1
|
Zhu L, Liu F, Shi C, Su X, Tan M, Xie S, Yu M, Zou S, Tan Y, Xie S, Liu J, Yan Q, Neculai D, Sun Q, Liu W, Ding Y, Fu X, Shao J, Li X, Ding K, Yuan Y, Zhou T, Lin A. Hepatic micropeptide modulates mitochondrial RNA processing machinery in hepatocellular carcinoma. Mol Cell 2025:S1097-2765(25)00466-6. [PMID: 40513568 DOI: 10.1016/j.molcel.2025.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/13/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025]
Abstract
Micropeptides, originating from noncanonical translation, represent novel biomolecules with critical roles in tissue homeostasis and cancer development. However, the proteomic landscape and functional mechanisms of micropeptides in hepatocellular carcinoma (HCC) remain largely elusive. By employing a newly devised ultrafiltration tandem mass spectrometry assay, we identified an abundance of micropeptides in clinical HCC samples. Among them, a long non-coding RNA (lncRNA)-derived micropeptide mitochondrial RNase P inhibitory peptide (MRPIP) attenuated HCC progression by modulating the mitochondrial RNA processing machinery. Mechanistically, energy-stress-induced MRPIP hindered mitochondrial ribonuclease P (mtRNase P) complex assembly by interacting with HSD17B10 at the R25 residue, which disrupted the HSD17B10 tetramerization and the subsequent HSD17B10-TRMT10C subcomplex formation, leading to perturbed post-transcriptional RNA processing, translation, energy production in mitochondria, and suppressed cancer progression. Strikingly, the 20-aa functional peptide generated from MRPIP sequences robustly inhibited HCC progression in vitro and in vivo. Overall, our study uncovered and characterized a class of HCC-associated micropeptides, shedding light on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Linyu Zhu
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China; Key Laboratory of RNA Science and Engineering, Institute of Biophysics Chinese Academy of Sciences, Beijing 100000, China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Meng Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Sailan Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Yinuo Tan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Shanshan Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310000, China
| | - Jian Liu
- Zhejiang University, University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang 314000, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Dante Neculai
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 321000, China
| | - Qiming Sun
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 321000, China
| | - Wei Liu
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 321000, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xianghui Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Kefeng Ding
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Colorectal Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ying Yuan
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Zhejiang Provincial Clinical Research Center for CANCER, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang 310000, China.
| | - Aifu Lin
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China; MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310000, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang 314000, China; Zhejiang Provincial Clinical Research Center for CANCER, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
2
|
Zhou W, Thiery JP. Ferroptosis-related LncRNAs in diseases. BMC Biol 2025; 23:158. [PMID: 40481573 PMCID: PMC12143037 DOI: 10.1186/s12915-025-02268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
Ferroptosis is a form of regulated cell death (RCD) caused by the accumulation of intracellular iron and lipids and is involved in many pathological processes, including neurodegenerative and cardiovascular diseases, and cancer. Long non-coding RNAs (lncRNAs), RNA molecules exceeding 200 nt in length that do not possess protein coding function can interfere with ferroptosis by binding ferroptosis-related miRNAs or proteins. Recently, ferroptosis-related lncRNAs (FRlncRNAs) have been identified in cancer and non-malignant disease models, including inprediction of drug resistance, intra-tumoral immune infiltration, metabolic reprogramming and mutation landscape. Here, we review FRlncRNAs in cancer and non-malignant diseases, from prognosis to treatment.
Collapse
Affiliation(s)
- Wu Zhou
- Medical College, Jiaxing University, Jiaxing, 314001, China.
| | | |
Collapse
|
3
|
Deshpande A, Mahale S, Kanduri C. Beyond the Transcript: Translating Non-Coding RNAs and Their Impact on Cellular Regulation. Cancers (Basel) 2025; 17:1555. [PMID: 40361481 PMCID: PMC12071610 DOI: 10.3390/cancers17091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the human transcriptome and play diverse structural, catalytic, and regulatory roles. The ability of ncRNAs to be translated into functional peptides and microproteins expands our understanding of their regulatory potential beyond their established non-coding functions. Our comprehensive search identified 86 translating "non-coding" RNAs. While translating ncRNAs have traditionally been categorized as "peptide-encoding", in this study, we introduce a novel classification based on amino acid length, distinguishing their products as ncRNA encoded peptides (ncRNA-PEPs), which are less than 60 amino acids, or ncRNA encoded microproteins (ncRNA-MPs) ranging from 61 to 200 amino acids. These peptides and microproteins act as co-regulators in cell signaling, transcriptional regulation, and protein complex assembly, playing a role in both health and disease. We outline the molecular pathways by which ncRNA-PEPs and ncRNA-MPs could govern cell cycle progression, highlighting their influence on cell cycle transitions, oncogenic and tumor suppressor pathways, metabolic homeostasis, autophagy, and on key cell cycle regulators like PCNA, Rad18, and CDK-cyclin complexes. Furthermore, we highlight recent advancements in their detection and characterization, exploring their evolutionary origins, species-specific conservation, and potential therapeutic applications. Our findings underscore the emerging significance of ncRNA-PEPs and ncRNA-MPs as integral regulators of cellular processes, highlighting their functional versatility and opening promising avenues for further research and potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530 Gothenburg, Sweden; (A.D.); (S.M.)
| |
Collapse
|
4
|
Sun H, Gu R, Tang T, Rai KR, Chen JL. Current Perspectives on Functional Involvement of Micropeptides in Virus-Host Interactions. Int J Mol Sci 2025; 26:3651. [PMID: 40332243 PMCID: PMC12026789 DOI: 10.3390/ijms26083651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Micropeptides (miPEPs), encoded by short open reading frames (sORFs) within various genomic regions, have recently emerged as critical regulators of multiple biological processes. In particular, these small molecules are now increasingly being recognized for their role in modulating viral replication, pathogenesis, and host immune responses. Both host miPEPs and virus-derived miPEPs have been noted for their ability to regulate virus-host interactions through diversified mechanisms such as altering protein stability and modulating protein-protein interactions. Although thousands of sORFs have been annotated as having the potential to encode miPEPs, only a small number have been experimentally validated so far, with some directly linked to virus-host interactions and a small subset associated with immune modulation, indicating that the investigation of miPEPs is still in its infancy. The systematic identification, translational status assessment, in-depth characterization, and functional analysis of a substantial fraction of sORFs encoding miPEPs remain largely underexplored. Further studies are anticipated to uncover the intricate mechanisms underlying virus-host interactions, host immune modulation, and the broader biological functions of miPEPs. This article will review the emerging roles of miPEPs in virus-host interactions and host immunity, and discuss the challenges and future perspectives of miPEP studies.
Collapse
Affiliation(s)
- Haowen Sun
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.S.); (R.G.); (T.T.)
| | - Rongrong Gu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.S.); (R.G.); (T.T.)
| | - Tingting Tang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.S.); (R.G.); (T.T.)
| | - Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.S.); (R.G.); (T.T.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.S.); (R.G.); (T.T.)
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Hsu FY, Yen YP, Fan HC, Chang M, Chen JA. Sertm2 is a conserved micropeptide that promotes GDNF-mediated motor neuron subtype specification. EMBO Rep 2025; 26:2013-2043. [PMID: 40108406 PMCID: PMC12018958 DOI: 10.1038/s44319-025-00400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Small open-reading frame-encoded micropeptides within long noncoding RNAs (lncRNAs) are often overlooked due to their small size and low abundance. However, emerging evidence links these micropeptides to various biological pathways, though their roles in neural development and neurodegeneration remain unclear. Here, we investigate the function of murine micropeptide Sertm2, encoded by the lncRNA A730046J19Rik, during spinal motor neuron (MN) development. Sertm2 is predicted to be a conserved transmembrane protein found in both mouse and human, with subcellular analysis revealing that it is enriched in the cytoplasm and neurites. By generating C terminally Flag-tagged Sertm2 and expressing it from the A730046J19Rik locus, we demonstrate that the Sertm2 micropeptide localizes in spinal MNs in mice. The GDNF signaling-induced Etv4+ motor pool is impaired in Sertm2 knockout mice, which display motor nerve arborization defects that culminate in impaired motor coordination and muscle weakness. Similarly, human SERTM2 knockout iPSC-derived MNs also display reduced ETV4+ motor pools, highlighting that Sertm2 is a novel, evolutionarily conserved micropeptide essential for maintaining GDNF-induced MN subtype identity.
Collapse
Affiliation(s)
- Fang-Yu Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Chi Fan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
6
|
Peng B, Quan Z, Liang L, Liu M, Hu K, Chen S, Xie Q, Qin J, Chen J, Liao L, He S, Li Z. The LncRNA lnc-POTEM-4:14 promotes HCC progression by interacting with FOXK1. Sci Rep 2025; 15:7672. [PMID: 40044876 PMCID: PMC11882843 DOI: 10.1038/s41598-025-92614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours of the digestive tract and poses a serious threat to human life. This study first analysed two GEO datasets (GSE166705 and GSE115018) to screen for differentially expressed lncRNAs between HCC and adjacent tissues. The lncRNA lnc-POTEM-4:14 was determined via a series of methods to be closely related to liver cancer. Further research was subsequently performed to investigate the role of the lncRNA lnc-POTEM-4:14 in the progression of HCC. The lncRNA lnc-POTEM-4:14 is localized primarily within the nucleus and is highly expressed in liver cancer tissues. We established lnc-POTEM-4:14 knockdown and overexpression cell lines to analyse the role of lnc-POTEM-4:14 in liver cancer through functional experiments such as qPCR and WB. We identified FOXK1 as an RNA-binding protein (RBP) of lnc-POTEM-4:14 that participates in MAPK signal activation and cell cycle progression by regulating the activation or expression levels of the downstream target protein TAB1 as a transcription factor. The restoration of FOXK1 can rescue the limited proliferation and increased apoptosis caused by lnc-POTEM-4:14 knockdown. Finally, we validated our hypothesis in a nude mouse tumour-bearing model. In conclusion, lnc-POTEM-4:14 affects the progression of HCC through the FOXK1/TAB1/NLK axis, suggesting that lnc-POTEM-4:14 has potential as a therapeutic target for treating this aggressive malignancy.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Animals
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Mice
- Cell Line, Tumor
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Cell Proliferation/genetics
- Mice, Nude
- Male
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
Collapse
Affiliation(s)
- Bo Peng
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Zhipeng Quan
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Lixing Liang
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mingjiang Liu
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Kai Hu
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shilian Chen
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Qiuli Xie
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Jing Qin
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingzhao Chen
- Division of Pathology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lijuan Liao
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China.
| | - Zeyuan Li
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, NO 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Shi C, Liu F, Su X, Yang Z, Wang Y, Xie S, Xie S, Sun Q, Chen Y, Sang L, Tan M, Zhu L, Lei K, Li J, Yang J, Gao Z, Yu M, Wang X, Wang J, Chen J, Zhuo W, Fang Z, Liu J, Yan Q, Neculai D, Sun Q, Shao J, Lin W, Liu W, Chen J, Wang L, Liu Y, Li X, Zhou T, Lin A. Comprehensive discovery and functional characterization of the noncanonical proteome. Cell Res 2025; 35:186-204. [PMID: 39794466 PMCID: PMC11909191 DOI: 10.1038/s41422-024-01059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025] Open
Abstract
The systematic identification and functional characterization of noncanonical translation products, such as novel peptides, will facilitate the understanding of the human genome and provide new insights into cell biology. Here, we constructed a high-coverage peptide sequencing reference library with 11,668,944 open reading frames and employed an ultrafiltration tandem mass spectrometry assay to identify novel peptides. Through these methods, we discovered 8945 previously unannotated peptides from normal gastric tissues, gastric cancer tissues and cell lines, nearly half of which were derived from noncoding RNAs. Moreover, our CRISPR screening revealed that 1161 peptides are involved in tumor cell proliferation. The presence and physiological function of a subset of these peptides, selected based on screening scores, amino acid length, and various indicators, were verified through Flag-knockin and multiple other methods. To further characterize the potential regulatory mechanisms involved, we constructed a framework based on artificial intelligence structure prediction and peptide‒protein interaction network analysis for the top 100 candidates and revealed that these cancer-related peptides have diverse subcellular locations and participate in organelle-specific processes. Further investigation verified the interacting partners of pep1-nc-OLMALINC, pep5-nc-TRHDE-AS1, pep-nc-ZNF436-AS1 and pep2-nc-AC027045.3, and the functions of these peptides in mitochondrial complex assembly, energy metabolism, and cholesterol metabolism, respectively. We showed that pep5-nc-TRHDE-AS1 and pep2-nc-AC027045.3 had substantial impacts on tumor growth in xenograft models. Furthermore, the dysregulation of these four peptides is closely correlated with clinical prognosis. Taken together, our study provides a comprehensive characterization of the noncanonical proteome, and highlights critical roles of these previously unannotated peptides in cancer biology.
Collapse
Affiliation(s)
- Chengyu Shi
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Fangzhou Liu
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Xinwan Su
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Shanshan Xie
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | - Qiang Sun
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Linyu Zhu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Junhong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Meng Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Xinyi Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Junfeng Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhuo
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhaoyuan Fang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang, China
- Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dante Neculai
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qiming Sun
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqiang Lin
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Wei Liu
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jian Chen
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liangjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | - Tianhua Zhou
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Aifu Lin
- The Center for RNA Medicine, International Institutes of Medicine, International School of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, Zhejiang, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Zhang Z, Li F, Dai X, Deng J, Wang Y, Zhang S, Liu W, Xie Y, Pan Y, Wang J, Zhao T, Wang S, Li W, Jin C, Zhang H, Lu J, Guo B, Zhou Y. A novel micropeptide miPEP205 suppresses the growth and metastasis of TNBC. Oncogene 2025; 44:513-529. [PMID: 39623077 DOI: 10.1038/s41388-024-03240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 02/19/2025]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and poses a treatment challenge due to high recurrence risk. Consequently, there is an urgent need for novel and efficacious therapies targeting TNBC. In this context, our study delineates the identification and characterization of a long non-coding RNA (lncRNA)-derived micropeptide miPEP205. Notably, the micropeptide exerts a significant inhibitory effect on the growth and metastasis of TNBC. Moreover, we observed a substantial down-regulation of micropeptide expression in clinical samples, which was markedly associated with a poor prognosis. Mechanistically, our research demonstrated that EGR3 governs lncRNA MIR205HG and the micropeptide expression, while miPEP205 boosts GSK-3β phosphorylation at Tyr216. This cascade causes β-catenin degradation, deactivating the GSK-3β/β-catenin signaling pathway and ultimately inhibits TNBC progression. Remarkably, our experiments in the spontaneous breast cancer mice model MMTV-PyMT demonstrated that the introduction of the miPEP205 gene or exogenous administration of the micropeptide miPEP205 significantly curtailed tumor growth and lung metastasis, and enhanced the overall survival among tumor-bearing mice. In conclusion, our study uncovers a previously uncharacterized micropeptide derived from a lncRNA, showcasing potent antitumor properties. These findings position miPEP205 as a promising novel target for therapeutic intervention in TNBC.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Fanrong Li
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Dai
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jieqiong Deng
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Yirong Wang
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Shenghua Zhang
- Jiangsu Province Academy of Clinical Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Liu
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Ying Xie
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Yacheng Pan
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Jieyu Wang
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Tong Zhao
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Shuang Wang
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Wanqiu Li
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Congnan Jin
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Hebin Zhang
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, The First Affiliated Hospital, The School of Public Health, Guangzhou Medical University, Guangzhou, 510182, China
| | - Binbin Guo
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China.
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Maegdefessel L, Fasolo F. Long Non-Coding RNA Function in Smooth Muscle Cell Plasticity and Atherosclerosis. Arterioscler Thromb Vasc Biol 2025; 45:172-185. [PMID: 39633574 PMCID: PMC11748911 DOI: 10.1161/atvbaha.124.320393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the healthy mature artery, vascular cells, including endothelial cells, smooth muscle cells (SMCs), and fibroblasts are organized in different layers, performing specific functions. SMCs located in the media are in a differentiated state and exhibit a contractile phenotype. However, in response to vascular injury within the intima, stimuli from activated endothelial cells and recruited inflammatory cells reach SMCs and induce a series of remodeling events in them, known as phenotypic switching. Indeed, SMCs retain a certain degree of plasticity and are able to transdifferentiate into other cell types that are crucial for both the formation and development of atherosclerotic lesions. Because of their highly cell-specific expression profiles and their widely recognized contribution to physiological and disease-related biological processes, long non-coding RNAs have received increasing attention in atherosclerosis research. Dynamic fluctuations in their expression have been implicated in the regulation of SMC identity. Sophisticated technologies are now available to allow researchers to access single-cell transcriptomes and study long non-coding RNA function with unprecedented precision. Here, we discuss the state of the art of long non-coding RNAs regulation of SMC phenotypic switching, describing the methodologies used to approach this issue and evaluating the therapeutic perspectives of exploiting long non-coding RNAs as targets in atherosclerosis.
Collapse
Affiliation(s)
- Lars Maegdefessel
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany (L.M., F.F.)
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden (L.M.)
| | - Francesca Fasolo
- Institute of Molecular Vascular Medicine, Klinikum rechts der Isar, Technical University Munich, Germany (L.M., F.F.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany (L.M., F.F.)
| |
Collapse
|
10
|
Baena-Angulo C, Platero AI, Couso JP. Cis to trans: small ORF functions emerging through evolution. Trends Genet 2025; 41:119-131. [PMID: 39603921 DOI: 10.1016/j.tig.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Hundreds of thousands of small open reading frames (smORFs) of less than 100 codons exist in every genome, especially in long noncoding RNAs (lncRNAs) and in the 5' leaders of mRNAs. smORFs are often discarded as nonfunctional, but ribosomal profiling (RiboSeq) reveals that thousands are translated, while characterised smORF functions have risen from anecdotal to identifiable trends: smORFs can either have a cis-noncoding regulatory function (involving low translation of nonfunctional peptides) or full coding function mediated by robustly translated peptides, often having cellular and physiological roles as membrane-associated regulators of canonical proteins. The evolutionary context reveals that many smORFs represent new genes emerging de novo from noncoding sequences. We suggest a mechanism for this process, where cis-noncoding smORF functions provide niches for the subsequent evolution of full peptide functions.
Collapse
Affiliation(s)
- Casimiro Baena-Angulo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Juan Pablo Couso
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain.
| |
Collapse
|
11
|
Yan S, Fu P, Li H, Huang Z, Shan R, Gong B. Comprehensive Analysis of circRNA, lncRNA, miRNA and mRNA Expression Profiles and Their Competing Endogenous RNA Networks in Hepatitis B Virus-Related Hepatocellular Carcinoma. Mol Biotechnol 2025; 67:329-341. [PMID: 38411789 DOI: 10.1007/s12033-024-01056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Pursuing knowledge about circular RNA (circRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression profiles and their competing endogenous RNA (ceRNA) networks in hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) was the focus of this research. Expression patterns of circRNAs, lncRNAs, miRNAs, and mRNAs were searched for in relation to HBV-related HCC using whole-transcriptome sequencing. The expression levels of chosen circRNA, lncRNA, miRNA, and mRNA were analyzed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The potential connections and roles of ceRNA were deduced via bioinformatics research. The sum of 284 circRNAs, 2,927 lncRNAs, 693 miRNAs, and 5566 mRNAs were discovered to be expressed at considerably different levels in HBV-related HCC tissue and adjacent normal tissue. And the most significantly up- and down-regulated circRNAs, lncRNAs, miRNAs, and mRNAs were verified in HBV-related HCC by qRT-PCR. The circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks of HBV-related HCC were established, and the ceRNA regulatory networks revealed the gene expression mechanisms controlled by ncRNAs. Collectively, we revealed the contribution of various circRNA, lncRNA, miRNA, and mRNA expression profiles and identified their ceRNA regulatory networks in HBV-related HCC, providing a theoretical basis for further exploration.
Collapse
Affiliation(s)
- Shaoying Yan
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, China
| | - Peng Fu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huiming Li
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zikun Huang
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, No.17, Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
12
|
Cherezov RO, Vorontsova JE, Kuvaeva EE, Akishina AA, Zavoloka EL, Simonova OB. The lawc gene emerged de novo from conserved genomic elements and acquired a broad expression pattern in Drosophila. J Genet Genomics 2024:S1673-8527(24)00367-9. [PMID: 39733859 DOI: 10.1016/j.jgg.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms. De novo genes frequently emerge in proximity to existing genes, forming gene overlaps. Here, we present an analysis of the evolutionary history of a putative de novo gene, lawc, which overlaps with the conserved Trf2 gene, which encodes a general transcription factor in Drosophila melanogaster. We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region (UTR) of Trf2 and displays an extensive spatiotemporal expression pattern. One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short, highly conserved regions located in Trf2 introns. This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes. The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2. This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.
Collapse
Affiliation(s)
- Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Julia E Vorontsova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena E Kuvaeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ekaterina L Zavoloka
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Olga B Simonova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
13
|
Platero AI, Pueyo JI, Bishop SA, Magny EG, Couso JP. Pervasiveness of Microprotein Function Amongst Drosophila Small Open Reading Frames (SMORFS). Cells 2024; 13:2090. [PMID: 39768181 PMCID: PMC11674832 DOI: 10.3390/cells13242090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Small Open Reading Frames (smORFs) of less than 100 codons remain mostly uncharacterised. About a thousand smORFs per genome encode peptides and microproteins about 70-80 aa long, often containing recognisable protein structures and markers of translation, and these are referred to as short Coding Sequences (sCDSs). The characterisation of individual sCDSs has provided examples of smORFs' function and conservation, but we cannot infer the functionality of all other metazoan smORFs from these. sCDS function has been characterised at a genome-wide scale in yeast and bacteria, showing that hundreds can produce a phenotype, but attempts in metazoans have been less successful. Either most sCDSs are not functional, or classic experimental techniques do not work with smORFs due to their shortness. Here, we combine extensive proteomics with bioinformatics and genetics in order to detect and corroborate sCDS function in Drosophila. Our studies nearly double the number of sCDSs with detected peptides and microproteins and an experimentally corroborated function. Finally, we observe a correlation between proven sCDS protein function and bioinformatic markers such as conservation and GC content. Our results support that sCDSs peptides and microproteins act as membrane-related regulators of canonical proteins, regulators whose functions are best understood at the cellular level, and whose mutants produce little, if any, overt morphological phenotypes.
Collapse
Affiliation(s)
- Ana Isabel Platero
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, CSIC, 41013 Sevilla, Spain; (A.I.P.); (S.A.B.)
| | - Jose Ignacio Pueyo
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK;
| | - Sarah Anne Bishop
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, CSIC, 41013 Sevilla, Spain; (A.I.P.); (S.A.B.)
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK;
| | - Emile Gerard Magny
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, CSIC, 41013 Sevilla, Spain; (A.I.P.); (S.A.B.)
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Juan Pablo Couso
- Centro Andaluz de Biologia del Desarrollo, Universidad Pablo de Olavide, CSIC, 41013 Sevilla, Spain; (A.I.P.); (S.A.B.)
| |
Collapse
|
14
|
Xiao X, Wang Y, Li T, Wang Q, Luo X, Li J, Gao L. Microproteins encoded by short open reading frames: Vital regulators in neurological diseases. Prog Neurobiol 2024; 243:102694. [PMID: 39586488 DOI: 10.1016/j.pneurobio.2024.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Short open reading frames (sORFs) are frequently overlooked because of their historical classification as non-coding elements or dismissed as "transcriptional noise". However, advanced genomic and proteomic technologies have allowed for screening and validating sORFs-encoded peptides, revealing their fundamental regulatory roles in cellular processes and sparking a growing interest in microprotein biology. In neuroscience, microproteins serve as neurotransmitters in signal transmission and regulate metabolism and emotions, exerting pivotal effects on neurological conditions such as nerve injury, neurogenic tumors, inflammation, and neurodegenerative diseases. This review summarizes the origins, characteristics, classifications, and functions of microproteins, focusing on their molecular mechanisms in neurological disorders. Potential applications, future perspectives, and challenges are discussed.
Collapse
Affiliation(s)
- Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Jingdong Li
- Institute of Hepato-Biliary-Pancreatic-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637100, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
15
|
Gan Y, Wang L, Liu G, Guo X, Zhou Y, Chang K, Zhang Z, Yan F, Liu Q, Chen B. Transposable Elements Contribute to the Regulation of Long Noncoding RNAs in Drosophila melanogaster. INSECTS 2024; 15:950. [PMID: 39769552 PMCID: PMC11678190 DOI: 10.3390/insects15120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Background: Transposable elements (TEs) and noncoding sequences are major components of the genome, yet their functional contributions to long noncoding RNAs (lncRNAs) are not well understood. Although many lncRNAs originating from TEs (TE-lncRNAs) have been identified across various organisms, their characteristics and regulatory roles, particularly in insects, remain largely unexplored. This study integrated multi-omics data to investigate TE-lncRNAs in D. melanogaster, focusing on the influence of transposons across different omics levels. Results: We identified 16,118 transposons overlapping with lncRNA sequences that constitute 2119 TE-lncRNAs (40.4% of all lncRNAs) using 256 public RNA-seq samples and 15 lncRNA-seq samples of Drosophila S2 cells treated with heavy metals. Of these, 67.2% of TE-lncRNAs contain more than one TE. The LTR/Gypsy family was the most common transposon insertion. Transposons preferred to insert into promoters, transcription starting sites, and intronic regions, especially in chromosome ends. Compared with lncRNAs, TE-lncRNAs showed longer lengths, a lower conservation, and lower levels but a higher specificity of expression. Multi-omics data analysis revealed positive correlations between transposon insertions and chromatin openness at the pre-transcriptional level. Notably, a total of 516 TE-lncRNAs provided transcriptional factor binding sites through transposon insertions. The regulatory network of a key transcription factor was rewired by transposons, potentially recruiting other transcription factors to exert regulatory functions under heavy metal stress. Additionally, 99 TE-lncRNAs were associated with m6A methylation modification sites, and 115 TE-lncRNAs potentially provided candidate small open reading frames through transposon insertions. Conclusions: Our data analysis demonstrated that TEs contribute to the regulation of lncRNAs. TEs not only promote the transcriptional regulation of lncRNAs, but also facilitate their post-transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Yuli Gan
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Guoxian Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xiruo Guo
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Kexin Chang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; (Y.Z.); (Z.Z.)
| | - Fang Yan
- Key Laboratory of Herbage and Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot 010021, China; (K.C.); (F.Y.)
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China; (Y.G.); (L.W.); (X.G.)
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
16
|
Chen LL, Kim VN. Small and long non-coding RNAs: Past, present, and future. Cell 2024; 187:6451-6485. [PMID: 39547208 DOI: 10.1016/j.cell.2024.10.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Since the introduction of the central dogma of molecular biology in 1958, various RNA species have been discovered. Messenger RNAs transmit genetic instructions from DNA to make proteins, a process facilitated by housekeeping non-coding RNAs (ncRNAs) such as small nuclear RNAs (snRNAs), ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs). Over the past four decades, a wide array of regulatory ncRNAs have emerged as crucial players in gene regulation. In celebration of Cell's 50th anniversary, this Review explores our current understanding of the most extensively studied regulatory ncRNAs-small RNAs and long non-coding RNAs (lncRNAs)-which have profoundly shaped the field of RNA biology and beyond. While small RNA pathways have been well documented with clearly defined mechanisms, lncRNAs exhibit a greater diversity of mechanisms, many of which remain unknown. This Review covers pivotal events in their discovery, biogenesis pathways, evolutionary traits, action mechanisms, functions, and crosstalks among ncRNAs. We also highlight their roles in pathophysiological contexts and propose future research directions to decipher the unknowns of lncRNAs by leveraging lessons from small RNAs.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen, China.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
17
|
Kesner JS, Wu X. Mechanisms suppressing noncoding translation. Trends Cell Biol 2024:S0962-8924(24)00190-9. [PMID: 39443270 PMCID: PMC12012163 DOI: 10.1016/j.tcb.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The majority of the DNA sequence in our genome is noncoding and not intended for synthesizing proteins. Nonetheless, genome-wide mapping of ribosome footprints has revealed widespread translation in annotated noncoding sequences, including long noncoding RNAs (lncRNAs), untranslated regions (UTRs), and introns of mRNAs. How cells suppress the translation of potentially toxic proteins from various noncoding sequences remains poorly understood. This review summarizes mechanisms for the mitigation of noncoding translation, including the BCL2-associated athanogene 6 (BAG6)-mediated proteasomal degradation pathway, which has emerged as a unifying mechanism to suppress the translation of diverse noncoding sequences in metazoan cells.
Collapse
Affiliation(s)
- Jordan S Kesner
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Papadopoulos C, Arbes H, Cornu D, Chevrollier N, Blanchet S, Roginski P, Rabier C, Atia S, Lespinet O, Namy O, Lopes A. The ribosome profiling landscape of yeast reveals a high diversity in pervasive translation. Genome Biol 2024; 25:268. [PMID: 39402662 PMCID: PMC11472626 DOI: 10.1186/s13059-024-03403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pervasive translation is a widespread phenomenon that plays a critical role in the emergence of novel microproteins, but the diversity of translation patterns contributing to their generation remains unclear. Based on 54 ribosome profiling (Ribo-Seq) datasets, we investigated the yeast Ribo-Seq landscape using a representation framework that allows the comprehensive inventory and classification of the entire diversity of Ribo-Seq signals, including non-canonical ones. RESULTS We show that if coding regions occupy specific areas of the Ribo-Seq landscape, noncoding regions encompass a wide diversity of Ribo-Seq signals and, conversely, populate the entire landscape. Our results show that pervasive translation can, nevertheless, be associated with high specificity, with 1055 noncoding ORFs exhibiting canonical Ribo-Seq signals. Using mass spectrometry under standard conditions or proteasome inhibition with an in-house analysis protocol, we report 239 microproteins originating from noncoding ORFs that display canonical but also non-canonical Ribo-Seq signals. Each condition yields dozens of additional microprotein candidates with comparable translation properties, suggesting a larger population of volatile microproteins that are challenging to detect. Our findings suggest that non-canonical translation signals may harbor valuable information and underscore the significance of considering them in proteogenomic studies. Finally, we show that the translation outcome of a noncoding ORF is primarily determined by the initiating codon and the codon distribution in its two alternative frames, rather than features indicative of functionality. CONCLUSION Our results enable us to propose a topology of a species' Ribo-Seq landscape, opening the way to comparative analyses of this translation landscape under different conditions.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Hugo Arbes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | | | - Sandra Blanchet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Paul Roginski
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Camille Rabier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Safiya Atia
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Olivier Lespinet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France
| | - Anne Lopes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, 91198, France.
| |
Collapse
|
19
|
Chanut-Delalande H, Zanet J. Small ORFs, Big Insights: Drosophila as a Model to Unraveling Microprotein Functions. Cells 2024; 13:1645. [PMID: 39404408 PMCID: PMC11475943 DOI: 10.3390/cells13191645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Recently developed experimental and computational approaches to identify putative coding small ORFs (smORFs) in genomes have revealed thousands of smORFs localized within coding and non-coding RNAs. They can be translated into smORF peptides or microproteins, which are defined as less than 100 amino acids in length. The identification of such a large number of potential biological regulators represents a major challenge, notably for elucidating the in vivo functions of these microproteins. Since the emergence of this field, Drosophila has proved to be a valuable model for studying the biological functions of microproteins in vivo. In this review, we outline how the smORF field emerged and the nomenclature used in this domain. We summarize the technical challenges associated with identifying putative coding smORFs in the genome and the relevant translated microproteins. Finally, recent findings on one of the best studied smORF peptides, Pri, and other microproteins studied so far in Drosophila are described. These studies highlight the diverse roles that microproteins can fulfil in the regulation of various molecular targets involved in distinct cellular processes during animal development and physiology. Given the recent emergence of the microprotein field and the associated discoveries, the microproteome represents an exquisite source of potentially bioactive molecules, whose in vivo biological functions can be explored in the Drosophila model.
Collapse
Affiliation(s)
| | - Jennifer Zanet
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD), UMR 5077, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, 31062 Toulouse, France;
| |
Collapse
|
20
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
21
|
Mittal N, Ataman M, Tintignac L, Ham DJ, Jörin L, Schmidt A, Sinnreich M, Ruegg MA, Zavolan M. Calorie restriction and rapamycin distinctly restore non-canonical ORF translation in the muscles of aging mice. NPJ Regen Med 2024; 9:23. [PMID: 39300171 DOI: 10.1038/s41536-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Loss of protein homeostasis is one of the hallmarks of aging. As such, interventions that restore proteostasis should slow down the aging process and improve healthspan. Two of the most broadly used anti-aging interventions that are effective in organisms from yeast to mammals are calorie restriction (CR) and rapamycin (RM) treatment. To identify the regulatory mechanisms by which these interventions improve the protein homeostasis, we carried out ribosome footprinting in the muscle of mice aged under standard conditions, or under long-term treatment with CR or RM. We found that the treatments distinctly impact the non-canonical translation, RM primarily remodeling the translation of upstream open reading frames (uORFs), while CR restores stop codon readthrough and the translation of downstream ORFs. Proteomics analysis revealed the expression of numerous non-canonical ORFs at the protein level. The corresponding peptides may provide entry points for therapies aiming to maintain muscle function and extend health span.
Collapse
Affiliation(s)
- Nitish Mittal
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Meric Ataman
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lionel Tintignac
- Biozentrum, University of Basel, Basel, Switzerland
- Departments of Neurology and Biomedicine, University of Basel, Basel, Switzerland
- University Hospital Basel, Basel, Switzerland
| | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lena Jörin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Michael Sinnreich
- Departments of Neurology and Biomedicine, University of Basel, Basel, Switzerland
- University Hospital Basel, Basel, Switzerland
| | | | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
22
|
Vrbnjak K, Sewduth RN. Multi-Omic Approaches in Cancer-Related Micropeptide Identification. Proteomes 2024; 12:26. [PMID: 39311199 PMCID: PMC11417835 DOI: 10.3390/proteomes12030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Despite the advances in modern cancer therapy, malignant diseases are still a leading cause of morbidity and mortality worldwide. Conventional treatment methods frequently lead to side effects and drug resistance in patients, highlighting the need for novel therapeutic approaches. Recent findings have identified the existence of non-canonical micropeptides, an additional layer of the proteome complexity, also called the microproteome. These small peptides are a promising class of therapeutic agents with the potential to address the limitations of current cancer treatments. The microproteome is encoded by regions of the genome historically annotated as non-coding, and its existence has been revealed thanks to recent advances in proteomic and bioinformatic technology, which dramatically improved the understanding of proteome complexity. Micropeptides have been shown to be biologically active in several cancer types, indicating their therapeutic role. Furthermore, they are characterized by low toxicity and high target specificity, demonstrating their potential for the development of better tolerated drugs. In this review, we survey the current landscape of known micropeptides with a role in cancer progression or treatment, discuss their potential as anticancer agents, and describe the methodological challenges facing the proteome field of research.
Collapse
Affiliation(s)
- Katarina Vrbnjak
- VIB-KU Leuven Center for Cancer Biology (VIB), 3000 Leuven, Belgium
| | | |
Collapse
|
23
|
Ge A, Chan C, Yang X. Exploring the Dark Matter of Human Proteome: The Emerging Role of Non-Canonical Open Reading Frame (ncORF) in Cancer Diagnosis, Biology, and Therapy. Cancers (Basel) 2024; 16:2660. [PMID: 39123386 PMCID: PMC11311765 DOI: 10.3390/cancers16152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer develops from abnormal cell growth in the body, causing significant mortalities every year. To date, potent therapeutic approaches have been developed to eradicate tumor cells, but intolerable toxicity and drug resistance can occur in treated patients, limiting the efficiency of existing treatment strategies. Therefore, searching for novel genes critical for cancer progression and therapeutic response is urgently needed for successful cancer therapy. Recent advances in bioinformatics and proteomic techniques have allowed the identification of a novel category of peptides encoded by non-canonical open reading frames (ncORFs) from historically non-coding genomic regions. Surprisingly, many ncORFs express functional microproteins that play a vital role in human cancers. In this review, we provide a comprehensive description of different ncORF types with coding capacity and technological methods in discovering ncORFs among human genomes. We also summarize the carcinogenic role of ncORFs such as pTINCR and HOXB-AS3 in regulating hallmarks of cancer, as well as the roles of ncORFs such as HOXB-AS3 and CIP2A-BP in cancer diagnosis and prognosis. We also discuss how ncORFs such as AKT-174aa and DDUP are involved in anti-cancer drug response and the underestimated potential of ncORFs as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (C.C.)
| |
Collapse
|
24
|
Iyengar BR, Grandchamp A, Bornberg-Bauer E. How antisense transcripts can evolve to encode novel proteins. Nat Commun 2024; 15:6187. [PMID: 39043684 PMCID: PMC11266595 DOI: 10.1038/s41467-024-50550-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Protein coding features can emerge de novo in non coding transcripts, resulting in emergence of new protein coding genes. Studies across many species show that a large fraction of evolutionarily novel non-coding RNAs have an antisense overlap with protein coding genes. The open reading frames (ORFs) in these antisense RNAs could also overlap with existing ORFs. In this study, we investigate how the evolution an ORF could be constrained by its overlap with an existing ORF in three different reading frames. Using a combination of mathematical modeling and genome/transcriptome data analysis in two different model organisms, we show that antisense overlap can increase the likelihood of ORF emergence and reduce the likelihood of ORF loss, especially in one of the three reading frames. In addition to rationalising the repeatedly reported prevalence of de novo emerged genes in antisense transcripts, our work also provides a generic modeling and an analytical framework that can be used to understand evolution of antisense genes.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany.
| | - Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany
- Aix-Marseille Université, INSERM, TAGC, Marseille, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen, Germany
| |
Collapse
|
25
|
Tian H, Tang L, Yang Z, Xiang Y, Min Q, Yin M, You H, Xiao Z, Shen J. Current understanding of functional peptides encoded by lncRNA in cancer. Cancer Cell Int 2024; 24:252. [PMID: 39030557 PMCID: PMC11265036 DOI: 10.1186/s12935-024-03446-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.
Collapse
Affiliation(s)
- Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zihan Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 646000
| | - Yanxi Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Huili You
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China.
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
26
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
27
|
Sanejouand YH. Are Most Human-Specific Proteins Encoded by Long Noncoding RNAs? J Mol Evol 2024:10.1007/s00239-024-10174-z. [PMID: 38916610 DOI: 10.1007/s00239-024-10174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/03/2024] [Indexed: 06/26/2024]
Abstract
By looking for a lack of homologs in a reference database of 27 well-annotated proteomes of primates and 52 well-annotated proteomes of other mammals, 170 putative human-specific proteins were identified. While most of them are deemed uncertain, 2 are known at the protein level and 23 at the transcript level, according to UniProt. Interestingly, 23 of these 25 proteins are found to be encoded or to have close homologs in an open reading frame of a long noncoding human RNA. However, half of them are predicted to be at least 80% globular, with a single structural domain, according to IUPred, and with at least 80% of ordered residues, according to flDPnn. Strikingly, there is a near-complete lack of structural knowledge about these proteins, with no tertiary structure presently available in the Protein Data Bank and a fair prediction for one of them in the AlphaFold Protein Structure Database. Moreover, knowledge about the function of these possibly key proteins remains scarce.
Collapse
Affiliation(s)
- Yves-Henri Sanejouand
- US2B, UMR 6286 of CNRS, Nantes University, 2 rue de la Houssinière, Nantes, 44322, Pays de la Loire, France.
| |
Collapse
|
28
|
Liu T, Qiao H, Wang Z, Yang X, Pan X, Yang Y, Ye X, Sakurai T, Lin H, Zhang Y. CodLncScape Provides a Self-Enriching Framework for the Systematic Collection and Exploration of Coding LncRNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400009. [PMID: 38602457 PMCID: PMC11165466 DOI: 10.1002/advs.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Recent studies have revealed that numerous lncRNAs can translate proteins under specific conditions, performing diverse biological functions, thus termed coding lncRNAs. Their comprehensive landscape, however, remains elusive due to this field's preliminary and dispersed nature. This study introduces codLncScape, a framework for coding lncRNA exploration consisting of codLncDB, codLncFlow, codLncWeb, and codLncNLP. Specifically, it contains a manually compiled knowledge base, codLncDB, encompassing 353 coding lncRNA entries validated by experiments. Building upon codLncDB, codLncFlow investigates the expression characteristics of these lncRNAs and their diagnostic potential in the pan-cancer context, alongside their association with spermatogenesis. Furthermore, codLncWeb emerges as a platform for storing, browsing, and accessing knowledge concerning coding lncRNAs within various programming environments. Finally, codLncNLP serves as a knowledge-mining tool to enhance the timely content inclusion and updates within codLncDB. In summary, this study offers a well-functioning, content-rich ecosystem for coding lncRNA research, aiming to accelerate systematic studies in this field.
Collapse
Affiliation(s)
- Tianyuan Liu
- Tsukuba Life Science Innovation ProgramUniversity of TsukubaTsukuba3058577Japan
| | - Huiyuan Qiao
- Innovative Institute of Chinese Medicine and PharmacyAcademy for InterdisciplineChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zixu Wang
- Department of Computer ScienceUniversity of TsukubaTsukuba3058577Japan
| | - Xinyan Yang
- Department of Developmental BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xianrun Pan
- Innovative Institute of Chinese Medicine and PharmacyAcademy for InterdisciplineChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Yu Yang
- School of Healthcare TechnologyChengdu Neusoft UniversityChengdu611844China
| | - Xiucai Ye
- Tsukuba Life Science Innovation ProgramUniversity of TsukubaTsukuba3058577Japan
- Department of Computer ScienceUniversity of TsukubaTsukuba3058577Japan
| | - Tetsuya Sakurai
- Tsukuba Life Science Innovation ProgramUniversity of TsukubaTsukuba3058577Japan
- Department of Computer ScienceUniversity of TsukubaTsukuba3058577Japan
| | - Hao Lin
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and PharmacyAcademy for InterdisciplineChengdu University of Traditional Chinese MedicineChengdu611137China
| |
Collapse
|
29
|
Piórkowska K, Zygmunt K, Hunter W, Wróblewska K. MALAT1: A Long Non-Coding RNA with Multiple Functions and Its Role in Processes Associated with Fat Deposition. Genes (Basel) 2024; 15:479. [PMID: 38674413 PMCID: PMC11049917 DOI: 10.3390/genes15040479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the lncRNA molecules, which are involved in transcriptional and epigenetic regulation and the control of gene expression, including the mechanism of chromatin remodeling. MALAT1 was first discovered during carcinogenesis in lung adenocarcinoma, hence its name. In humans, 66 of its isoforms have been identified, and in pigs, only 2 are predicted, for which information is available in Ensembl databases (Ensembl Release 111). MALAT1 is expressed in numerous tissues, including adipose, adrenal gland, heart, kidney, liver, ovary, pancreas, sigmoid colon, small intestine, spleen, and testis. MALAT1, as an lncRNA, shows a wide range of functions. It is involved in the regulation of the cell cycle, where it has pro-proliferative effects and high cellular levels during the G1/S and mitotic (M) phases. Moreover, it is involved in invasion, metastasis, and angiogenesis, and it has a crucial function in alternative splicing during carcinogenesis. In addition, MALAT1 plays a significant role in the processes of fat deposition and adipogenesis. The human adipose tissue stem cells, during differentiation into adipocytes, secrete MALAT1 as one the most abundant lncRNAs in the exosomes. MALAT1 expression in fat tissue is positively correlated with adipogenic FABP4 and LPL. This lncRNA is involved in the regulation of PPARγ at the transcription stage, fatty acid metabolism, and insulin signaling. The wide range of MALAT1 functions makes it an interesting target in studies searching for drugs to prevent obesity development in humans. In turn, in farm animals, it can be a source of selection markers to control the fat tissue content.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Karolina Zygmunt
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Walter Hunter
- Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, 31-120 Cracow, Poland;
| | - Ksenia Wróblewska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| |
Collapse
|
30
|
Mohapatra S, Banerjee A, Rausseo P, Dragomir MP, Manyam GC, Broom BM, Calin GA. FuncPEP v2.0: An Updated Database of Functional Short Peptides Translated from Non-Coding RNAs. Noncoding RNA 2024; 10:20. [PMID: 38668378 PMCID: PMC11054400 DOI: 10.3390/ncrna10020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
Over the past decade, there have been reports of short novel functional peptides (less than 100 aa in length) translated from so-called non-coding RNAs (ncRNAs) that have been characterized using mass spectrometry (MS) and large-scale proteomics studies. Therefore, understanding the bivalent functions of some ncRNAs as transcripts that encode both functional RNAs and short peptides, which we named ncPEPs, will deepen our understanding of biology and disease. In 2020, we published the first database of functional peptides translated from non-coding RNAs-FuncPEP. Herein, we have performed an update including the newly published ncPEPs from the last 3 years along with the categorization of host ncRNAs. FuncPEP v2.0 contains 152 functional ncPEPs, out of which 40 are novel entries. A PubMed search from August 2020 to July 2023 incorporating specific keywords was performed and screened for publications reporting validated functional peptides derived from ncRNAs. We did not observe a significant increase in newly discovered functional ncPEPs, but a steady increase. The novel identified ncPEPs included in the database were characterized by a wide array of molecular and physiological parameters (i.e., types of host ncRNA, species distribution, chromosomal density, distribution of ncRNA length, identification methods, molecular weight, and functional distribution across humans and other species). We consider that, despite the fact that MS can now easily identify ncPEPs, there still are important limitations in proving their functionality.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (P.R.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| | - Anik Banerjee
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paola Rausseo
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (P.R.)
- Scripps College, Claremont, CA 91711, USA
| | - Mihnea P. Dragomir
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Berlin Institute of Health at Charité, 10117 Berlin, Germany
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.C.M.)
| | - Bradley M. Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (G.C.M.)
| | - George A. Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (P.R.)
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Belmonte T, Rodríguez-Muñoz C, Ferruelo A, Exojo-Ramírez SM, Amado-Rodríguez L, Barbé F, de Gonzalo-Calvo D. Exploring the translational landscape of the long noncoding RNA transcriptome in acute respiratory distress syndrome: it is a long way to the top. Eur Respir Rev 2024; 33:240013. [PMID: 38925793 PMCID: PMC11216684 DOI: 10.1183/16000617.0013-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) poses a significant and widespread public health challenge. Extensive research conducted in recent decades has considerably improved our understanding of the disease pathophysiology. Nevertheless, ARDS continues to rank among the leading causes of mortality in intensive care units and its management remains a formidable task, primarily due to its remarkable heterogeneity. As a consequence, the syndrome is underdiagnosed, prognostication has important gaps and selection of the appropriate therapeutic approach is laborious. In recent years, the noncoding transcriptome has emerged as a new area of attention for researchers interested in biomarker development. Numerous studies have confirmed the potential of long noncoding RNAs (lncRNAs), transcripts with little or no coding information, as noninvasive tools for diagnosis, prognosis and prediction of the therapeutic response across a broad spectrum of ailments, including respiratory conditions. This article aims to provide a comprehensive overview of lncRNAs with specific emphasis on their role as biomarkers. We review current knowledge on the circulating lncRNAs as potential markers that can be used to enhance decision making in ARDS management. Additionally, we address the primary limitations and outline the steps that will be essential for integration of the use of lncRNAs in clinical laboratories. Our ultimate objective is to provide a framework for the implementation of lncRNAs in the management of ARDS.
Collapse
Affiliation(s)
- Thalía Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Carlos Rodríguez-Muñoz
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Antonio Ferruelo
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Fundación de Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain
| | - Sara M Exojo-Ramírez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Wang L, Hu L, Wang X, Geng Z, Wan M, Hao J, Liu H, Fan Y, Xu T, Li Z. Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function. Mol Metab 2024; 80:101878. [PMID: 38218537 PMCID: PMC10832480 DOI: 10.1016/j.molmet.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. METHODS RNA-seq and 3' rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. RESULTS We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. CONCLUSIONS Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.
Collapse
Affiliation(s)
- Linlin Wang
- Guangzhou National Laboratory, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liqiao Hu
- Guangzhou National Laboratory, Guangzhou, China
| | - Xingyue Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoxu Geng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Junfeng Hao
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Huisheng Liu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Yuying Fan
- School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Tao Xu
- Guangzhou National Laboratory, Guangzhou, China; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zonghong Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou, China.
| |
Collapse
|
33
|
Zhang D, Gao Y, Zhu L, Wang Y, Li P. Advances and opportunities in methods to study protein translation - A review. Int J Biol Macromol 2024; 259:129150. [PMID: 38171441 DOI: 10.1016/j.ijbiomac.2023.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
It is generally believed that the regulation of gene expression involves protein translation occurring before RNA transcription. Therefore, it is crucial to investigate protein translation and its regulation. Recent advancements in biological sciences, particularly in the field of omics, have revolutionized protein translation research. These studies not only help characterize changes in protein translation during specific biological or pathological processes but also have significant implications in disease prevention and treatment. In this review, we summarize the latest methods in ribosome-based translation omics. We specifically focus on the application of fluorescence imaging technology and omics technology in studying overall protein translation. Additionally, we analyze the advantages, disadvantages, and application of these experimental methods, aiming to provide valuable insights and references to researchers studying translation.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Grandchamp A, Czuppon P, Bornberg-Bauer E. Quantification and modeling of turnover dynamics of de novo transcripts in Drosophila melanogaster. Nucleic Acids Res 2024; 52:274-287. [PMID: 38000384 PMCID: PMC10783523 DOI: 10.1093/nar/gkad1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Most of the transcribed eukaryotic genomes are composed of non-coding transcripts. Among these transcripts, some are newly transcribed when compared to outgroups and are referred to as de novo transcripts. De novo transcripts have been shown to play a major role in genomic innovations. However, little is known about the rates at which de novo transcripts are gained and lost in individuals of the same species. Here, we address this gap and estimate the de novo transcript turnover rate with an evolutionary model. We use DNA long reads and RNA short reads from seven geographically remote samples of inbred individuals of Drosophila melanogaster to detect de novo transcripts that are gained on a short evolutionary time scale. Overall, each sampled individual contains around 2500 unspliced de novo transcripts, with most of them being sample specific. We estimate that around 0.15 transcripts are gained per year, and that each gained transcript is lost at a rate around 5× 10-5 per year. This high turnover of transcripts suggests frequent exploration of new genomic sequences within species. These rate estimates are essential to comprehend the process and timescale of de novo gene birth.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
35
|
Lyapina I, Fesenko I. Intracellular and Extracellular Peptidomes of the Model Plant, Physcomitrium patens. Methods Mol Biol 2024; 2758:375-385. [PMID: 38549025 DOI: 10.1007/978-1-0716-3646-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Here, we report our approach to peptidomic analysis of the plant model Physcomitrium patens. Intracellular and extracellular peptides were extracted under conditions preventing proteolytic digestion by endogenous proteases. The extracts were fractionated on size exclusion columns to isolate intracellular peptides and on reversed-phase cartridges to isolate extracellular peptides, with the isolated peptides subjected to LC-MS/MS analysis. Mass spectrometry data were analyzed for the presence of peptides derived from the known proteins or microproteins encoded by small open reading frames (<100 aa, smORFs) predicted in the moss genome. Experimental details are provided for each step.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
36
|
Mohsen JJ, Martel AA, Slavoff SA. Microproteins-Discovery, structure, and function. Proteomics 2023; 23:e2100211. [PMID: 37603371 PMCID: PMC10841188 DOI: 10.1002/pmic.202100211] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Advances in proteogenomic technologies have revealed hundreds to thousands of translated small open reading frames (sORFs) that encode microproteins in genomes across evolutionary space. While many microproteins have now been shown to play critical roles in biology and human disease, a majority of recently identified microproteins have little or no experimental evidence regarding their functionality. Computational tools have some limitations for analysis of short, poorly conserved microprotein sequences, so additional approaches are needed to determine the role of each member of this recently discovered polypeptide class. A currently underexplored avenue in the study of microproteins is structure prediction and determination, which delivers a depth of functional information. In this review, we provide a brief overview of microprotein discovery methods, then examine examples of microprotein structures (and, conversely, intrinsic disorder) that have been experimentally determined using crystallography, cryo-electron microscopy, and NMR, which provide insight into their molecular functions and mechanisms. Additionally, we discuss examples of predicted microprotein structures that have provided insight or context regarding their function. Analysis of microprotein structure at the angstrom level, and confirmation of predicted structures, therefore, has potential to identify translated microproteins that are of biological importance and to provide molecular mechanism for their in vivo roles.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alina A. Martel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
37
|
Bosch JA, Keith N, Escobedo F, Fisher WW, LaGraff JT, Rabasco J, Wan KH, Weiszmann R, Hu Y, Kondo S, Brown JB, Perrimon N, Celniker SE. Molecular and functional characterization of the Drosophila melanogaster conserved smORFome. Cell Rep 2023; 42:113311. [PMID: 37889754 PMCID: PMC10843857 DOI: 10.1016/j.celrep.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Keith
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felipe Escobedo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Thai LaGraff
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jorden Rabasco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth H Wan
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - James B Brown
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Salido-Guadarrama I, Romero-Cordoba SL, Rueda-Zarazua B. Multi-Omics Mining of lncRNAs with Biological and Clinical Relevance in Cancer. Int J Mol Sci 2023; 24:16600. [PMID: 38068923 PMCID: PMC10706612 DOI: 10.3390/ijms242316600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
In this review, we provide a general overview of the current panorama of mining strategies for multi-omics data to investigate lncRNAs with an actual or potential role as biological markers in cancer. Several multi-omics studies focusing on lncRNAs have been performed in the past with varying scopes. Nevertheless, many questions remain regarding the pragmatic application of different molecular technologies and bioinformatics algorithms for mining multi-omics data. Here, we attempt to address some of the less discussed aspects of the practical applications using different study designs for incorporating bioinformatics and statistical analyses of multi-omics data. Finally, we discuss the potential improvements and new paradigms aimed at unraveling the role and utility of lncRNAs in cancer and their potential use as molecular markers for cancer diagnosis and outcome prediction.
Collapse
Affiliation(s)
- Ivan Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico
| | - Sandra L. Romero-Cordoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Biochemistry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Bertha Rueda-Zarazua
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
39
|
Valencia JD, Hendrix DA. Improving deep models of protein-coding potential with a Fourier-transform architecture and machine translation task. PLoS Comput Biol 2023; 19:e1011526. [PMID: 37824580 PMCID: PMC10597526 DOI: 10.1371/journal.pcbi.1011526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/24/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Ribosomes are information-processing macromolecular machines that integrate complex sequence patterns in messenger RNA (mRNA) transcripts to synthesize proteins. Studies of the sequence features that distinguish mRNAs from long noncoding RNAs (lncRNAs) may yield insight into the information that directs and regulates translation. Computational methods for calculating protein-coding potential are important for distinguishing mRNAs from lncRNAs during genome annotation, but most machine learning methods for this task rely on previously known rules to define features. Sequence-to-sequence (seq2seq) models, particularly ones using transformer networks, have proven capable of learning complex grammatical relationships between words to perform natural language translation. Seeking to leverage these advancements in the biological domain, we present a seq2seq formulation for predicting protein-coding potential with deep neural networks and demonstrate that simultaneously learning translation from RNA to protein improves classification performance relative to a classification-only training objective. Inspired by classical signal processing methods for gene discovery and Fourier-based image-processing neural networks, we introduce LocalFilterNet (LFNet). LFNet is a network architecture with an inductive bias for modeling the three-nucleotide periodicity apparent in coding sequences. We incorporate LFNet within an encoder-decoder framework to test whether the translation task improves the classification of transcripts and the interpretation of their sequence features. We use the resulting model to compute nucleotide-resolution importance scores, revealing sequence patterns that could assist the cellular machinery in distinguishing mRNAs and lncRNAs. Finally, we develop a novel approach for estimating mutation effects from Integrated Gradients, a backpropagation-based feature attribution, and characterize the difficulty of efficient approximations in this setting.
Collapse
Affiliation(s)
- Joseph D. Valencia
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, United States of America
| | - David A. Hendrix
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, United States of America
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
40
|
Rahaman S, Faravelli S, Voegeli S, Becskei A. Polysome propensity and tunable thresholds in coding sequence length enable differential mRNA stability. SCIENCE ADVANCES 2023; 9:eadh9545. [PMID: 37756413 PMCID: PMC10530222 DOI: 10.1126/sciadv.adh9545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The half-life of mRNAs, as well as their translation, increases in proportion to the optimal codons, indicating a tight coupling of codon-dependent differential translation and degradation. Little is known about the regulation of this coupling. We found that the mRNA stability gain in yeast depends on the mRNA coding sequence length. Below a critical length, codon optimality fails to affect the stability of mRNAs although they can be efficiently translated into short peptides and proteins. Above this threshold length, codon optimality-dependent differential mRNA stability emerges in a switch-like fashion, which coincides with a similar increase in the polysome propensity of the mRNAs. This threshold length can be tuned by the untranslated regions (UTR). Some of these UTRs can destabilize mRNAs without reducing translation, which plays a role in controlling the amplitude of the oscillatory expression of cell cycle genes. Our findings help understand the translation of short peptides from noncoding RNAs and the translation by localized monosomes in neurons.
Collapse
Affiliation(s)
- Sayanur Rahaman
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
41
|
Harold C. All these screens that we've done: how functional genetic screens have informed our understanding of ribosome biogenesis. Biosci Rep 2023; 43:BSR20230631. [PMID: 37335083 PMCID: PMC10329186 DOI: 10.1042/bsr20230631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023] Open
Abstract
Ribosome biogenesis is the complex and essential process that ultimately leads to the synthesis of cellular proteins. Understanding each step of this essential process is imperative to increase our understanding of basic biology, but also more critically, to provide novel therapeutic avenues for genetic and developmental diseases such as ribosomopathies and cancers which can arise when this process is impaired. In recent years, significant advances in technology have made identifying and characterizing novel human regulators of ribosome biogenesis via high-content, high-throughput screens. Additionally, screening platforms have been used to discover novel therapeutics for cancer. These screens have uncovered a wealth of knowledge regarding novel proteins involved in human ribosome biogenesis, from the regulation of the transcription of the ribosomal RNA to global protein synthesis. Specifically, comparing the discovered proteins in these screens showed interesting connections between large ribosomal subunit (LSU) maturation factors and earlier steps in ribosome biogenesis, as well as overall nucleolar integrity. In this review, a discussion of the current standing of screens for human ribosome biogenesis factors through the lens of comparing the datasets and discussing the biological implications of the areas of overlap will be combined with a look toward other technologies and how they can be adapted to discover more factors involved in ribosome synthesis, and answer other outstanding questions in the field.
Collapse
Affiliation(s)
- Cecelia M. Harold
- Department of Genetics, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
42
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
43
|
Grandchamp A, Kühl L, Lebherz M, Brüggemann K, Parsch J, Bornberg-Bauer E. Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in Drosophila melanogaster. Genome Res 2023; 33:872-890. [PMID: 37442576 PMCID: PMC10519401 DOI: 10.1101/gr.277482.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/06/2023] [Indexed: 07/15/2023]
Abstract
Novel genes are essential for evolutionary innovations and differ substantially even between closely related species. Recently, multiple studies across many taxa showed that some novel genes arise de novo, that is, from previously noncoding DNA. To characterize the underlying mutations that allowed de novo gene emergence and their order of occurrence, homologous regions must be detected within noncoding sequences in closely related sister genomes. So far, most studies do not detect noncoding homologs of de novo genes because of incomplete assemblies and annotations, and long evolutionary distances separating genomes. Here, we overcome these issues by searching for de novo expressed open reading frames (neORFs), the not-yet fixed precursors of de novo genes that emerged within a single species. We sequenced and assembled genomes with long-read technology and the corresponding transcriptomes from inbred lines of Drosophila melanogaster, derived from seven geographically diverse populations. We found line-specific neORFs in abundance but few neORFs shared by lines, suggesting a rapid turnover. Gain and loss of transcription is more frequent than the creation of ORFs, for example, by forming new start and stop codons. Consequently, the gain of ORFs becomes rate limiting and is frequently the initial step in neORFs emergence. Furthermore, transposable elements (TEs) are major drivers for intragenomic duplications of neORFs, yet TE insertions are less important for the emergence of neORFs. However, highly mutable genomic regions around TEs provide new features that enable gene birth. In conclusion, neORFs have a high birth-death rate, are rapidly purged, but surviving neORFs spread neutrally through populations and within genomes.
Collapse
Affiliation(s)
- Anna Grandchamp
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Lucas Kühl
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Marie Lebherz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kathrin Brüggemann
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Munich, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
- Max Planck Institute for Biology Tübingen, Department of Protein Evolution, 72076 Tübingen, Germany
| |
Collapse
|
44
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
45
|
Valencia JD, Hendrix DA. Improving deep models of protein-coding potential with a Fourier-transform architecture and machine translation task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535488. [PMID: 37066250 PMCID: PMC10104019 DOI: 10.1101/2023.04.03.535488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ribosomes are information-processing macromolecular machines that integrate complex sequence patterns in messenger RNA (mRNA) transcripts to synthesize proteins. Studies of the sequence features that distinguish mRNAs from long noncoding RNAs (lncRNAs) may yield insight into the information that directs and regulates translation. Computational methods for calculating protein-coding potential are important for distinguishing mRNAs from lncRNAs during genome annotation, but most machine learning methods for this task rely on previously known rules to define features. Sequence-to-sequence (seq2seq) models, particularly ones using transformer networks, have proven capable of learning complex grammatical relationships between words to perform natural language translation. Seeking to leverage these advancements in the biological domain, we present a seq2seq formulation for predicting protein-coding potential with deep neural networks and demonstrate that simultaneously learning translation from RNA to protein improves classification performance relative to a classification-only training objective. Inspired by classical signal processing methods for gene discovery and Fourier-based image-processing neural networks, we introduce LocalFilterNet (LFNet). LFNet is a network architecture with an inductive bias for modeling the three-nucleotide periodicity apparent in coding sequences. We incorporate LFNet within an encoder-decoder framework to test whether the translation task improves the classification of transcripts and the interpretation of their sequence features. We use the resulting model to compute nucleotide-resolution importance scores, revealing sequence patterns that could assist the cellular machinery in distinguishing mRNAs and lncRNAs. Finally, we develop a novel approach for estimating mutation effects from Integrated Gradients, a backpropagation-based feature attribution, and characterize the difficulty of efficient approximations in this setting.
Collapse
Affiliation(s)
- Joseph D. Valencia
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - David A. Hendrix
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Here, we review recent findings on the role of long noncoding RNAs (lncRNAs) in cardiovascular disease (CVD). In addition, we highlight some of the latest findings in lncRNA biology, providing an outlook for future avenues of lncRNA research in CVD. RECENT FINDINGS Recent publications provide translational evidence from patient studies and animal models for the role of specific lncRNAs in CVD. The molecular effector mechanisms of these lncRNAs are diverse. Overall, cell-type selective modulation of gene expression is the largest common denominator. New methods, such as single-cell profiling and CRISPR/Cas9-screening, reveal additional novel mechanistic principles: For example, many lncRNAs establish RNA-based spatial compartments that concentrate effector proteins. Also, RNA modifications and splicing features can be determinants of lncRNA function. SUMMARY lncRNA research is passing the stage of enumerating lncRNAs or recording simplified on-off expression switches. Mechanistic analyses are starting to reveal overarching principles of how lncRNAs can function. Exploring these principles with decisive genetic testing in vivo remains the ultimate test to discern how lncRNA loci, by RNA motifs or DNA elements, affect CVD pathophysiology.
Collapse
|
47
|
Pueyo JI, Salazar J, Grincho C, Berni J, Towler BP, Newbury SF. Purriato is a conserved small open reading frame gene that interacts with the CASA pathway to regulate muscle homeostasis and epithelial tissue growth in Drosophila. Front Cell Dev Biol 2023; 11:1117454. [PMID: 36968202 PMCID: PMC10036370 DOI: 10.3389/fcell.2023.1117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Recent advances in proteogenomic techniques and bioinformatic pipelines have permitted the detection of thousands of translated small Open Reading Frames (smORFs), which contain less than 100 codons, in eukaryotic genomes. Hundreds of these actively translated smORFs display conserved sequence, structure and evolutionary signatures indicating that the translated peptides could fulfil important biological roles. Despite their abundance, only tens of smORF genes have been fully characterised; these act mainly as regulators of canonical proteins involved in essential cellular processes. Importantly, some of these smORFs display conserved functions with their mutations being associated with pathogenesis. Thus, investigating smORF roles in Drosophila will not only expand our understanding of their functions but it may have an impact in human health. Here we describe the function of a novel and essential Drosophila smORF gene named purriato (prto). prto belongs to an ancient gene family whose members have expanded throughout the Protostomia clade. prto encodes a transmembrane peptide which is localized in endo-lysosomes and perinuclear and plasma membranes. prto is dynamically expressed in mesodermal tissues and imaginal discs. Targeted prto knockdown (KD) in these organs results in changes in nuclear morphology and endo-lysosomal distributions correlating with the loss of sarcomeric homeostasis in muscles and reduction of mitosis in wing discs. Consequently, prto KD mutants display severe reduction of motility, and shorter wings. Finally, our genetic interaction experiments show that prto function is closely associated to the CASA pathway, a conserved mechanism involved in turnover of mis-folded proteins and linked to muscle dystrophies and neurodegenerative diseases. Thus, this study shows the relevance of smORFs in regulating important cellular functions and supports the systematic characterisation of this class of genes to understand their functions and evolution.
Collapse
Affiliation(s)
- Jose I. Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jorge Salazar
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Carolina Grincho
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jimena Berni
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|