1
|
Bustani G, Alghetaa H, Mohammed A, Nagarkatti M, Nagarkatti P. The aryl hydrocarbon receptor: a new frontier in male reproductive system. Reprod Biol Endocrinol 2025; 23:70. [PMID: 40369574 PMCID: PMC12076877 DOI: 10.1186/s12958-025-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically recognized for its role in the regulation of toxicity mediated by environmental chemicals. Recent research points to AhR's critical participation in male reproductive physiology, particularly in spermatogenesis, hormone signaling, and the maintenance of sperm quality. Both endogenous ligands (e.g., dietary and gut microbiota-derived metabolites) and exogenous pollutants (e.g., dioxins and benzo-α-pyrene) influence AhR-mediated pathways, making it a key link between environmental exposures and male fertility. RESULTS This review highlights AhR's influence on the male reproductive system, emphasizing the role of endogenous AhR ligands and AhR expression in the maturation and function of male reproductive organs. Environmental AhR agonists have been shown to induce oxidative stress, hormonal imbalance, and sperm DNA damage, which impact harmfully on the spermatogenesis process, which leads to reproductive abnormalities. Conversely, certain natural compounds such as resveratrol, curcumin, and lycopene appear to antagonize AhR activation and reduce its negative effects, thus offering potential protective benefits against male reproductive toxicity. Nevertheless, discrepancies persist regarding the exact interplay between AhR signaling and critical reproductive hormones such as testosterone and LH, and it remains unclear how transgenerational epigenetic changes triggered by AhR activation might affect long-term male fertility. CONCLUSION AhR is pivotal in male reproductive physiology, influencing spermatogenesis, sperm quality, and hormone regulation through its interactions with both endogenous and environmental ligands. Persistent pollutants such as dioxins and polycyclic aromatic hydrocarbons cause oxidative damage and hormonal disturbances via AhR, contributing to reduced sperm quality and fertility.
Collapse
Affiliation(s)
- Ghadeer Bustani
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
- The Islamic University, Najaf, Iraq
| | - Hasan Alghetaa
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq.
| | - Amira Mohammed
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Abu Gharib Road, Al-Ameria Ave., Baghdad, Iraq
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
2
|
Wei Q, Jiang H, Zeng J, Xu J, Zhang H, Xiao E, Lu Q, Huang G. Quercetin protected the gut barrier in ulcerative colitis by activating aryl hydrocarbon receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156633. [PMID: 40088746 DOI: 10.1016/j.phymed.2025.156633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by abdominal pain and bloody diarrhoea and restoring the gut barrier is the core goal of UC treatment. Activation of aryl hydrocarbon receptor (Ahr) was reported to effectively alleviate symptoms and repair the gut barrier damage. Neutrophil extracellular traps (NETs) have been recognized as potential targets in the treatment of UC. Ahr activation has been found to be capable of upregulating Nqo1, thereby reducing the production of reactive oxygen species (ROS), which is important in the formation of NETs. Quercetin (QUE), which is derived from natural plants and herbs used in traditional Chinese medicine (TCM), is able to strengthen gut barrier function by activating Ahr. PURPOSE The aim of this study is to investigate how QUE suppresses NETs in UC and activates Ahr in neutrophils. METHODS In this study, the dextran sulfate sodium (DSS)-induced UC model was used. Histopathological assessments were performed in the paraffin slides of tissues after H&E, PAS, Masson and alcian blue staining. The concentration of cytokines was also detected using cytometric beads array kits. Based on the transcriptomic analysis of colon tissues, western blot (WB) analysis, immunohistochemistry (IHC) assays and immunofluorescence (IF) assays were conducted to validate the significantly regulated genes and pathways. In vitro, the binding of quercetin to Ahr was calculated by molecular dynamic simulations (MDS) and biolayer interferometry (BLI) analysis. Primary neutrophils isolated from mice were cocultured with LPS or PMA with or without quercetin. The regulated genes were detected using WB, real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and IF analysis. The agonists and antagonist of Ahr were used as the control. RESULTS After the administration of quercetin, colon inflammation and gut barrier disruption was significantly prevented through inhibiting the NF-κB pathway and upregulating the expression of Ahr/Arnt and Nqo1. The transcriptomic analysis and IHC assays showed that inflammation and NETs were greatly decreased by QUE treatment. In vitro, quercetin inhibited LPS-induced inflammatory responses through NF-κB pathway. Furthermore, MDS and BLI analysis revealed that QUE is an agonist of AHR. QUE activated Ahr translocation and reduced ROS production via regulation of Arnt and Nqo1. CONCLUSION This study proved that quercetin greatly improved gut barrier function in the DSS-induced colitis model by regulating NET formation and that quercetin was able to activate Ahr and upregulate Arnt in neutrophils to regulate NET formation.
Collapse
Affiliation(s)
- Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Perez-Castro L, Alabi B, Nawas A, Lafita-Navarro M, Shay J, Conacci-Sorrell M. Aryl Hydrocarbon Receptor (AHR) is required for repopulation of decellularized intestinal colon scaffolds. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001529. [PMID: 40353141 PMCID: PMC12062895 DOI: 10.17912/micropub.biology.001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
This study investigates the role of the ligand-activated transcription factor AHR in repopulating the intestinal lining. Using organoid-derived cells and decellularized mouse intestinal scaffolds to investigate the importance of AHR in regulating intestinal regeneration, we found that silencing AHR expression hinders the capacity of colonic cells to repopulate decellularized colons. We therefore propose that AHR may play an important role in regulating intestinal regeneration. The ligand-dependent nature of AHR activity may provide an opportunity to interfere with disorders such as cancer and inflammatory bowel diseases which are caused by dysregulation in intestinal tissue renewal.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Busola Alabi
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Afshan Nawas
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | | - Jerry Shay
- The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | | |
Collapse
|
4
|
Polonio CM, McHale KA, Sherr DH, Rubenstein D, Quintana FJ. The aryl hydrocarbon receptor: a rehabilitated target for therapeutic immune modulation. Nat Rev Drug Discov 2025:10.1038/s41573-025-01172-x. [PMID: 40247142 DOI: 10.1038/s41573-025-01172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 04/19/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor originally identified as the target mediating the toxic effects of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dioxins. For years, AHR activation was actively avoided during drug development. However, the AHR was later identified as an important physiological regulator of the immune response. These findings triggered a paradigm shift that resulted in identification of the AHR as a regulator of both innate and adaptive immunity and outlined a pathway for its modulation by the diet, commensal flora and metabolism in the context of autoimmunity, cancer and infection. Moreover, the AHR was revealed as a candidate target for the therapeutic modulation of the immune response. Indeed, the first AHR-activating drug (tapinarof) was recently approved for the treatment of psoriasis. Clinical trials are underway to evaluate the effects of tapinarof and other AHR-targeting therapeutics in inflammatory diseases, cancer and infections. This Review outlines the molecular mechanism of AHR action, and describes how it regulates the immune response. We also discuss links to disease and AHR-targeting therapeutics that have been tested in past and ongoing clinical trials.
Collapse
Affiliation(s)
- Carolina M Polonio
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Liu C, Wang Y, Sheng L, Zhang Y, Luo G, Ruan XZ, Chen Y, Huang M. 3-Hydroxypropionaldehyde modulates tryptophan metabolism to activate AhR signaling and alleviate ethanol-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156445. [PMID: 39922148 DOI: 10.1016/j.phymed.2025.156445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Although probiotics-based therapies and postbiotics derived from Lactobacillus reuteri (L. reuteri) hold promising potential in mitigating alcohol-associated liver disease (ALD), the role of L. reuteri's metabolite, 3-Hydroxypropionaldehyde (3-HPA, reuterin), remains elusive. PURPOSE The objective of this study is to examine the influence of 3-HPA on the attenuation of alcohol-induced hepatic steatosis and its underlying mechanisms. METHODS The study utilizes network pharmacology to identify potential targets for 3-HPA in treating ALD. Comprehensive analytical methods, including histological and biochemical assessments, coupled with metabolomics techniques, are employed to evaluate the protective mechanisms and actions of 3-HPA in ALD. Additionally, the therapeutic potential of hepatic aryl hydrocarbon receptor (AhR) activation is explored through using both an AhR agonist and inhibitor, in order to assess the potential of 3-HPA as an AhR ligand in treating ALD. RESULTS Chronic alcohol consumption stimulates AhR activation in hepatocytes, both in vivo and in vitro, leading to the disruption of hepatic tryptophan metabolism. Our observations indicate that 3-HPA has the potential to regulate this process by activating AhR signaling through modulating tryptophan metabolism, specifically affecting indole acetaldehyde, indole, and 5‑hydroxy-l-tryptophan (5-HTP) levels. Mechanistically, 3-HPA demonstrates potential as an effective AhR agonist in mitigating ethanol-induced liver injury by regulating AhR-CD36 signaling, thereby exerting protective effects against hepatic steatosis. CONCLUSION Ultimately, the study identifies a previously uncharacterized role of 3-HPA in alleviating alcohol-associated liver injury and hepatic steatosis. It further elucidates that 3-HPA serves as a mediator in tryptophan metabolism, activating the AhR signaling, thereby suggesting its potential as a promising candidate for the treatment of ALD.
Collapse
Affiliation(s)
- Chen Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Wang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Sichuan, 646000, China
| | - Linlin Sheng
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yun Zhang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Meizhou Huang
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
6
|
Guesdon A, Bourguet W. A mechanism for ligand-dependent activation of AHR. Trends Pharmacol Sci 2025; 46:295-297. [PMID: 40057435 DOI: 10.1016/j.tips.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 04/06/2025]
Abstract
The aryl hydrocarbon receptor (AHR) is a crucial chemosensory protein and an emerging therapeutic target. However, the lack of structural data has long hindered a complete understanding of the mechanisms driving its function. Recently, Wu and colleagues reported a structural analysis of various DNA-bound AHR-ligand complexes, suggesting a ligand-driven activation mechanism.
Collapse
Affiliation(s)
- Audrey Guesdon
- Center for Structural Biology, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - William Bourguet
- Center for Structural Biology, Université de Montpellier, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
7
|
Del Sorbo L, Acconcia C, Salvatore MM, Fusco G, Vasinioti V, Lucente MS, Zhu L, Pratelli A, Russo L, Andolfi A, Iacovino R, Fiorito F. Insight into the Role of the Aryl Hydrocarbon Receptor in Bovine Coronavirus Infection by an Integrated Approach Combining In Vitro and In Silico Methods. Microorganisms 2025; 13:579. [PMID: 40142473 PMCID: PMC11944835 DOI: 10.3390/microorganisms13030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
It is well known that the host response to different human and animal coronaviruses infection is regulated by the aryl hydrocarbon receptor, a ligand-activated transcription factor. The present study investigates the expression of the aryl hydrocarbon receptor during bovine coronavirus infection, through in vitro and in silico investigations. The in vitro studies demonstrate that the aryl hydrocarbon receptor and as well as its targets, CYP1A1 and CYP1B1, were significantly activated by bovine coronavirus infection in bovine cells (MDBK). During infection, the pretreatment of cells with non-cytotoxic doses of CH223191, a selective inhibitor of the aryl hydrocarbon receptor, resulted in a significant reduction in virus yield and a downregulation in the viral spike protein expression. These findings occurred in the presence of the inhibition of aryl hydrocarbon receptor signaling. Our results reveal that the bovine coronavirus acts on viral replication, upregulating the aryl hydrocarbon receptor and its downstream target proteins, CYP1A1 and CYP1B1. In addition, following the in silico studies, the three-dimensional structural model of the bovine aryl hydrocarbon receptor in complex with the antagonist CH223191 indicates that the molecular mechanism, by which the PASB and TAD domains of the receptor interact with the inhibitor, is mainly driven by an extensive network of hydrophobic interactions, with a series of hydrogen bonds contributing to stabilizing the complex. Interestingly, bioinformatic analyses revealed that the PASB and TAD domains in the human and bovine aryl hydrocarbon receptor present high similarity at the primary sequence and three-dimensional structure levels. Taken together, these findings represent a fundamental step for the development of innovative drugs targeting AhR as a potential object for CoVs therapy.
Collapse
Affiliation(s)
- Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (M.M.S.)
| | - Clementina Acconcia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.A.); (L.R.)
| | - Maria Michela Salvatore
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (M.M.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Violetta Vasinioti
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (V.V.); (M.S.L.); (A.P.)
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (V.V.); (M.S.L.); (A.P.)
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy; (V.V.); (M.S.L.); (A.P.)
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.A.); (L.R.)
| | - Anna Andolfi
- Department of Chemical Science, University of Naples Federico II, 80126 Naples, Italy;
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (C.A.); (L.R.)
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (L.D.S.); (M.M.S.)
| |
Collapse
|
8
|
He J, Chen Y, Zhao H, Li Y. The interplay between gut bacteria and targeted therapies: implications for future cancer treatments. Mol Med 2025; 31:58. [PMID: 39948481 PMCID: PMC11827328 DOI: 10.1186/s10020-025-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Targeted therapy represents a form of cancer treatment that specifically focuses on molecular markers regulating the growth, division, and dissemination of cancer cells. It serves as the cornerstone of precision medicine and is associated with fewer adverse effects compared to conventional chemotherapy, thus enhancing the quality of patient survival. These make targeted therapy as a vital component of contemporary anti-cancer strategies. Although targeted therapy has achieved excellent anti-cancer results, there are still many factors affecting its efficacy. Among the numerous factors affecting anti-cancer treatment, the role of intestinal bacteria and its metabolites are becoming increasingly prominent, particularly in immunotherapy. However, their effects on anticancer targeted therapy have not been systematically reviewed. Herein, we discuss the crosstalk between gut bacteria and anticancer targeted therapies, while also highlighting potential therapeutic strategies and future research directions.
Collapse
Affiliation(s)
- Juan He
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
9
|
Diao X, Shang Q, Guo M, Huang Y, Zhang M, Chen X, Liang Y, Sun X, Zhou F, Zhuang J, Liu SJ, Vogel CFA, Rastinejad F, Wu D. Structural basis for the ligand-dependent activation of heterodimeric AHR-ARNT complex. Nat Commun 2025; 16:1282. [PMID: 39900897 PMCID: PMC11791172 DOI: 10.1038/s41467-025-56574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
The aryl hydrocarbon receptor (AHR) possesses an extraordinary capacity to sense and respond to a wide range of small-molecule ligands, ranging from polycyclic aromatic hydrocarbons to endogenous compounds. Upon ligand binding, AHR translocates from the cytoplasm to nucleus, forming a transcriptionally active complex with aryl hydrocarbon receptor nuclear translocator (ARNT), for DNA binding and initiation of gene expression programs that include cellular detoxification pathways and immune responses. Here, we examine the molecular mechanisms governing AHR's high-affinity binding and activation by a diverse group of ligands. Crystal structures of the AHR-ARNT-DNA complexes, bound with each of six established AHR ligands, including Tapinarof, 6-formylindolo[3,2-b]carbazole (FICZ), benzo[a]pyrene (BaP), β-naphthoflavone (BNF), Indigo and Indirubin, reveal an unconventional mode of subunit assembly with intimate association between the PAS-B domains of AHR and ARNT. AHR's PAS-B domain utilizes eight conserved residues whose dynamic rearrangements account for the ability to bind to ligands through hydrophobic and π-π interactions. Our findings further reveal the structural underpinnings of a ligand-driven activation mechanism, whereby a segment of the AHR protein undergoes a structural transition from chaperone engagement to ARNT heterodimer stabilization, to generate the transcriptionally competent assembly. Our results provide key information for the future development of AHR-targeting drugs.
Collapse
Affiliation(s)
- Xiaotong Diao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qinghong Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mengqi Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yubin Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Meina Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiangnan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fan Zhou
- Shanghai Zelixir Biotech, Shanghai, China
| | - Jingjing Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, USA
| | - Fraydoon Rastinejad
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
10
|
Hrubý J, Dvořák Z. Binding of ligands to the aryl hydrocarbon receptor: An overview of methods. Toxicol Lett 2025; 404:37-46. [PMID: 39832617 DOI: 10.1016/j.toxlet.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which plays numerous and pivotal roles in human physiology and pathophysiology. Therefore, pharmacotherapeutic targeting of the AhR is a highly pertinent issue. The identification of new AhR ligands and the characterization of the interactions between the AhR ligands and AhR protein requires appropriate methodology. In spite the AhR is monomeric intracellular soluble receptor, the full-length human AhR protein has not been crystallized so far, and its isolation in a form applicable in the binding assays is highly challenging. Recent advances, including crystallization of AhR fragments, recombinant protein technologies, and cryogenic electron microscopy, allowed for exploitation of diverse experimental techniques for studying interactions between ligands and the AhR. In the current paper, we review existing AhR ligand binding assays, including their description, applicability and limitations.
Collapse
Affiliation(s)
- Jiří Hrubý
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| |
Collapse
|
11
|
le Maire A, Bourguet W. What Structural Biology Tells Us About the Mode of Action and Detection of Toxicants. Annu Rev Pharmacol Toxicol 2025; 65:529-546. [PMID: 39107041 DOI: 10.1146/annurev-pharmtox-061724-080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The study of the adverse effects of chemical substances on living organisms is an old and intense field of research. However, toxicological and environmental health sciences have long been dominated by descriptive approaches that enable associations or correlations but relatively few robust causal links and molecular mechanisms. Recent achievements have shown that structural biology approaches can bring this added value to the field. By providing atomic-level information, structural biology is a powerful tool to decipher the mechanisms by which toxicants bind to and alter the normal function of essential cell components, causing adverse effects. Here, using endocrine-disrupting chemicals as illustrative examples, we describe recent advances in the structure-based understanding of their modes of action and how this knowledge can be exploited to develop computational tools aimed at predicting properties of large collections of compounds.
Collapse
Affiliation(s)
- Albane le Maire
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, Inserm, Montpellier, France; ,
| | - William Bourguet
- Centre de Biologie Structurale (CBS), Univ Montpellier, CNRS, Inserm, Montpellier, France; ,
| |
Collapse
|
12
|
Pérez-Osorio IN, Espinosa-Cerón JA, Álvarez-Gutiérrez C, Gonzalez-Flores R, Besedovsky H, Fragoso G, Torres-Ramos MA, Sciutto E. Combined Use of Intranasal Methylprednisolone and Allopregnanolone: Revisiting Anti-inflammatory and Remyelinating Treatment in a Murine Model of Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2024; 29:420. [PMID: 39735995 DOI: 10.31083/j.fbl2912420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating, neuroinflammatory, progressive disease that severely affects human health of young adults. Neuroinflammation (NI) and demyelination, as well as their interactions, are key therapeutic targets to halt or slow disease progression. Potent steroidal anti-inflammatory drugs such as methylprednisolone (MP) and remyelinating neurosteroids such as allopregnanolone (ALLO) could be co-administered intranasally to enhance their efficacy by providing direct access to the central nervous system (CNS). METHODS The individual and combined effects of MP and ALLO to control the clinical score of murine experimental autoimmune encephalitis (EAE), to preserve spinal cord tissue integrity, modulate cellular infiltration and gliosis, promote remyelination, and modify the expression of Aryl hydrocarbon receptor (AhR) were evaluated. In silico studies, to deep insight into the mechanisms involved for the treatments, were also conducted. RESULTS MP was the only treatment that significantly reduced the EAE severity, infiltration of inflammatory cells and ionized calcium-binding adapter molecule 1 (Iba-1) expression respect to those EAE non-treated mice but with no-significant differences between the three treatments. MP, ALLO and MP+ALLO significantly reduced tissue damage, AhR expression, and promoted remyelination. Overall, these results suggest that MP, with or without the co-administration with ALLO is an effective and safe strategy to reduce the inflammatory status and the progression of EAE. Despite the expectations of the use of ALLO to reduce the inflammation in EAE, its effect in the dose-scheme used herein is limited only to improve myelination, an effect that supports its usefulness in demyelinating diseases. These results indicate the interest in exploring different doses of ALLO to recommend its use. CONCLUSIONS ALLO treatment mainly maintain the integrity of the spinal cord tissue and the presence of myelin without affecting NI and the clinical outcome. AhR could be involved in the effect observed in both, MP and ALLO treatments. These results will help in the development of a more efficient therapy for MS patients.
Collapse
Affiliation(s)
- Iván Nicolás Pérez-Osorio
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - José Alejandro Espinosa-Cerón
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Camila Álvarez-Gutiérrez
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Rodrigo Gonzalez-Flores
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Hugo Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, 35037 Marburg, Germany
| | - Gladis Fragoso
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| | - Mónica A Torres-Ramos
- Research Directorate, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Tlalpan, 14269 Mexico City, Mexico
- Laboratory 4 Translational Sciences, Center for Research on Aging, CINVESTAV South Headquarters, 14330, Mexico City, Mexico
| | - Edda Sciutto
- Department of Immunology, Institute of Biomedical Research Universidad Nacional Autónoma de México, UNAM, 04510 Mexico City, Mexico
| |
Collapse
|
13
|
Wojtyło PA, Łapińska N, Bellagamba L, Camaioni E, Mendyk A, Giovagnoli S. Initial Development of Automated Machine Learning-Assisted Prediction Tools for Aryl Hydrocarbon Receptor Activators. Pharmaceutics 2024; 16:1456. [PMID: 39598579 PMCID: PMC11597659 DOI: 10.3390/pharmaceutics16111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The aryl hydrocarbon receptor (AhR) plays a crucial role in immune and metabolic processes. The large molecular diversity of ligands capable of activating AhR makes it impossible to determine the structural features useful for the design of new potent modulators. Thus, in the field of drug discovery, the intricate nature of AhR activation necessitates the development of novel tools to address related challenges. Methods: In this study, quantitative structure-activity relationship (QSAR) models of classification and regression were developed with the objective of identifying the most effective method for predicting AhR activity. The initial dataset was obtained by combining the ChEMBL and WIPO databases which contained 978 molecules with EC50 values. The predictive models were developed using the automated machine learning platform mljar according to a 10-fold cross validation (10-CV) testing procedure. Results: The classification model demonstrated an accuracy value of 0.760 and F1 value of 0.789 for the test set. The root-mean-squared error (RMSE) was 5444, and the coefficient of determination (R2) was 0.208 for the regression model. The Shapley Additive Explanations (SHAP) method was then employed for a deeper comprehension of the impact of the variables on the model's predictions. As a practical application for scientific purposes, the best performing classification model was then used to develop an AhR web application. This application is accessible online and has been implemented in Streamlit. Conclusions: The findings may serve as a foundation in prompting further research into the development of a QSAR model, which could enhance comprehension of the influence of ligand structure on the modulation of AhR activity.
Collapse
Affiliation(s)
- Paulina Anna Wojtyło
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| | - Natalia Łapińska
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.M.)
| | - Lucia Bellagamba
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.M.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy; (L.B.); (E.C.); (S.G.)
| |
Collapse
|
14
|
Jindra M, Tumova S, Bittova L, Tuma R, Sedlak D. Agonist-dependent action of the juvenile hormone receptor. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101234. [PMID: 39025365 DOI: 10.1016/j.cois.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Juvenile hormone (JH) signaling is realized at the gene regulatory level by receptors of the bHLH-PAS transcription factor family. The sesquiterpenoid hormones and their synthetic mimics are agonist ligands of a unique JH receptor (JHR) protein, methoprene-tolerant (MET). Upon binding an agonist to its PAS-B cavity, MET dissociates from a cytoplasmic chaperone complex including HSP83 and concomitantly switches to a bHLH-PAS partner taiman, forming a nuclear, transcriptionally active JHR heterodimer. This course of events resembles the vertebrate aryl hydrocarbon receptor (AHR), activated by a plethora of endogenous and synthetic compounds. Like in AHR, the pliable PAS-B cavity of MET adjusts to diverse ligands and binds them through similar mechanisms. Despite recent progress, we only begin to discern agonist-induced conformational shifts within the PAS-B domain, with the ultimate goal of understanding how these localized changes stimulate the assembly of the active JHR complex and, thus, fully grasp the mechanism of JHR signaling.
Collapse
Affiliation(s)
- Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic.
| | - Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Lenka Bittova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Roman Tuma
- Faculty of Science, University of South Bohemia, Ceske Budejovice 37005, Czech Republic
| | - David Sedlak
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| |
Collapse
|
15
|
Badawy AAB, Dawood S. Molecular Insights into the Interaction of Tryptophan Metabolites with the Human Aryl Hydrocarbon Receptor in Silico: Tryptophan as Antagonist and no Direct Involvement of Kynurenine. FRONT BIOSCI-LANDMRK 2024; 29:333. [PMID: 39344334 DOI: 10.31083/j.fbl2909333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND A direct link between the tryptophan (Trp) metabolite kynurenine (Kyn) and the aryl hydrocarbon receptor (AhR) is not supported by metabolic considerations and by studies demonstrating the failure of Kyn concentrations of up to 100 μM to activate the receptor in cell culture systems using the proxy system of cytochrome P-450-dependent metabolism. The Kyn metabolite kynurenic acid (KA) activates the AhR and may mediate the Kyn link. Recent studies demonstrated down regulation and antagonism of activation of the AhR by Trp. We have addressed the link between Kyn and the AhR by looking at their direct molecular interaction in silico. METHODS Molecular docking of Kyn, KA, Trp and a range of Trp metabolites to the crystal structure of the human AhR was performed under appropriate docking conditions. RESULTS Trp and 30 of its metabolites docked to the AhR to various degrees, whereas Kyn and 3-hydroxykynurenine did not. The strongest docking was observed with the Trp metabolite and photooxidation product 6-Formylindolo[3,2-b]carbazole (FICZ), cinnabarinic acid, 5-hydroxytryptophan, N-acetyl serotonin and indol-3-yllactic acid. Strong docking was also observed with other 5-hydroxyindoles. CONCLUSIONS We propose that the Kyn-AhR link is mediated by KA. The strong docking of Trp and its recently reported down regulation of the receptor suggest that Trp is an AhR antagonist and may thus play important roles in body homeostasis beyond known properties or simply being the precursor of biologically active metabolites. Differences in AhR activation reported in the literature are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, CF5 2YB Wales, UK
| | - Shazia Dawood
- Pharmacy and Allied Health Sciences, Iqra University, 7580 Karachi, Pakistan
| |
Collapse
|
16
|
Xu X, Closson JD, Marcelino LP, Favaro DC, Silvestrini ML, Solazzo R, Chong LT, Gardner KH. Identification of small-molecule ligand-binding sites on and in the ARNT PAS-B domain. J Biol Chem 2024; 300:107606. [PMID: 39059491 PMCID: PMC11381877 DOI: 10.1016/j.jbc.2024.107606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways. Using solution NMR fragment screening, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the transforming acidic coiled-coil containing protein 3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, molecular dynamics simulations, and ensemble docking to identify ligand-binding "hotspots" on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/transforming acidic coiled-coil containing protein 3 inhibitors, KG-548 and KG-655, bind to a β-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the β-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.
Collapse
Affiliation(s)
- Xingjian Xu
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York, USA
| | - Joseph D Closson
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center, CUNY, New York, New York, USA
| | | | - Denize C Favaro
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Marion L Silvestrini
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riccardo Solazzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Bologna, Italy
| | - Lillian T Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA; PhD. Programs in Biochemistry, Chemistry and Biology, The Graduate Center, CUNY, New York, New York, USA.
| |
Collapse
|
17
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, El-Mahrouk SR, Barakat K, El-Kadi AOS. Modulation of aryl hydrocarbon receptor activity by tyrosine kinase inhibitors (ponatinib and tofacitinib). Arch Biochem Biophys 2024; 759:110088. [PMID: 38992456 DOI: 10.1016/j.abb.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Bobrovs R, Terentjeva S, Olafsen NE, Dambrauskas Z, Gulbinas A, Maimets T, Teino I, Jirgensons A, Matthews J, Jaudzems K. Discovery and optimisation of pyrazolo[1,5- a]pyrimidines as aryl hydrocarbon receptor antagonists. RSC Med Chem 2024; 15:3477-3484. [PMID: 39246744 PMCID: PMC11376203 DOI: 10.1039/d4md00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a versatile ligand-dependent transcription factor involved in diverse biological processes, from metabolic adaptations to immune system regulation. Recognising its pivotal role in cancer immunology, AHR has become a promising target for cancer therapy. Here we report the discovery and structure-activity relationship studies of novel AHR antagonists. The potential AHR antagonists were identified via homology model-based high-throughput virtual screening and were experimentally verified in a luciferase reporter gene assay. The identified pyrazolo[1,5-a]pyrimidine-based AHR antagonist 7 (IC50 = 650 nM) was systematically optimised to elucidate structure-activity relationships and reach low nanomolar AHR antagonistic potency (7a, IC50 = 31 nM). Overall, the findings presented here provide new starting points for AHR antagonist development and offer insightful information on AHR antagonist structure-activity relationships.
Collapse
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
| | | | - Ninni Elise Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo 0317 Oslo Norway
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences Eiveniu 4 50103 Kaunas Lithuania
| | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health Sciences Eiveniu 4 50103 Kaunas Lithuania
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu Riia 23 51010 Tartu Estonia
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu Riia 23 51010 Tartu Estonia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo 0317 Oslo Norway
- Department of Pharmacology and Toxicology, University of Toronto Toronto ON M5S 1A8 Canada
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV1006 Latvia
| |
Collapse
|
19
|
Xu X, Closson J, Marcelino LP, Favaro DC, Silvestrini ML, Solazzo R, Chong LT, Gardner KH. Identification of Small Molecule Ligand Binding Sites On and In the ARNT PAS-B Domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565595. [PMID: 37961463 PMCID: PMC10635134 DOI: 10.1101/2023.11.03.565595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcription factors are generally challenging to target with small molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include several naturally ligand-regulated transcription factors, including our prior work with the heterodimeric HIF-2 transcription factor which showed that small molecule binding within an internal pocket of the HIF-2α PAS-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of similarly targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to simultaneously modulate several ARNT-mediated signaling pathways. Using solution NMR screening of an in-house fragment library, we previously identified several compounds that bind ARNT PAS-B and, in certain cases, antagonize ARNT association with the TACC3 transcriptional coactivator. However, these ligands have only modest binding affinities, complicating characterization of their binding sites. We address this challenge by combining NMR, MD simulations, and ensemble docking to identify ligand-binding 'hotspots' on and within the ARNT PAS-B domain. Our data indicate that the two ARNT/TACC3 inhibitors, KG-548 and KG-655, bind to a β-sheet surface implicated in both HIF-2 dimerization and coactivator recruitment. Furthermore, while KG-548 binds exclusively to the β-sheet surface, KG-655 can additionally bind within a water-accessible internal cavity in ARNT PAS-B. Finally, KG-279, while not a coactivator inhibitor, exemplifies ligands that preferentially bind only to the internal cavity. All three ligands promoted ARNT PAS-B homodimerization, albeit to varying degrees. Taken together, our findings provide a comprehensive overview of ARNT PAS-B ligand-binding sites and may guide the development of more potent coactivator inhibitors for cellular and functional studies.
Collapse
|
20
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, Barakat K, El-Kadi AOS. Identifying novel aryl hydrocarbon receptor (AhR) modulators from clinically approved drugs: In silico screening and In vitro validation. Arch Biochem Biophys 2024; 754:109958. [PMID: 38499054 DOI: 10.1016/j.abb.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Kim K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int J Mol Sci 2024; 25:3818. [PMID: 38612627 PMCID: PMC11012155 DOI: 10.3390/ijms25073818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas Medical Sciences, Little Rock, AR 72225, USA
| |
Collapse
|
22
|
Tomkiewicz C, Coumoul X, Nioche P, Barouki R, Blanc EB. Costs of molecular adaptation to the chemical exposome: a focus on xenobiotic metabolism pathways. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220510. [PMID: 38310928 PMCID: PMC10838638 DOI: 10.1098/rstb.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024] Open
Abstract
Organisms adapt to their environment through different pathways. In vertebrates, xenobiotics are detected, metabolized and eliminated through the inducible xenobiotic-metabolizing pathways (XMP) which can also generate reactive toxic intermediates. In this review, we will discuss the impacts of the chemical exposome complexity on the balance between detoxication and side effects. There is a large discrepancy between the limited number of proteins involved in these pathways (few dozens) and the diversity and complexity of the chemical exposome (tens of thousands of chemicals). Several XMP proteins have a low specificity which allows them to bind and/or metabolize a large number of chemicals. This leads to undesired consequences, such as cross-inhibition, inefficient metabolism, release of toxic intermediates, etc. Furthermore, several XMP proteins have endogenous functions that may be disrupted upon exposure to exogenous chemicals. The gut microbiome produces a very large number of metabolites that enter the body and are part of the chemical exposome. It can metabolize xenobiotics and either eliminate them or lead to toxic derivatives. The complex interactions between chemicals of different origins will be illustrated by the diverse roles of the aryl hydrocarbon receptor which binds and transduces the signals of a large number of xenobiotics, microbiome metabolites, dietary chemicals and endogenous compounds. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
| | - Xavier Coumoul
- Université Paris Cité, Inserm unit UMRS 1124, 75006 Paris, France
| | - Pierre Nioche
- Université Paris Cité, Inserm unit UMRS 1124, 75006 Paris, France
| | - Robert Barouki
- Université Paris Cité, Inserm unit UMRS 1124, 75006 Paris, France
- Hôpital Necker Enfants malades, AP-HP, 75006 Paris, France
| | - Etienne B. Blanc
- Université Paris Cité, Inserm unit UMRS 1124, 75006 Paris, France
| |
Collapse
|
23
|
Sharma D, Partch CL. PAS Dimerization at the Nexus of the Mammalian Circadian Clock. J Mol Biol 2024; 436:168341. [PMID: 37924861 PMCID: PMC11729053 DOI: 10.1016/j.jmb.2023.168341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Circadian rhythms are genetically encoded molecular clocks for internal biological timekeeping. Organisms from single-cell bacteria to humans use these clocks to adapt to the external environment and synchronize their physiology and behavior to solar light/dark cycles. Although the proteins that constitute the molecular 'cogs' and give rise to circadian rhythms are now known, we still lack a detailed understanding of how these proteins interact to generate and sustain the ∼24-hour circadian clock. Structural studies have helped to expand the architecture of clock proteins and have revealed the abundance of the only well-defined structured regions in the mammalian clock called Per-ARNT-Sim (PAS) domains. PAS domains are modular, evolutionarily conserved sensory and signaling domains that typically mediate protein-protein interactions. In the mammalian circadian clock, PAS domains modulate homo and heterodimerization of several core clock proteins that assemble into transcription factors or repressors. This review will focus on the functional importance of the PAS domains in the circadian clock from a biophysical and biochemical standpoint and describe their roles in clock protein interactions and circadian timekeeping.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California Santa Cruz, CA, United States; Center for Circadian Biology, University of California San Diego, CA, United States.
| |
Collapse
|
24
|
Bonati L, Motta S, Callea L. The AhR Signaling Mechanism: A Structural Point of View. J Mol Biol 2024; 436:168296. [PMID: 37797832 DOI: 10.1016/j.jmb.2023.168296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The Aryl hydrocarbon Receptor (AhR) is a well-known sensor of xenobiotics; moreover, it is considered a promising drug target as it is involved in the regulation of many patho-physiological processes. For these reasons the study of its ligand-activated transcription mechanism has stimulated several studies for over twenty years. In this review we highlight the key role of molecular structural information in understanding the different steps of the signaling mechanism. The architecture of the AhR cytosolic complex, encompassing the hsp90 chaperone protein and the XAP2 and p23 co-chaperones, has become available in the last year thanks to Cryo-EM experiments. The structure of the AhR ligand-binding (PAS-B) domain has remained elusive for a long time; it has been predicted by homology modelling, based on known PAS systems, and its ligand-bound forms were modelled through ligand molecular docking. Although very recently some structural information on this domain has become available, considerable efforts are still needed to determine the binding geometries of the AhR key ligands by experimental high-resolution studies. On the other hand, the dimeric structure of AhR with the ARNT protein, bound to the specific DNA responsive element, was partially determined by X-ray crystallography and it was completed by homology modelling. On the whole the current structural knowledge of the main protein complexes that form over the AhR mechanism opens the way to confirm and further investigate the main steps of the proposed ligand-activated transcription mechanism of the AhR.
Collapse
Affiliation(s)
- Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| |
Collapse
|
25
|
Daffern N, Radhakrishnan I. Per-ARNT-Sim (PAS) Domains in Basic Helix-Loop-Helix (bHLH)-PAS Transcription Factors and Coactivators: Structures and Mechanisms. J Mol Biol 2024; 436:168370. [PMID: 37992889 PMCID: PMC10922228 DOI: 10.1016/j.jmb.2023.168370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
PAS domains are ubiquitous in biology. They perform critically important roles in sensing and transducing a wide variety of environmental signals, and through their ability to bind small-molecule ligands, have emerged as targets for therapeutic intervention. Here, we discuss our current understanding of PAS domain structure and function in the context of basic helix-loop-helix (bHLH)-PAS transcription factors and coactivators. Unlike the bHLH-PAS domains of transcription factors, those of the steroid receptor coactivator (SRC) family are poorly characterized. Recent progress for this family and for the broader bHLH-PAS proteins suggest that these domains are ripe for deeper structural and functional studies.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
26
|
Kwong HS, Paloni M, Grandvuillemin L, Sirounian S, Ancelin A, Lai-Kee-Him J, Grimaldi M, Carivenc C, Lancey C, Ragan TJ, Hesketh EL, Balaguer P, Barducci A, Gruszczyk J, Bourguet W. Structural Insights into the Activation of Human Aryl Hydrocarbon Receptor by the Environmental Contaminant Benzo[a]pyrene and Structurally Related Compounds. J Mol Biol 2024; 436:168411. [PMID: 38135181 DOI: 10.1016/j.jmb.2023.168411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.
Collapse
Affiliation(s)
- Hok-Sau Kwong
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Matteo Paloni
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Loïc Grandvuillemin
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Savannah Sirounian
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Aurélie Ancelin
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Josephine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Marina Grimaldi
- IRCM (Institut de Recherche en Cancérologie de Montpellier), Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Coralie Carivenc
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Claudia Lancey
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Timothy J Ragan
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Emma L Hesketh
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Patrick Balaguer
- IRCM (Institut de Recherche en Cancérologie de Montpellier), Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Alessandro Barducci
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France
| | - Jakub Gruszczyk
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France.
| | - William Bourguet
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
27
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
28
|
Li L, He G, Shi M, Zhu J, Cheng Y, Chen Y, Chen J, Xue Q. Edaravone dexborneol ameliorates cognitive impairment by regulating the NF-κB pathway through AHR and promoting microglial polarization towards the M2 phenotype in mice with bilateral carotid artery stenosis (BCAS). Eur J Pharmacol 2023; 957:176036. [PMID: 37673366 DOI: 10.1016/j.ejphar.2023.176036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Cerebral small vessel disease (CSVD) is one of the most important causes of stroke and vascular dementia, so exploring effective treatment modalities for CSVD is warranted. This study aimed to explore the anti-inflammatory effects of Edaravone dexborneol (C.EDA) in a CSVD model. Mice with CSVD showed distinct cognitive decline, as assessed by the Morris water maze (MWM). Pathological staining verified leakage across the blood‒brain barrier (BBB), microglial proliferation, neuronal loss and demyelination. Western blot analysis demonstrated that M1 microglia dominated prophase and released proinflammatory molecules; the aryl hydrocarbon receptor (AHR) was found to participate in modulating nuclear factor-kappa B (NF-κB) signalling activation through tumour necrosis factor receptor-associated factor-6 (TRAF6). C.EDA treatment resulted in the polarization of microglia from the M1 to the M2 phenotype. Mice sequentially treated with C.EDA exhibited a significant improvement in cognitive function; expression of the anti-inflammatory cytokines and modulatory proteins AHR and TRAF6 was upregulated, while the levels of pNF-κBp65 and pIΚBα were downregulated. C.EDA promoted microglial activation towards the M2 phenotype by upregulating AHR expression, which prevented TRAF6 ubiquitination, promoted NF-κB RelA/p65 protein degradation and inhibited subsequent NF-κB phosphorylation. Mechanistically, the anti-inflammatory effect of C.EDA alleviated neuronal loss and myelin damage, while at the functional level, C.EDA improved cognitive function and thus showed good application prospects.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Guojun He
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Mingyu Shi
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Yongqing Cheng
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Yang Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Jin Chen
- Department of Neurology, The First People's Hospital of Yancheng, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224005, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
29
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
30
|
Daffern N, Kelley K, Villegas JA, Radhakrishnan I. Prostaglandins as Candidate Ligands for a Per-ARNT-Sim (PAS) Domain of Steroid Receptor Coactivator 1 (SRC1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548854. [PMID: 37502902 PMCID: PMC10369948 DOI: 10.1101/2023.07.13.548854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Steroid receptor coactivators (SRCs) comprise a family of three paralogous proteins commonly recruited by eukaryotic transcription factors. Each SRC harbors two tandem Per-ARNT-Sim (PAS) domains that are broadly distributed that bind small molecules and regulate interactions. Using computational docking, solution NMR, mass spectrometry, and molecular dynamics simulations, we show that the SRC1 PAS-B domain can bind to certain prostaglandins (PGs) either non-covalently to a surface that overlaps with the site used to engage transcription factors or covalently to a single, specific, conserved cysteine residue next to a solvent accessible hydrophobic pocket. This pocket is in proximity to the canonical transcription factor binding site, but on the opposite side of the domain, suggesting a potential mode of regulating transcriptional activator-coactivator interactions.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Kade Kelley
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - José A Villegas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
31
|
Hanieh H, Bani Ismail M, Alfwuaires MA, Ibrahim HIM, Farhan M. Aryl Hydrocarbon Receptor as an Anticancer Target: An Overview of Ten Years Odyssey. Molecules 2023; 28:molecules28103978. [PMID: 37241719 DOI: 10.3390/molecules28103978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor belonging to the basic helix-loop-helix (bHLH)/per-Arnt-sim (PAS) superfamily, is traditionally known to mediate xenobiotic metabolism. It is activated by structurally diverse agonistic ligands and regulates complicated transcriptional processes through its canonical and non-canonical pathways in normal and malignant cells. Different classes of AhR ligands have been evaluated as anticancer agents in different cancer cells and exhibit efficiency, which has thrust AhR into the limelight as a promising molecular target. There is strong evidence demonstrating the anticancer potential of exogenous AhR agonists including synthetic, pharmaceutical, and natural compounds. In contrast, several reports have indicated inhibition of AhR activity by antagonistic ligands as a potential therapeutic strategy. Interestingly, similar AhR ligands exert variable anticancer or cancer-promoting potential in a cell- and tissue-specific mode of action. Recently, ligand-mediated modulation of AhR signaling pathways and the associated tumor microenvironment is emerging as a potential approach for developing cancer immunotherapeutic drugs. This article reviews advances of AhR in cancer research covering publication from 2012 to early 2023. It summarizes the therapeutic potential of various AhR ligands with an emphasis on exogenous ligands. It also sheds light on recent immunotherapeutic strategies involving AhR.
Collapse
Affiliation(s)
- Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan
| | - Mohammad Bani Ismail
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Hairul-Islam M Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Mahdi Farhan
- International Medical Research Center (iMReC), Aqaba 77110, Jordan
- Department of Drug Development, UniTechPharma, 1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Lin L, Liu Y, Chen L, Dai Y, Xia Y. Discovery of Norisoboldine Analogue III 11 as a Novel and Potent Aryl Hydrocarbon Receptor Agonist for the Treatment of Ulcerative Colitis. J Med Chem 2023; 66:6869-6888. [PMID: 37154394 DOI: 10.1021/acs.jmedchem.3c00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcript factor, belonging to the basic helix-loop-helix-Per-ARNT-SIM family, is closely associated with health and diseases. Targeting AhR is an emerging therapeutic strategy for various diseases. Norisoboldine (NOR), which is the main alkaloid of Linderae Radix, has been known to activate AhR. Unfortunately, the oral bioavailability (F) of NOR is only 2.49%. To improve the chemical efficacy and bioavailability, we designed and synthesized NOR analogues. Using various in vitro assays, 2-methoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-9-ol (III11) was discovered as a potent AhR agonist. Compound III11 enhanced the expression of AhR downstream target genes, triggered AhR nuclear translocation, and promoted differentiation of regulatory T cells. More importantly, III11 exhibited good bioavailability (F = 87.40%) and remarkable therapeutic effects in a mouse model of ulcerative colitis at a dosage of 10 mg/kg. These findings may serve as a reference for the design of novel AhR agonists against immune and inflammatory diseases.
Collapse
Affiliation(s)
- Li Lin
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongmin Liu
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Chen
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
33
|
Wen Z, Zhang Y, Zhang B, Hang Y, Xu L, Chen Y, Xie Q, Zhao Q, Zhang L, Li G, Zhao B, Sun F, Zhai Y, Zhu Y. Cryo-EM structure of the cytosolic AhR complex. Structure 2023; 31:295-308.e4. [PMID: 36649707 DOI: 10.1016/j.str.2022.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/17/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is an important ligand-activated transcription factor involved in the regulation of various important physiological functions. Here, we report the cryo-EM structures of the Hsp90-AhR-p23 complex with or without bound XAP2, where the structure of the mouse AhR PAS-B domain is resolved. A highly conserved bridge motif of AhR is responsible for the interaction with the Hsp90 dimeric lumen. The ligand-free AhR PAS-B domain is attached to the Hsp90 dimer and is stabilized in the complex with bound XAP2. In addition, the DE-loop and a group of conserved pocket inner residues in the AhR PAS-B domain are found to be important for ligand binding. These results reveal the structural basis of the biological functions of AhR. Moreover, the protein purification method presented here allows the isolation of stable mouse AhR protein, which could be used to develop high-sensitivity biosensors for environmental pollutant detection.
Collapse
Affiliation(s)
- Zuoling Wen
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Beirong Zhang
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yumo Hang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China; Center for Biological Imaging, Core Facilities for Protein Science, Institute of Biophysics, CAS, Beijing, China.
| | - Yujia Zhai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
34
|
Patil NY, Friedman JE, Joshi AD. Role of Hepatic Aryl Hydrocarbon Receptor in Non-Alcoholic Fatty Liver Disease. RECEPTORS (BASEL, SWITZERLAND) 2023; 2:1-15. [PMID: 37284280 PMCID: PMC10240927 DOI: 10.3390/receptors2010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerous nuclear receptors including farnesoid X receptor, liver X receptor, peroxisome proliferator-activated receptors, pregnane X receptor, hepatic nuclear factors have been extensively studied within the context of non-alcoholic fatty liver disease (NAFLD). Following the first description of the Aryl hydrocarbon Receptor (AhR) in the 1970s and decades of research which unveiled its role in toxicity and pathophysiological processes, the functional significance of AhR in NAFLD has not been completely decoded. Recently, multiple research groups have utilized a plethora of in vitro and in vivo models that mimic NAFLD pathology to investigate the functional significance of AhR in fatty liver disease. This review provides a comprehensive account of studies describing both the beneficial and possible detrimental role of AhR in NAFLD. A plausible reconciliation for the paradox indicating AhR as a 'double-edged sword' in NAFLD is discussed. Finally, understanding AhR ligands and their signaling in NAFLD will facilitate us to probe AhR as a potential drug target to design innovative therapeutics against NAFLD in the near future.
Collapse
Affiliation(s)
- Nikhil Y. Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Aditya D. Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|