1
|
Wang T, Wang Y. Component Effects on Agricultural Spray. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7212-7224. [PMID: 40088177 DOI: 10.1021/acs.langmuir.5c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Regulating the spray behavior of liquids is of great importance in various practical applications, especially in improving pesticide utilization efficiency because the spray states are directly related to the spray drift and deposition efficiency. The components of pesticides, including surfactants, polymers, and active ingredients, were found to influence spray behavior significantly. However, because of both the complexity of interactions in sprayed liquids and the technology limit, only a few specific aspects of the formation of droplets have been studied, and a comprehensive and general understanding is still lacking. This brief review summarizes the effects of surfactants, polymers, and active ingredients on spray and highlights the underlying mechanisms related to sheet breakup and droplet formation. Other factors that warrant detailed exploration in the future are proposed, including dilatational viscoelasticity, zeta potential, aggregation, and sheet thickness. Finally, insights into the design of spray additives for agricultural applications are provided.
Collapse
Affiliation(s)
- Tengda Wang
- University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, School of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Yilin Wang
- University of Science and Technology of China, Hefei 230026, P. R. China
- State Key Laboratory of Bioinspired Interfacial Materials Science, Suzhou Institute for Advanced Research, School of Nano Science and Technology, University of Science and Technology of China, Suzhou 215123, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Yin X, Zhao Y, Pei C, Wang Z, Sun Y, Zhang M, Hao Y, Wei X, Zhao Z, Dong K, Zhao J, Chen Y, Song Y. Stress Release of Single Crystal Arrays Bridged by SAM Interface Toward Highly Mechanically Durable Flexible Perovskite NIR Photodetector. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413721. [PMID: 39945064 DOI: 10.1002/adma.202413721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/08/2025] [Indexed: 03/27/2025]
Abstract
Perovskite photodetectors with superior optoelectronic properties, lightweight, and compatibility with flexible substrates have attracted much attention in wearable electronics. However, the large bandgap, inherent brittleness, poor environmental stability, and weak interfacial adhesion interaction between perovskites and substrates hinder the application of near-infrared (NIR) wearable devices. Herein, a universal strategy to enhance the performance and mechanical stability of flexible perovskite NIR photodetector arrays is demonstrated through a combination of mussel-inspired self-assembled monolayer (SAM) bridging interface and precise modulation of the nano-array size, which enables to significantly increase interfacial adhesion, crystallinity, crystallographic orientation, and reduce mechanical stresses of perovskite single-crystal arrays. Moreover, inserting paddle-wheel metal-organic cluster ligands lead to an unprecedented small bandgap of 1.04 eV, enhanced lattice rigidity, and environmental stability for 2D perovskite. The flexible perovskite NIR photodetector arrays with superior mechanical robustness and record NIR performance are revealed with a maximum response wavelength of 1050 nm, a responsivity of 1.66 A W-1, detectivity of 6.19 × 1012 Jones, high fidelity imaging, and extra-long environmental stability. This work pioneers a new insight into the integration of high-performance and mechanically durable perovskite flexible wearable devices.
Collapse
Affiliation(s)
- Xing Yin
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yingjie Zhao
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chaoxin Pei
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhaokai Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yicheng Sun
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mengru Zhang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yi Hao
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiao Wei
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zishen Zhao
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kaixin Dong
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinjin Zhao
- Department of Physics, Shanxi Datong University, Datong, 037009, P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Shen K, Fan C, Ge S, Wang L, Yin W, Wang Y, Wu X, Chen X, Wang S, Song M, Jiang L. Self-powered Wraparound (Abaxial) Droplet Deposition via a Superhydrophobic Surface Aid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2773-2783. [PMID: 39841121 DOI: 10.1021/acs.jafc.4c08585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO2 nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g-1, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages. This intensified droplet-solid electrostatic attraction guides droplets to wrap around and deposit on the abaxial surface. Further, a homemade fluorinated superhydrophobic tube enhances spray charge and abaxial deposition density on superhydrophobic plant leaves by 47- and 5- times, respectively, compared to those obtained via direct spraying. This work will significantly improve agrochemical efficiency, reducing environmental risks in sustainable agriculture and related industries.
Collapse
Affiliation(s)
- Kexin Shen
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Congcong Fan
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lixia Wang
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenqian Yin
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yaling Wang
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxia Wu
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangmeng Chen
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Shun Wang
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Meirong Song
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Jiang B, Chen X, Pan X, Tao L, Huang Y, Tang J, Li X, Wang P, Ma G, Zhang J, Wang H. Advances in Metal Halide Perovskite Memristors: A Review from a Co-Design Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409291. [PMID: 39560151 PMCID: PMC11727241 DOI: 10.1002/advs.202409291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/22/2024] [Indexed: 11/20/2024]
Abstract
The memristor has recently demonstrated considerable potential in the field of large-scale data information processing. Metal halide perovskites (MHPs) have emerged as the leading contenders for memristors due to their sensitive optoelectronic response, low power consumption, and ability to be prepared at low temperatures. This work presents a comprehensive enumeration and analysis of the predominant research advancements in mechanisms of resistance switch (RS) behaviors in MHPs-based memristors, along with a summary of useful characterization techniques. The impact of diverse optimization techniques on the functionality of perovskite memristors is examined and synthesized. Additionally, the potential of MHPs memristors in data processing, physical encryption devices, artificial synapses, and brain-like computing advancement of MHPs memristors is evaluated. This review can prove a valuable reference point for the future development of perovskite memristors applications. In conclusion, the current challenges and prospects of MHPs-based memristors are discussed in order to provide insights into potential avenues for the development of next-generation information storage technologies and biomimetic applications.
Collapse
Affiliation(s)
- Bowen Jiang
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Xiang Chen
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Xiaoxin Pan
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Li Tao
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Yuangqiang Huang
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Jiahao Tang
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Xiaoqing Li
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Peixiong Wang
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Guokun Ma
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Jun Zhang
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| | - Hao Wang
- Hubei Yangtze Memory LaboratoriesWuhan430205China
- Institute of Microelectronics and Integrated Circuits, School of MicroelectronicsHubei UniversityWuhan430062China
| |
Collapse
|
5
|
Zhang ZY, Wang GP. Luminescence Patterns on Multimillimeter Single-Crystal MAPbBr 3 Microplatelets via Thermal Ablation Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64353-64363. [PMID: 39501619 DOI: 10.1021/acsami.4c15838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The single crystal distinguishes itself as the most outstanding representative of excellent optoelectronic performance among perovskite semiconductors due to its exceptional charge carrier properties, extraordinary optophysics, precise structural geometries, and superior material stabilities. However, it exhibits mediocre performance in light emission, which can be attributed to its excessive carrier diffusion lengths and extremely low recombination rates. To address this challenge, this study puts forward a controllable high-temperature annealing treatment strategy concentrating on multimillimeter-scale MAPbBr3 micrometer-thick platelet single crystals (MPSCs). Through the utilization of thermal ablation effects to convert the surface monocrystalline lattices into polycrystalline perovskite nanocrystals (PNCs) with a remarkably increased specific surface area, the fluorescence intensity arising from the rapid recombination of free carriers on the PNC surface is enhanced by 320 times compared to the pristine MPSC surface. These PNCs produced through surface annealing, with the characteristic of loose adhesion to surfaces, can be mechanically wiped away and regenerated in situ via reannealing the residual MAPbBr3 MPSCs, guaranteeing high intensity, durability, and standard geometric fluorescence. Moreover, by regulating the surface distributions of thermal ablation effects and carrying out embossing annealing treatment or laser direct writing, we can design and fabricate relatively complex, high-contrast (255×), and clearly resolved fluorescence patterns on MPSC surfaces.
Collapse
Affiliation(s)
- Zhen Yu Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Guo Ping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Trabelsi ABG, Rabia M, Alkallas FH, Kusmartsev FV. Polypyrrole-bismuth tungstate/polypyrrole core-shell for optoelectronic devices exhibiting Schottky photodiode behavior. Sci Rep 2024; 14:27651. [PMID: 39532899 PMCID: PMC11557588 DOI: 10.1038/s41598-024-74081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
A polypyrrole-bismuth tungstate (Ppy-Bi2WO6) core-shell nanocomposite (n-type material) has been developed on a layered Ppy (p-type) base as an efficient light-capturing material exhibiting photodiode behavior. This device demonstrates promising sensitivity for light sensing and captures across a broad spectral range, from near IR to UV. The Bi2WO6/Ppy nanocomposite boasts an optimal bandgap of 2.0 eV, compared to 3.4 eV for Ppy and 2.5 eV for Bi2WO6. The crystalline size of the core-shell composite is approximately 21 nm, emphasizing its photon absorption capabilities. The composite particles, around 100 nm in length, feature a highly porous morphology that effectively traps incident photons. The performance of this optoelectronic device is evaluated using current density (J) measurements under light (Jph) and dark (Jo) conditions. In darkness, the n-p type semiconductor exhibits limited current with a Jo of -0.22 mA cm-2 at 2.0 V. When exposed to white light, the Ppy- Bi2WO6/Ppy device generates hot electrons, achieving a Jph value of 1.1 mA/cm-2 at 2.0 V. It shows a superior responsivity (R) of 6.6 mA/W at 340 nm, gradually decreasing to 6.3 mA/W at 440 nm and 4.2 mA/W at 540 nm, indicating high sensitivity across the UV-Vis spectrum. At 730 nm, the R-value is 2.6 mA/W, highlighting its sensitivity in the near IR region. Additionally, at 340 nm, the device achieves a detectivity (D) value of 0.15 × 10¹⁰ Jones, which decreases with longer wavelengths to 0.14 × 10¹⁰ Jones at 440 nm, 0.9 × 10⁹ Jones at 540 nm, and 0.63 × 10⁹ Jones at 730 nm. With its great stability, low cost, easy fabrication, and potential for mass production, this optoelectronic light sensor and photodiode device holds significant promise for industrial applications as a highly effective optoelectronic device.
Collapse
Affiliation(s)
- Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Fatemah H Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Fedor V Kusmartsev
- Physics Department, Khalifa University, Abu Dhabi, UAE
- Physics Department, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
7
|
Tang XM, Ou Q, Wang ZY, Shi XR, Tong CJ, Long M. Positional Isomerism of Aromatic Heterocyclic Spacer Cations in Two-Dimensional Dion-Jacobson Hybrid Perovskites. J Phys Chem Lett 2024; 15:9575-9584. [PMID: 39269336 DOI: 10.1021/acs.jpclett.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Ligand engineering of aromatic heterocyclic cations in two-dimensional (2D) Dion-Jacobson (DJ) perovskites has been widely explored in recent years. In this study, how the positional isomers of aromatic heterocyclic cations tune the lattice of 2D perovskites, thereby influencing the transport and recombination dynamics of charge carriers, has been investigated through nonadiabatic molecular dynamics simulations. We demonstrate that the meta-substituted 3-(aminomethyl)pyridinium (3AMPY) cations greatly reduce the strength of electron-vibration coupling since the strong hydrogen-bonding network introduced by the changes in the arrangement of spacer cations significantly suppresses the structural thermal fluctuations. Compared to the para-substituted 4-(aminomethyl)pyridinium (4AMPY) cation, using the asymmetric 3AMPY as a spacer cation can achieve improved in-plane transport performance, enhanced thermal stability, and suppressed charge carrier recombination through weakening electron-vibration interactions. Our results explain the observed lifetime difference between the two types of DJ-phase perovskites in experiments and provide new guidance for optimizing the performance of perovskite devices.
Collapse
Affiliation(s)
- Xi-Meng Tang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Qian Ou
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Zhong-Yuan Wang
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xue-Rui Shi
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
| | - Chuan-Jia Tong
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Mengqiu Long
- Institute of Quantum Physics, Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| |
Collapse
|
8
|
Wang H, Zhu S, Sheng J, Gao F, Yang L, Hu X, Fernández-Martínez F, Lin L, You C, Xing D. Lead-rivet strategy of growing perovskite nanocrystals for excellent toxicity inhibition and spinning application. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134796. [PMID: 38870851 DOI: 10.1016/j.jhazmat.2024.134796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Lead halide perovskite has demonstrated remarkable potential in the wearable field due to its exceptional photoelectric conversion capability. However, its lead toxicity issue has consistently been subject to criticism, significantly impeding its practical application. To address this challenge, an innovative approach called lead-rivet was proposed for the in-situ growth of perovskite crystalline structures. Through the formation of S-Pb bonds, each Pb2+ ion was firmly immobilized on the surface of the silica matrix, enabling in situ growth of perovskite nanocrystals via ion coordination between Cs+ and halide species. The robust S-Pb bonding effectively restricted the mobility of lead ions and stabilized the perovskite structure without relying on surface ligands, thereby not only preventing toxicity leakage but also providing a favorable interface for depositing protective shells. The obtained perovskites exhibit intense and narrow-band fluorescence with full-width at half-maximum less than 23 nm and show excellent stability to high temperature (above 202 °C) and high humidity (water immersion over 27 days), thus making it possible to be used in varies textile technologies including melt spinning and wet spinning. The lead leakage rate of particles is only 4.15 % demonstrating excellent toxicity inhibition performance. The prepared fibers maintained good extensibility and flexibility which could be used for 3D-printing and textiles weaving. Most importantly, the detected Pb2+ leaching was negligible as low as to 0.732 ppb which meet the standard of World Health Organization (WHO) for drinking water (<10 ppb), and the cell survival rate remained 99.196 % for PLA fluorescent filament after 24 h cultivation which showing excellent safety to human body and environment. This study establishes a controllable and highly adaptable synthesis method, thereby providing a promising avenue for the safe utilization of perovskite materials.
Collapse
Affiliation(s)
- Hanlong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Intelligent Wearable Engineering Research Center of Qingdao, College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
| | - Shifeng Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Jiaoyue Sheng
- Qingdao No. 6 People's Hospital, Qingdao 266000, China.
| | - Feihong Gao
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
| | - Lei Yang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
| | - Xili Hu
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
| | - Francisco Fernández-Martínez
- Mechanical, Chemical and Industrial Design Engineering Department, ETSIDI, Universidad Politécnica de Madrid (UPM), Ronda de Valencia nº 3, 28012, Madrid, Spain.
| | - Longhui Lin
- Department of Pharmacy Xiamen Medical College, Xiamen 361023, China.
| | - Chaoyu You
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Intelligent Wearable Engineering Research Center of Qingdao, College of Textile and Clothing, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Song H, Chen S, Sun X, Cui Y, Yildirim T, Kang J, Yang S, Yang F, Lu Y, Zhang L. Enhancing 2D Photonics and Optoelectronics with Artificial Microstructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403176. [PMID: 39031754 PMCID: PMC11348073 DOI: 10.1002/advs.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Indexed: 07/22/2024]
Abstract
By modulating subwavelength structures and integrating functional materials, 2D artificial microstructures (2D AMs), including heterostructures, superlattices, metasurfaces and microcavities, offer a powerful platform for significant manipulation of light fields and functions. These structures hold great promise in high-performance and highly integrated optoelectronic devices. However, a comprehensive summary of 2D AMs remains elusive for photonics and optoelectronics. This review focuses on the latest breakthroughs in 2D AM devices, categorized into electronic devices, photonic devices, and optoelectronic devices. The control of electronic and optical properties through tuning twisted angles is discussed. Some typical strategies that enhance light-matter interactions are introduced, covering the integration of 2D materials with external photonic structures and intrinsic polaritonic resonances. Additionally, the influences of external stimuli, such as vertical electric fields, enhanced optical fields and plasmonic confinements, on optoelectronic properties is analysed. The integrations of these devices are also thoroughly addressed. Challenges and future perspectives are summarized to stimulate research and development of 2D AMs for future photonics and optoelectronics.
Collapse
Affiliation(s)
- Haizeng Song
- Henan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001China
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Shuai Chen
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Xueqian Sun
- School of Engineering, College of Engineering and Computer Sciencethe Australian National UniversityCanberraACT2601Australia
| | - Yichun Cui
- National Key Laboratory of Science and Technology on Test Physics and Numerical MathematicsBeijing100190China
| | - Tanju Yildirim
- Faculty of Science and EngineeringSouthern Cross UniversityEast LismoreNSW2480Australia
| | - Jian Kang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Shunshun Yang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Fan Yang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Sciencethe Australian National UniversityCanberraACT2601Australia
| | - Linglong Zhang
- College of Physics, Nanjing University of Aeronautics and AstronauticsKey Laboratory of Aerospace Information Materials and Physics (NUAA), MIITNanjing211106China
- Laboratory of Solid State MicrostructuresNanjing UniversityNanjing210093China
| |
Collapse
|
10
|
Chen Q, Ding Z, Zhang L, Wang D, Geng C, Feng Y, Zhang J, Ren M, Li S, Qaid SMH, Jiang Y, Yuan M. Uniaxial-Oriented Chiral Perovskite for Flexible Full-Stokes Polarimeter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400493. [PMID: 38733358 DOI: 10.1002/adma.202400493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Indexed: 05/13/2024]
Abstract
Full-Stokes polarization detection, with high integration and portability, offers an efficient path toward next-gen multi-information optoelectronic systems. Nevertheless, current techniques relying on optical filters create rigid and bulky configurations, limiting practicality. Here, a flexible, filter-less full-Stokes polarimeter featuring a uniaxial-oriented chiral perovskite film is first reported. It is found that, the strategic manipulation of the surfactant-mediated Marangoni effect during blade coating, is crucial for guiding an equilibrious mass transport to achieve oriented crystallization. Through this approach, the obtained uniaxial-oriented chiral perovskite films inherently possess anisotropy and chirality, and thereby with desired sensitivity to both linearly polarized light and circularly polarized light vectors. The uniaxial-oriented crystalline structure also improves photodetection, achieving a specific detectivity of 5.23 × 1013 Jones, surpassing non-oriented devices by 10×. The as-fabricated flexible polarimeters enable accurate capture of full-Stokes polarization without optical filters, exhibiting slight detection errors for the Stokes parameters: ΔS1 = 9.2%, ΔS2 = 8.6%, and ΔS3 = 6.5%, approaching the detection accuracy of optics-filter polarimeters. This proof of concept also demonstrates applications in matrix polarization imaging.
Collapse
Affiliation(s)
- Quanlin Chen
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zijin Ding
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Li Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Di Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cong Geng
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yanxing Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jia Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Miao Ren
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Saisai Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yuanzhi Jiang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Mingjian Yuan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
11
|
Qu W, Zong J, Feng X, Song J, Yang B, Wei H. Preferred Orientation and Phase Distribution of Quasi-2D Perovskite for Bifunctional Light-Emitting Photodetectors. NANO LETTERS 2024; 24:7593-7600. [PMID: 38869928 DOI: 10.1021/acs.nanolett.4c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In traditional optical wireless communication (OWC) systems, the simultaneous use of multiple sets of light-emitting diodes (LEDs) and photodetectors (PDs) increases the system complexity and instability. Here we report bifunctional light-emitting photodetectors (LEPDs) fabricated with quasi-2D perovskite (F-PEA)2Cs4Pb5I11Br5 as light-emitting/detecting layers for efficient, miniaturized, and intelligent bidirectional OWC. By simply changing the solvent composition of the precursor solution and using antisolvent engineering, we manipulated the crystal orientation and phase distribution of (F-PEA)2Cs4Pb5I11Br5, realizing high irradiance (4.36 μW cm-2) and a -3 dB refresh rate (0.21 MHz) of electroluminescence in LED mode as well as low noise (below 1 pA Hz-1/2) and high responsivity (0.1 A W-1) in PD mode. The rapid and accurate OWC process was demonstrated through interaction of LEPDs. We also demonstrated the high-fidelity compression and digitization of high-resolution (256 × 256 pixels) color images using the four-step phase shift method to realize intelligent encrypted image OWC.
Collapse
Affiliation(s)
- Wei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Jia Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Jinmei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
12
|
Marunchenko A, Kumar J, Kiligaridis A, Rao SM, Tatarinov D, Matchenya I, Sapozhnikova E, Ji R, Telschow O, Brunner J, Yulin A, Pushkarev A, Vaynzof Y, Scheblykin IG. Charge Trapping and Defect Dynamics as Origin of Memory Effects in Metal Halide Perovskite Memlumors. J Phys Chem Lett 2024; 15:6256-6265. [PMID: 38843474 PMCID: PMC11197924 DOI: 10.1021/acs.jpclett.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Large language models for artificial intelligence applications require energy-efficient computing. Neuromorphic photonics has the potential to reach significantly lower energy consumption in comparison with classical electronics. A recently proposed memlumor device uses photoluminescence output that carries information about its excitation history via the excited state dynamics of the material. Solution-processed metal halide perovskites can be used as efficient memlumors. We show that trapping of photogenerated charge carriers modulated by photoinduced dynamics of the trapping states themselves explains the memory response of perovskite memlumors on time scales from nanoseconds to minutes. The memlumor concept shifts the paradigm of the detrimental role of charge traps and their dynamics in metal halide perovskite semiconductors by enabling new applications based on these trap states. The appropriate control of defect dynamics in perovskites allows these materials to enter the field of energy-efficient photonic neuromorphic computing, which we illustrate by proposing several possible realizations of such systems.
Collapse
Affiliation(s)
- Alexandr Marunchenko
- Chemical
Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- School of
Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg 197101, Russian Federation
| | - Jitendra Kumar
- Chemical
Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | | | - Shraddha M. Rao
- Chemical
Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Dmitry Tatarinov
- School of
Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg 197101, Russian Federation
| | - Ivan Matchenya
- School of
Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg 197101, Russian Federation
| | - Elizaveta Sapozhnikova
- School of
Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg 197101, Russian Federation
| | - Ran Ji
- Chair for
Emerging Electronic Technologies, Technical
University of Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
- Leibniz-Institute
for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Oscar Telschow
- Chair for
Emerging Electronic Technologies, Technical
University of Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
- Leibniz-Institute
for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Julius Brunner
- Chair for
Emerging Electronic Technologies, Technical
University of Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
- Leibniz-Institute
for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Alexei Yulin
- School of
Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg 197101, Russian Federation
| | - Anatoly Pushkarev
- School of
Physics and Engineering, ITMO University, 49 Kronverksky, St. Petersburg 197101, Russian Federation
| | - Yana Vaynzof
- Chair for
Emerging Electronic Technologies, Technical
University of Dresden, Nöthnitzer Straße 61, 01187 Dresden, Germany
- Leibniz-Institute
for Solid State and Materials Research Dresden, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
13
|
Xu J, Wang Q, Shen M, Yang Y, Liu H, Yuan X, Zhang Y, Liu K, Cai S, Huang Y, Ren X. Demonstration of a 3D-Assembled Dual-Mode Photodetector Based on Tubular Graphene/III-V Semiconductors Heterostructure and Coplanar Three Electrodes. ACS NANO 2024; 18:14978-14988. [PMID: 38805401 DOI: 10.1021/acsnano.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
3D assembly technology is a cutting-edge methodology for constructing high-performance and multifunctional photodetectors since some attractive photodetection features such as light trapping effect, omnidirectional ability, and high spatial resolution can be introduced. However, there has not been any report of 3D-assembled multimode photodetectors owing to the lack of design and fabrication guideline of electrodes serving for 3D heterostructures. In this study, a 3D-assembled dual-mode photodetector (3DdmPD) was realized successfully via the clever electrical contact between the rolled-up tubular graphene/GaAs/InGaAs heterostructure and planar metal electrode. Arbitrary switching of three coplanar electrodes makes the as-fabricated tubular 3D photodetector work at the unbiased photodiode mode, which is suitable for energy conservation high-speed photodetection, or the biased photoconductive mode, which favors extremely weak light photodetection, fully showing the advantages of multifunctional detection. In more detail, the Ilight/Idark ratio reached as high as 2 × 104, and a responsivity of 42.3 mA/W, a detectivity of 1.5 × 1010 Jones, as well as a rising/falling time (τr/τf) of 360/370 μs were achieved under the self-driven photodiode mode. Excitingly, 3DdmPD shows omnidirectional photodetection ability at the same time. When 3DdmPD works at the photoconductive mode with 5 V bias, its responsivity is extremely high as 7.9 × 104 A/W and corresponding detectivity is increased to 1.0 × 1011 Jones. Benefiting from the totally independent coplanar electrodes, 3DdmPD is much more easily integrated as arrays that are expected to offer the function of high-speed omnidirectional image-sensing with ultralow power consumption than the planar counterparts which share communal bottom electrodes. We believe that our work can contribute to the progress of 3D-assembled optoelectronic devices.
Collapse
Affiliation(s)
- Jiyu Xu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Mingyang Shen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yubo Yang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Kai Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shiwei Cai
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yongqing Huang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
14
|
Duan Y, Yu R, Zhang H, Yang W, Xie W, Huang Y, Yin Z. Programmable, High-resolution Printing of Spatially Graded Perovskites for Multispectral Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313946. [PMID: 38582876 DOI: 10.1002/adma.202313946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Micro/nanostructured perovskites with spatially graded compositions and bandgaps are promising in filter-free, chip-level multispectral, and hyperspectral detection. However, achieving high-resolution patterning of perovskites with controlled graded compositions is challenging. Here, a programmable mixed electrohydrodynamic printing (M-ePrinting) technique is presented to realize the one-step direct-printing of arbitrary spatially graded perovskite micro/nanopatterns for the first time. M-ePrinting enables in situ mixing and ejection of solutions with controlled composition/bandgap by programmatically varying driving voltage applied to a multichannel nozzle. Composition can be graded over a single dot, line or complex pattern, and the printed feature size is down to 1 µm, which is the highest printing resolution of graded patterns to the knowledge. Photodetectors based on micro/nanostructured perovskites with halide ions gradually varying from Br to I are constructed, which successfully achieve multispectral detection and full-color imaging, with a high detectivity and responsivity of 3.27 × 1015 Jones and 69.88 A W-1, respectively. The presented method provides a versatile and competitive approach for such miniaturized bandgap-tunable perovskite spectrometer platforms and artificial vision systems, and also opens new avenues for the digital fabrication of composition-programmable structures.
Collapse
Affiliation(s)
- Yongqing Duan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Yu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanyuan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weili Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenshuo Xie
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhouping Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
15
|
Malik S, Zhao Y, He Y, Zhao X, Li H, Yi W, Occhipinti LG, Wang M, Akhavan S. Spray-lithography of hybrid graphene-perovskite paper-based photodetectors for sustainable electronics. NANOTECHNOLOGY 2024; 35:325301. [PMID: 38640909 DOI: 10.1088/1361-6528/ad40b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
Paper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature. In addition, the absence of established fabrication methods is impeding its utilization in wearable applications. Unlike other paper-based electronics with added layers, in this study, we present a scalable spray-lithography on a commercial paper substrate. We present a non-vacuum spray-lithography of chemical vapor deposition (CVD) single-layer graphene (SLG), carbon nanotubes (CNTs) and perovskite quantum dots (QDs) on a paper substrate. This approach combines the advantages of two large-area techniques: CVD and spray-coating. The first technique allows for the growth of SLG, while the second enables the spray coating of a mask to pattern CVD SLG, electrodes (CNTs), and photoactive (QDs) layers. We harness the advantages of perovskite QDs in photodetection, leveraging their strong absorption coefficients. Integrating them with the graphene enhances the photoconductive gain mechanism, leading to high external responsivity. The presented device shows high external responsivity of ∼520 A W-1at 405 nm at <1 V bias due to the photoconductive gain mechanism. The prepared paper-based photodetectors (PDs) achieve an external responsivity of 520 A W-1under 405 nm illumination at <1 V operating voltage. To the best of our knowledge, our devices have the highest external responsivity among paper-based PDs. By fabricating arrays of PDs on a paper substrate in the air, this work highlights the potential of this scalable approach for enabling ubiquitous electronics on paper.
Collapse
Affiliation(s)
- Sunaan Malik
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yining Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yutong He
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Xinyu Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Hongyu Li
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Wentian Yi
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luigi G Occhipinti
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Shahab Akhavan
- Institute for Materials Discovery, University College London, London, United Kingdom
| |
Collapse
|
16
|
Wan Y, Wang Y, Yuan S, Wan Z, Lu Y, Wang L, Wang Q. Dimension-Confined Growth of a Crack-Free PbS Microplate Array for Infrared Image Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26386-26394. [PMID: 38722643 DOI: 10.1021/acsami.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Epitaxy of semiconductors is a necessary step toward the development of electronic devices such as lasers, detectors, transistors, and solar cells. However, the lattice ordering of semiconductor functional films is inevitably disrupted by excessive concentrated stress due to the mismatch of the thermal expansion coefficient. Herein, combined with the first-principles calculation, we find that a rigid film/substrate bilayer heterostructure with a large thermal expansion mismatch upon cooling to room temperature from growth is free of surface cracks when the rigid film exhibits a dimension smaller than the critical condition for the breaking energy. The principle has been verified in a PbS/SrTiO3 bilayer system that is crack free on PbS single-crystalline microplate arrays through the designing of a dimension-confined growth (DCG) method. Interestingly, this crack-free, large-scale PbS microplate array exhibits exceptional uniformity in morphology, dimensions, thickness, and photodetection properties, enabling a broad-band infrared image sensing. This work provides a new perspective to design materials and arrays that demand smooth and continuous surfaces, which are not limited only to semiconductor electronics but also include mechanical structures, optical materials, biomedical materials, and others.
Collapse
Affiliation(s)
- Yu Wan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yan Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Shengpeng Yuan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Zhiyang Wan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Yan Lu
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Li Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Qisheng Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
17
|
Yu X, Ji Y, Shen X, Le X. Progress in Advanced Infrared Optoelectronic Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:845. [PMID: 38786801 PMCID: PMC11123936 DOI: 10.3390/nano14100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Infrared optoelectronic sensors have attracted considerable research interest over the past few decades due to their wide-ranging applications in military, healthcare, environmental monitoring, industrial inspection, and human-computer interaction systems. A comprehensive understanding of infrared optoelectronic sensors is of great importance for achieving their future optimization. This paper comprehensively reviews the recent advancements in infrared optoelectronic sensors. Firstly, their working mechanisms are elucidated. Then, the key metrics for evaluating an infrared optoelectronic sensor are introduced. Subsequently, an overview of promising materials and nanostructures for high-performance infrared optoelectronic sensors, along with the performances of state-of-the-art devices, is presented. Finally, the challenges facing infrared optoelectronic sensors are posed, and some perspectives for the optimization of infrared optoelectronic sensors are discussed, thereby paving the way for the development of future infrared optoelectronic sensors.
Collapse
Affiliation(s)
- Xiang Yu
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xinyi Shen
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| | - Xiaoyun Le
- School of Physics, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
- Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
18
|
Huang YH, Wang XD, Li WG, Zou SY, Yang X, Kuang DB. Band Structure Optimized by Electron-Acceptor Cations for Sensitive Perovskite Single Crystal Self-Powered Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306821. [PMID: 38009496 DOI: 10.1002/smll.202306821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Low-dimensional perovskites afford improved stability against moisture, heat, and ionic migration. However, the low dimensionality typically results in a wide bandgap and strong electron-phonon coupling, which is undesirable for optoelectronic applications. Herein, semiconducting A-site organic cation engineering by electron-acceptor bipyridine (bpy) cations (2,2'-bpy2+ and 4,4'-bpy2+) is employed to optimize band structure in low-dimensional perovskites. Benefiting from the merits of lower lowest unoccupied molecular orbital (LUMO) energy for 4,4'-bpy2+ cation, the corresponding (4,4'-bpy)PbI4 is endowed with a smaller bandgap (1.44 eV) than the (CH3NH3)PbI3 (1.57 eV) benchmark. Encouragingly, an intramolecular type II band alignment formation between inorganic Pb-I octahedron anions and bpy2+ cations favors photogenerated electron-hole pairs separation. In addition, a shortening distance between inorganic Pb-I octahedral chains in (4,4'-bpy)PbI4 single crystal (SC) can effectively promote carrier transfer. As a result, a self-powered photodetector based on (4,4'-bpy)PbI4 SC exhibits 131 folds higher on/off ratio (3807) than the counterpart of (2,2'-bpy)2Pb3I10 SC (29). The presented result provides an effective strategy for exporting novel organic cation-based low-dimensional perovskite SC for high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xu-Dong Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen-Guang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Su-Yan Zou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xin Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dai-Bin Kuang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Cheng X, Shen Z, Zhang Y. Bioinspired 3D flexible devices and functional systems. Natl Sci Rev 2024; 11:nwad314. [PMID: 38312384 PMCID: PMC10833470 DOI: 10.1093/nsr/nwad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 02/06/2024] Open
Abstract
Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.
Collapse
Affiliation(s)
- Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Gao R, He X, Chen C, Bao X, Yang F, Yang X, He J, Dong C, Li C, Chen S, Liang G, Jiang S, Tang J, Zhang G, Li K. (Bi,Sb) 2 Se 3 Alloy Thin Film for Short-Wavelength Infrared Photodetector and TFT Monolithic-Integrated Matrix Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308070. [PMID: 37849040 DOI: 10.1002/smll.202308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Short-wavelength infrared photodetectors play a significant role in various fields such as autonomous driving, military security, and biological medicine. However, state-of-the-art short-wavelength infrared photodetectors, such as InGaAs, require high-temperature fabrication and heterogenous integration with complementary metal-oxide-semiconductor (CMOS) readout circuits (ROIC), resulting in a high cost and low imaging resolution. Herein, for the first time, a low-cost, high-performance, high-stable, and thin-film transistor (TFT) ROIC monolithic-integrated (Bi,Sb)2 Se3 alloy thin-film short-wavelength infrared photodetector is reported. The (Bi,Sb)2 Se3 alloy thin-film short-wavelength infrared photodetectors demonstrate a high external quantum efficiency (EQE) of 21.1% (light intensity of 0.76 µW cm-2 ) and a fast response time (3.24 µs). The highest EQE is about two magnitudes than that of the extrinsic photoconduction of Sb2 Se3 (0.051%). In addition, the unpackaged devices demonstrate high electric and thermal stability (almost no attenuation at 120 °C for 312 h), showing potential for in-vehicle applications that may experient such a high temperature. Finally, both the (Bi,Sb)2 Se3 alloy thin film and n-type CdSe buffer layer are directly deposited on the TFT ROIC (with a 64 × 64-pixel array) with a low-temperature process and the material identification and imaging applications are presented. This work is a significant breakthrough in ROIC monolithic-integrated short-wavelength infrared imaging chips.
Collapse
Affiliation(s)
- Ruisi Gao
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xin He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan, 430056, P. R. China
| | - Chao Chen
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xiaoqing Bao
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Feifan Yang
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xuke Yang
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jungang He
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Chong Dong
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chuanhao Li
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shuo Chen
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Guangxing Liang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shenglin Jiang
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Tang
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Guangzu Zhang
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kanghua Li
- School of Integrated Circuits, Engineering Research Center for Functional Ceramics MOE, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
21
|
Feng X, Li C, Song J, He Y, Qu W, Li W, Guo K, Liu L, Yang B, Wei H. Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat Commun 2024; 15:577. [PMID: 38233400 PMCID: PMC10794423 DOI: 10.1038/s41467-024-44857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
Advanced photodetectors with intelligent functions are expected to take an important role in future technology. However, completing complex detection tasks within a limited number of pixels is still challenging. Here, we report a differential perovskite hemispherical photodetector serving as a smart locator for intelligent imaging and location tracking. The high external quantum efficiency (~1000%) and low noise (10-13 A Hz-0.5) of perovskite hemispherical photodetector enable stable and large variations in signal response. Analysing the differential light response of only 8 pixels with the computer algorithm can realize the capability of colorful imaging and a computational spectral resolution of 4.7 nm in a low-cost and lensless device geometry. Through machine learning to mimic the differential current signal under different applied biases, one more dimensional detection information can be recorded, for dynamically tracking the running trajectory of an object in a three-dimensional space or two-dimensional plane with a color classification function.
Collapse
Affiliation(s)
- Xiaopeng Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jinmei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yuhong He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Wei Qu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Weijun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Keke Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Lulu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P.R. China
| | - Haotong Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
- Optical Functional Theragnostic Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
22
|
Guo L, Qi Y, Wu Z, Yang X, Yan G, Cong R, Zhao L, Zhang W, Wang S, Pan C, Yang Z. A Self-Powered UV Photodetector With Ultrahigh Responsivity Based on 2D Perovskite Ferroelectric Films With Mixed Spacer Cations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301705. [PMID: 37683840 DOI: 10.1002/adma.202301705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/30/2023] [Indexed: 09/10/2023]
Abstract
Self-powered photodetectors (PDs) have the advantages of no external power requirement, wireless operation, and long life. Spontaneous ferroelectric polarizations can significantly increase built-in electric field intensity, showing great potential in self-powered photodetection. Moreover, ferroelectrics possess pyroelectric and piezoelectric properties, beneficial for enhancing self-powered PDs. 2D metal halide perovskites (MHPs), which have ferroelectric properties, are suitable for fabricating high-performance self-powered PDs. However, the research on 2D metal halide perovskites ferroelectrics focuses on growing bulk crystals. Herein, 2D ferroelectric perovskite films with mixed spacer cations for self-powered PDs are demonstrated by mixing Ruddlesden-Popper (RP)-type and Dion-Jacobson (DJ)-type perovskite. The (BDA0.7 (BA2 )0.3 )(EA)2 Pb3 Br10 film possesses, overall, the best film qualities with the best crystalline quality, lowest trap density, good phase purity, and obvious ferroelectricity. Based on the ferro-pyro-phototronic effect, the PD at 360 nm exhibits excellent photoelectric properties, with an ultrahigh peak responsivity greater than 93 A W-1 and a detectivity of 2.5 × 1015 Jones, together with excellent reproducibility and stability. The maximum responsivities can be modulated by piezo-phototronic effect with an effective enhancement ratio of 480%. This work will open up a new route of designing MHP ferroelectric films for high-performance PDs and offers the opportunity to utilize it for various optoelectronics applications.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Yaqian Qi
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Zihao Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Xiaoran Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Guoying Yan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ridong Cong
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Wei Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100140, P. R. China
| |
Collapse
|
23
|
Liang Y, Lu Q, Wu W, Xu Z, Lu H, He Z, Zhu Y, Yu Y, Han X, Pan C. A Universal Fabrication Strategy for High-Resolution Perovskite-Based Photodetector Arrays. SMALL METHODS 2023; 7:e2300339. [PMID: 37199230 DOI: 10.1002/smtd.202300339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Metal halide perovskite photodetector arrays have demonstrated great potential applications in the field of integrated systems, optical communications, and health monitoring. However, the fabrication of large-scale and high-resolution device is still challenging due to their incompatibility with the polar solvents. Here, a universal fabrication strategy that utilizes ultrathin encapsulation-assisted photolithography and etching to create high-resolution photodetectors array with vertical crossbar structure is reported. This approach yields a 48 × 48 photodetector array with a resolution of 317 ppi. The device shows good imaging capability with a high on/off ratio of 3.3 × 105 and long-term working stability over 12 h. Furthermore, this strategy can be applied to five different material systems, and is fully compatible with the existing photolithography and etching techniques, which are expected to have potential applications in the other high-density and solvent-sensitive devices array, including perovskite- or organic semiconductor-based memristor, light emitting diode displays, and transistors.
Collapse
Affiliation(s)
- Yegang Liang
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Qiuchun Lu
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zeping He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yizhi Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Yu
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Caofeng Pan
- Center on Nanoenergy Research, School of Physical Science and Technology Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Zhao Y, Yin X, Li P, Ren Z, Gu Z, Zhang Y, Song Y. Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. NANO-MICRO LETTERS 2023; 15:187. [PMID: 37515723 PMCID: PMC10387041 DOI: 10.1007/s40820-023-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/02/2023] [Indexed: 07/31/2023]
Abstract
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and self-powered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented.
Collapse
Affiliation(s)
- Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xing Yin
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Ziqiu Ren
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yanlin Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, People's Republic of China.
| |
Collapse
|
25
|
Lu H, Wu W, He Z, Han X, Pan C. Recent progress in construction methods and applications of perovskite photodetector arrays. NANOSCALE HORIZONS 2023; 8:1014-1033. [PMID: 37337833 DOI: 10.1039/d3nh00119a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal halide perovskites are considered promising materials for next-generation optoelectronic devices due to their excellent optoelectronic performances and simple solution preparation process. Precise micro/nano-scale patterning techniques enable perovskite materials to be used for array integration of photodetectors. In this review, the device types of perovskite-based photodetectors are introduced and the structural characteristics and corresponding device performances are analyzed. Then, the typical construction methods suitable for the fabrication of perovskite photodetector arrays are highlighted, including surface treatment technology, template-assisted construction, inkjet printing technology, and modified photolithography. Furthermore, the current development trends and their applications in image sensing of perovskite photodetector arrays are summarized. Finally, major challenges are presented to guide the development of perovskite photodetector arrays.
Collapse
Affiliation(s)
- Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zeping He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311200, China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| |
Collapse
|
26
|
Wu W, Lu H, Han X, Wang C, Xu Z, Han ST, Pan C. Recent Progress on Wavelength-Selective Perovskite Photodetectors for Image Sensing. SMALL METHODS 2023; 7:e2201499. [PMID: 36811238 DOI: 10.1002/smtd.202201499] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 06/19/2023]
Abstract
Spectral sensing plays a crucial part in imaging technologies, optical communication, and other fields. However, complicated optical elements, such as prisms, interferometric filters, and diffraction grating, are required for commercial multispectral detectors, which hampers their advance toward miniaturization and integration. In recent years, metal halide perovskites have been emerging for optical-component-free wavelength-selective photodetectors (PDs) because of their continuously tunable bandgap, fascinating optoelectronic properties, and simple preparation processes. In this review, recent advances in wavelength-selective perovskite PDs, including narrowband PDs, dual-band PDs, multispectral-recognizable PDs, and X-ray PDs, are highlighted, with an emphasis on device structure designs, working mechanisms, and optoelectronic performances. Meanwhile, the applications of wavelength-selective PDs in image sensing for single-/dual-color imaging, full-color imaging, and X-ray imaging are introduced. Finally, the remaining challenges and perspectives in this emerging field are presented.
Collapse
Affiliation(s)
- Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xun Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chunfeng Wang
- College of Materials Science and Engineering, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| |
Collapse
|