin-Like Peptide from the intestine to modulate the systemic stress response in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579207. [PMID: 38370834 PMCID: PMC10871264 DOI: 10.1101/2024.02.06.579207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.
Collapse
|
27
|
Fabrizio P, Alcolei A, Solari F. Considering Caenorhabditis elegans Aging on a Temporal and Tissue Scale: The Case of Insulin/IGF-1 Signaling. Cells 2024; 13:288. [PMID: 38334680 PMCID: PMC10854721 DOI: 10.3390/cells13030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
The aging process is inherently complex, involving multiple mechanisms that interact at different biological scales. The nematode Caenorhabditis elegans is a simple model organism that has played a pivotal role in aging research following the discovery of mutations extending lifespan. Longevity pathways identified in C. elegans were subsequently found to be conserved and regulate lifespan in multiple species. These pathways intersect with fundamental hallmarks of aging that include nutrient sensing, epigenetic alterations, proteostasis loss, and mitochondrial dysfunction. Here we summarize recent data obtained in C. elegans highlighting the importance of studying aging at both the tissue and temporal scale. We then focus on the neuromuscular system to illustrate the kinetics of changes that take place with age. We describe recently developed tools that enabled the dissection of the contribution of the insulin/IGF-1 receptor ortholog DAF-2 to the regulation of worm mobility in specific tissues and at different ages. We also discuss guidelines and potential pitfalls in the use of these new tools. We further highlight the opportunities that they present, especially when combined with recent transcriptomic data, to address and resolve the inherent complexity of aging. Understanding how different aging processes interact within and between tissues at different life stages could ultimately suggest potential intervention points for age-related diseases.
Collapse
Affiliation(s)
- Paola Fabrizio
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM 1210, University Claude Bernard Lyon 1, 69364 Lyon, France;
| | - Allan Alcolei
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Florence Solari
- INMG, MeLiS, CNRS UMR 5284, INSERM U1314, University Claude Bernard Lyon 1, 69008 Lyon, France;
| |
Collapse
|
28
|
Wang Q, Wang L, Huang Z, Xiao Y, Liu M, Liu H, Yu Y, Liang M, Luo N, Li K, Mishra A, Huang Z. Abalone peptide increases stress resilience and cost-free longevity via SKN-1-governed transcriptional metabolic reprogramming in C. elegans. Aging Cell 2024; 23:e14046. [PMID: 37990605 PMCID: PMC10861207 DOI: 10.1111/acel.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-β aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Liangyi Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ziliang Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Mao Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Huihui Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ming Liang
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ajay Mishra
- European Bioinformatics InstituteCambridgeUK
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
29
|
Todorova MN, Savova MS, Mihaylova LV, Georgiev MI. Icariin Improves Stress Resistance and Extends Lifespan in Caenorhabditis elegans through hsf-1 and daf-2-Driven Hormesis. Int J Mol Sci 2023; 25:352. [PMID: 38203522 PMCID: PMC10778813 DOI: 10.3390/ijms25010352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/17/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Aging presents an increasingly significant challenge globally, driven by the growing proportion of individuals aged 60 and older. Currently, there is substantial research interest in pro-longevity interventions that target pivotal signaling pathways, aiming not only to extend lifespan but also to enhance healthspan. One particularly promising approach involves inducing a hormetic response through the utilization of natural compounds defined as hormetins. Various studies have introduced the flavonoid icariin as beneficial for age-related diseases such as cardiovascular and neurodegenerative conditions. To validate its potential pro-longevity properties, we employed Caenorhabditis elegans as an experimental platform. The accumulated results suggest that icariin extends the lifespan of C. elegans through modulation of the DAF-2, corresponding to the insulin/IGF-1 signaling pathway in humans. Additionally, we identified increased resistance to heat and oxidative stress, modulation of lipid metabolism, improved late-life healthspan, and an extended lifespan upon icariin treatment. Consequently, a model mechanism of action was provided for icariin that involves the modulation of various players within the stress-response network. Collectively, the obtained data reveal that icariin is a potential hormetic agent with geroprotective properties that merits future developments.
Collapse
Affiliation(s)
- Monika N. Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
| | - Martina S. Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (L.V.M.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
30
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Li C, Xu W, Zhang X, Cui X, Tsopmo A, Li J. Antioxidant Peptides Derived from Millet Bran Promote Longevity and Stress Resistance in Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:790-795. [PMID: 37656398 DOI: 10.1007/s11130-023-01100-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Millet bran as a by-product of millet grain processing remains a reservoir of active substances. In this study, functional millet bran peptides (MBPE) were obtained from bran proteins after alcalase hydrolysis and ultrafiltration. The activity of MBPE was assessed in vitro and in the model organism Caenorhabditis elegans (C. elegans). In vitro, compared to unhydrolyzed proteins, MBPE significantly enhanced the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) and hydroxyl radicals scavenging activity, and the scavenging rate of MBPE with 15,000 U/g alcalase reached 42.79 ± 0.31%, 61.38 ± 0.41 and 45.69 ± 0.84%, respectively. In C. elegans, MBPE at 12.5 µg/mL significantly prolonged the lifespan by reducing lipid oxidation, oxidative stress, and lipofuscin levels. Furthermore, MBPE increased the activities of the antioxidant enzymes. Genetic analyses showed that MBPE-mediated longevity was due to a significant increase in the expression of daf-16 and skn-1, which are also involved in xenobiotic and oxidative stress responses. In conclusion, this study found that MBPE had antioxidant and life-prolonging effects, which are important for the development and utilization of millet bran proteins as resources of active ingredients.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Wenjing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiangyu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Jiao Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
32
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
33
|
Doering KRS, Ermakova G, Taubert S. Nuclear hormone receptor NHR-49 is an essential regulator of stress resilience and healthy aging in Caenorhabditis elegans. Front Physiol 2023; 14:1241591. [PMID: 37645565 PMCID: PMC10461480 DOI: 10.3389/fphys.2023.1241591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
The genome of Caenorhabditis elegans encodes 284 nuclear hormone receptor, which perform diverse functions in development and physiology. One of the best characterized of these is NHR-49, related in sequence and function to mammalian hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Initially identified as regulator of lipid metabolism, including fatty acid catabolism and desaturation, additional important roles for NHR-49 have since emerged. It is an essential contributor to longevity in several genetic and environmental contexts, and also plays vital roles in the resistance to several stresses and innate immune response to infection with various bacterial pathogens. Here, we review how NHR-49 is integrated into pertinent signaling circuits and how it achieves its diverse functions. We also highlight areas for future investigation including identification of regulatory inputs that drive NHR-49 activity and identification of tissue-specific gene regulatory outputs. We anticipate that future work on this protein will provide information that could be useful for developing strategies to age-associated declines in health and age-related human diseases.
Collapse
Affiliation(s)
- Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
- Edwin S. H. Leong Centre for Healthy Aging, The University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Higurashi S, Tsukada S, Aleogho BM, Park JH, Al-Hebri Y, Tanaka M, Nakano S, Mori I, Noma K. Bacterial diet affects the age-dependent decline of associative learning in Caenorhabditis elegans. eLife 2023; 12:81418. [PMID: 37252859 DOI: 10.7554/elife.81418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
The causality and mechanism of dietary effects on brain aging are still unclear due to the long time scales of aging. The nematode Caenorhabditis elegans has contributed to aging research because of its short lifespan and easy genetic manipulation. When fed the standard laboratory diet, Escherichia coli, C. elegans experiences an age-dependent decline in temperature-food associative learning, called thermotaxis. To address if diet affects this decline, we screened 35 lactic acid bacteria as alternative diet and found that animals maintained high thermotaxis ability when fed a clade of Lactobacilli enriched with heterofermentative bacteria. Among them, Lactobacillus reuteri maintained the thermotaxis of aged animals without affecting their lifespan and motility. The effect of Lb. reuteri depends on the DAF-16 transcription factor functioning in neurons. Furthermore, RNA sequencing analysis revealed that differentially expressed genes between aged animals fed different bacteria were enriched with DAF-16 targets. Our results demonstrate that diet can impact brain aging in a daf-16-dependent manner without changing the lifespan.
Collapse
Affiliation(s)
- Satoshi Higurashi
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sachio Tsukada
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Binta Maria Aleogho
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| | - Joo Hyun Park
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masaru Tanaka
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., Saitama, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shunji Nakano
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Noma
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Japan
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate school of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
36
|
Roy C, Molin L, Solari F. Aging gracefully: time and space matter. Aging (Albany NY) 2023; 15:3901-3903. [PMID: 37244284 PMCID: PMC10258018 DOI: 10.18632/aging.204773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/29/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Charline Roy
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Institut NeuroMyoGène, MeLis, France
| | - Laurent Molin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Institut NeuroMyoGène, MeLis, France
| | - Florence Solari
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Institut NeuroMyoGène, MeLis, France
| |
Collapse
|
37
|
Zhang W, Li Z, Li G, Kong L, Jing H, Zhang N, Ning J, Gao S, Zhang Y, Wang X, Tao J. PM 2.5 induce lifespan reduction, insulin/IGF-1 signaling pathway disruption and lipid metabolism disorder in Caenorhabditis elegans. Front Public Health 2023; 11:1055175. [PMID: 36817915 PMCID: PMC9932997 DOI: 10.3389/fpubh.2023.1055175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Exposure to fine particulate matter (PM), especially PM2.5, can induce various adverse health effects in populations, including diseases and premature death, but the mechanism of its toxicity is largely unknown. Methods Water-soluble components of PM2.5 (WS-PM2.5) were collected in the north of China in winter, and combined in two groups with the final concentrations of 94 μg/mL (CL group, AQI ≤ 100) and 119 μg/mL (CH group, 100 < AQI ≤ 200), respectively. The acute and long-term toxic effects of WS-PM2.5 samples were evaluated in several aspects such as development, lifespan, healthspan (locomotion behavior, heat stress tolerance, lipofucin). DAF mutants and genes were applied to verify the action of IIS pathway in WS-PM2.5 induced-effects. RNA-Sequencing was performed to elucidate the molecular mechanisms, as well as ROS production and Oil red O staining were also served as means of mechanism exploration. Results Body length and lifespan were shortened by exposure to WS-PM2.5. Healthspan of nematodes revealed adverse effects evaluated by head thrash, body bend, pharyngeal pump, as well as intestinal lipofuscin accumulation and survival time under heat stress. The abbreviated lifespan of daf-2(e1370) strain and reduced expression level of daf-16 and hsp-16.2 indicated that IIS pathway might be involved in the mechanism. Thirty-five abnormally expressed genes screened out by RNA-Sequencing techniques, were functionally enriched in lipid/lipid metabolism and transport, and may contribute substantially to the regulation of PM2.5 induced adverse effects in nematodes. Conclusion WS-PM2.5 exposure induce varying degrees of toxic effects, such as body development, shorten lifespan and healthspan. The IIS pathway and lipid metabolism/transport were disturbed by WS-PM2.5 during WS-PM2.5 exposure, suggesting their regulatory role in lifespan determination.
Collapse
Affiliation(s)
- Wenjing Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zinan Li
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Guojun Li
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Ling Kong
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Haiming Jing
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Nan Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Junyu Ning
- Beijing Center for Disease Prevention and Control, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Shan Gao
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yong Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xinyu Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Tao
- Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|