1
|
Bodorova B, Mihalj D, Havranek T, Bacova Z, Bakos J. VIP and PACAP enhance hippocampal neuronal cell proliferation especially GFAP-positive astrocytes, while PACAP inhibits neurite outgrowth. Neurosci Lett 2025; 855:138230. [PMID: 40164327 DOI: 10.1016/j.neulet.2025.138230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Despite their known roles in regulating food intake, appetite, satiety, and social behavior, the roles of vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in hippocampal neuronal cell development remain unclear. Therefore, the aim was to evaluate the effect of VIP and PACAP on 1) the proliferation of a hippocampal cell line, 2) the number of neurons and astrocytes in primary hippocampal cell culture, and 3) the morphology of primary hippocampal neurons. It was found that both VIP (100 nM) and PACAP (100 nM) stimulated the proliferation of E2 hippocampal cells over a 72-hour period. A significant increase in the number of NeuN-positive primary hippocampal neurons was observed following VIP incubation on day in vitro (DIV) 9. An increase in GFAP-positive cells following PACAP incubation was observed from DIV3 compared to DIV5, DIV7, and DIV9. PACAP significantly inhibited the growth of short neurites in primary hippocampal neurons. In conclusion, this study demonstrates that both neuropeptides VIP and PACAP influence the proliferation and growth of hippocampal neuronal cells, with PACAP having a more pronounced effect on astrocyte numbers and reducing neurite branching. These findings emphasize the role of VIP and PACAP in the hippocampus during early brain development.
Collapse
Affiliation(s)
- Barbora Bodorova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Denisa Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Anatomy, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
2
|
Jager S, Zeller M, Pashkova A, Schulte D, Damoc E, Reiding KR, Makarov AA, Heck AJR. In-depth plasma N-glycoproteome profiling using narrow-window data-independent acquisition on the Orbitrap Astral mass spectrometer. Nat Commun 2025; 16:2497. [PMID: 40082474 PMCID: PMC11906852 DOI: 10.1038/s41467-025-57916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Recently, a conceptually new mass analyzer was introduced by pairing a quadrupole Orbitrap mass spectrometer with an asymmetric track lossless (Astral™) analyzer. This system provides >200 Hz MS/MS scanning speed, high resolving power, sensitivity, and mass accuracy. Due to its speed, the instrument allows for a narrow-window data-independent acquisition (nDIA) strategy, representing a new technical milestone in peptide-centric proteomics. However, this new system may also be applied to other complex and clinically important proteomes, such as the human plasma N-glycoproteome. Here, we evaluate the Orbitrap Astral mass spectrometer for the in-depth analysis of the plasma N-glycoproteome and pioneer a dedicated nDIA workflow, termed "nGlycoDIA", on glycopeptide enriched and crude plasma. This strategy leads to the cumulative identification of over 3000 unique glycoPSMs derived from 181 glycoproteins in just 40 minutes and covers a dynamic range of 7 orders of magnitude for a glycopeptide enriched plasma sample. Notably, we detect several glycosylated cytokines that have reported plasma concentrations in the ng/L range. Furthermore, shortening the gradient to 10 min still allows for the detection of almost 1850 (95% CI [1840-1860]) unique glycoPSMs, indicating that high-throughput in-depth clinical plasma glycoproteomics may be within reach.
Collapse
Affiliation(s)
- Shelley Jager
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Martin Zeller
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Anna Pashkova
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Douwe Schulte
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Eugen Damoc
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Alexander A Makarov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Thermo Fisher Scientific (Bremen) GmbH, Bremen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
3
|
López RC, Noble N, Özçete ÖD, Cai X, Handy GE, Andersen JW, Patriarchi T, Li Y, Kaeser PS. Innervation density governs crosstalk of GPCR-based norepinephrine and dopamine sensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.23.624963. [PMID: 39605389 PMCID: PMC11601633 DOI: 10.1101/2024.11.23.624963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
GPCR-based fluorescent sensors are widely used to correlate neuromodulatory signaling with brain function. While experiments in transfected cells often reveal selectivity for individual neurotransmitters, sensor specificity in the brain frequently remains uncertain. Pursuing experiments in brain slices and in vivo, we find that norepinephrine and dopamine cross-activate the respective sensors. Non-specific activation occurred when innervation of the cross-reacting transmitter was high, and silencing of specific innervation was indispensable for interpreting sensor fluorescence.
Collapse
Affiliation(s)
- Ricardo C. López
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Natalie Noble
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Özge D. Özçete
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Gillian E. Handy
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH and University of Zürich, Zürich, Switzerland
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
4
|
Wang Y, Sen-Majumdar A, Li JM, Sarkar S, Passang T, Li Y, Cohen J, Chen Z, Chaudagar K, Das PK, Wang S, Bruk N, Papadantonakis N, Giver CR, Waller EK. Identification and characterization of vasoactive intestinal peptide receptor antagonists with high-affinity and potent anti-leukemia activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622716. [PMID: 39605448 PMCID: PMC11601233 DOI: 10.1101/2024.11.08.622716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide involved in tumor growth and immune modulating functions. Previous research indicated that a VIP antagonist (VIPhyb) enhances T-cell activation and induces T-cell-dependent anti-leukemic activity in mice. We created a combinatorial library of VIPhyb C-terminal sequence variations to develop a more potent VIP-receptor (VIP-R) antagonist, hypothesizing that specific amino acid substitutions would improve receptor binding and plasma stability. In silico screening analyses identified sequences with improved docking scores predicting increased binding affinity to human VIP receptors VPAC1 and VPAC2. Fifteen peptides were synthesized and tested for their ability to potentiate activation of purified mouse and human T cells and enhance T cell-dependent anti-leukemia responses in murine models of acute myeloid leukemia. Treating C57Bl/6 mice engrafted with a C1498 myeloid leukemia cell line with daily subcutaneous injections of VIP-R antagonist peptides induced T cell activation resulting in specific anti-leukemia responses. Strikingly, the predicted binding affinity of the VIP-R antagonists to VIP receptors correlated positively with their ability to augment mouse T-cell proliferation and anti-leukemia activity. ANT308 and ANT195 emerged as top candidates due to their high predicted VIP-R binding, low EC 50 for in vitro T cell activation, and potent anti-leukemia activities. ANT308 decreased CREB phosphorylation, a downstream signaling pathway of the VIP receptor, and stimulated granzyme B and perforin expression in CD8+ T cells from AML patients. Combining in silico modeling, in vitro T cell activation properties, and in vivo anti-leukemia activity has identified promising VIP-R antagonist candidates for further development as novel immunotherapies for AML, especially for patients with relapsed disease.
Collapse
|
5
|
Zhu Y, Zhao X, Xiang C, Liu X, Li J. Evaluation of Essential Dynamics and Fixed-Length Coarse Graining for Multidomain Proteins. J Phys Chem B 2024; 128:5147-5156. [PMID: 38758598 PMCID: PMC11619176 DOI: 10.1021/acs.jpcb.3c08198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
For multiscale modeling of biomolecules, reliable coarse-grained (CG) models can offer great potential to simulate larger temporal and spatial scales than traditional all-atom (AA) models. In this study, we explore the essential dynamics coarse graining (EDCG) and fixed-length coarse graining (FLCG) approaches for constructing highly coarse-grained models for multidomain proteins (MDPs), with 1 to 10 amino acid residues per CG site. In the studies of 13 MDPs, our data indicate that both EDCG and FLCG can preserve the protein dynamics of MDPs. FLCG, which restricts an equal number of residues in each CG site, represents an excellent approximation to EDCG and a straightforward approach for coarse-graining MDPs. Furthermore, FLCG is tested with a class B G-protein-coupled receptor protein, and the agreement with prior experiments suggests its general application to various MDPs in different environments or conditions. Finally, we demonstrate another application of FLCG through progressive backmapping, showcasing the ability to recover from lower-resolution CG models (6 residues/CG site) to higher-resolution ones (1 residue/CG site). These promising outcomes underscore the broad applicability of FLCG to construct highly or ultra-coarse-grained models of complex biomolecules for multiscale simulations.
Collapse
Affiliation(s)
- Yu Zhu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Xiaochuan Zhao
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Chijian Xiang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47907
| | - Xianshi Liu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| |
Collapse
|
6
|
Harikumar KG, Piper SJ, Christopoulos A, Wootten D, Sexton PM, Miller LJ. Impact of secretin receptor homo-dimerization on natural ligand binding. Nat Commun 2024; 15:4390. [PMID: 38782989 PMCID: PMC11116414 DOI: 10.1038/s41467-024-48853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
7
|
Keov P, Christopoulos G, Hick CA, Glendorf T, Ballarín-González B, Wootten D, Sexton PM. Development of a Novel Assay for Direct Assessment of Selective Amylin Receptor Activation Reveals Novel Differences in Behavior of Selective and Nonselective Peptide Agonists. Mol Pharmacol 2024; 105:359-373. [PMID: 38458773 DOI: 10.1124/molpharm.123.000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) show promise as efficacious therapeutics for treatment of metabolic disease, including obesity. However, differences in efficacy in vivo have been observed for individual DACRAs, indicating that detailed understanding of the pharmacology of these agents across target receptors is required for rational drug development. To date, such understanding has been hampered by lack of direct, subtype-selective, functional assays for the amylin receptors (AMYRs). Here, we describe the generation of receptor-specific assays for recruitment of Venus-tagged Gs protein through fusion of luciferase to either the human calcitonin receptor (CTR), human receptor activity-modifying protein (RAMP)-1, RAMP1 (AMY1R), human RAMP2 (AMY2R), or human RAMP3 (AMY3R). These assays revealed a complex pattern of receptor activation by calcitonin, amylin, or DACRA peptides that was distinct at each receptor subtype. Of particular note, although both of the CT-based DACRAs, sCT and AM1784, displayed relatively similar behaviors at CTR and AMY1R, they generated distinct responses at AMY2R and AMY3R. These data aid the rationalization of in vivo differences in response to DACRA peptides in rodent models of obesity. Direct assessment of the pharmacology of novel DACRAs at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases. SIGNIFICANCE STATEMENT: Amylin receptors (AMYRs) are important obesity targets. Here we describe a novel assay that allows selective functional assessment of individual amylin receptor subtypes that provides unique insight into the pharmacology of potential therapeutic ligands. Direct assessment of the pharmacology of novel agonists at AMYR subtypes is likely to be important for development of optimized therapeutics for treatment of metabolic diseases.
Collapse
Affiliation(s)
- Peter Keov
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - George Christopoulos
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Caroline A Hick
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Tine Glendorf
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Borja Ballarín-González
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Denise Wootten
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme (P.K., G.C., C.A.H., D.W., P.M.S.) and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins (P.K., D.W., P.M.S.), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; and Research & Early Development, Novo Nordisk, Novo Nordisk Park, Maaloev, Denmark (T.G., B.B.-G.)
| |
Collapse
|
8
|
Zeng L, Zhang X, Xia M, Ye H, Li H, Gao Z. Heme and Cu 2+-induced vasoactive intestinal peptide (VIP) tyrosine nitration: A possible molecular mechanism for the attenuated anti-inflammatory effect of VIP in inflammatory diseases. Biochimie 2023; 214:176-187. [PMID: 37481062 DOI: 10.1016/j.biochi.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide that play an important role in immunoregulation and anti-inflammation. Numerous inflammatory/autoimmune disorders are associated with decreased VIP binding ability to receptors and diminished VIP activation of cAMP generation in immune cells. However, the mechanisms linking oxidative/nitrative stress to VIP immune dysfunction remain unknown. It has been reported that the elevated heme or Cu2+ in inflammatory diseases can cause oxidative and nitrative damage to nearby biological targets under high oxidative stress conditions, which affects the structure and activity of linked peptides or proteins. Thus, the VIP down-regulated immune response may be interfered by redox metal catalyzed VIP tyrosine nitration. To explore this, we systematically investigated the possibility of heme or Cu2+ to catalyze VIP tyrosine nitration. The results showed that Tyr10 and Tyr22 of VIP can both be nitrated in heme/H2O2/NO2- system as well as in Cu2+/H2O2/NO2- system. Then, we used synthetic mutant VIPs with tyrosine residues substituted by 3-nitrotyrosine to study the impact of tyrosine nitration on VIP activity in SHSY-5Y cells. Our findings demonstrated that VIP nitration dramatically decreased the content of its α-helix and random coil, suggesting that VIP nitration might reduce its affinity to the receptor. This was further confirmed in the cAMP assay. The results showed that 10 nM of these tyrosine nitrated VIPs could significantly (p < 0.01) decrease cAMP secretion compared to the wild type VIP. Our data reveal that the attenuation of the neuroprotective effect of VIP in inflammation-related diseases might be attributed to metal-catalyzed VIP tyrosine nitration.
Collapse
Affiliation(s)
- Lizhen Zeng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Xuan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Mengyang Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China
| | - Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, PR China.
| |
Collapse
|
9
|
Gibadullin R, Cary BP, Gellman SH. Differential Responses of the GLP-1 and GLP-2 Receptors to N-Terminal Modification of a Dual Agonist. J Am Chem Soc 2023; 145:12105-12114. [PMID: 37235770 PMCID: PMC10335629 DOI: 10.1021/jacs.3c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Class B1 G protein-coupled receptors (GPCRs), collectively, respond to a diverse repertoire of extracellular polypeptide agonists and transmit the encoded messages to cytosolic partners. To fulfill these tasks, these highly mobile receptors must interconvert among conformational states in response to agonists. We recently showed that conformational mobility in polypeptide agonists themselves plays a role in activation of one class B1 GPCR, the receptor for glucagon-like peptide-1 (GLP-1). Exchange between helical and nonhelical conformations near the N-termini of agonists bound to the GLP-1R was revealed to be critical for receptor activation. Here, we ask whether agonist conformational mobility plays a role in the activation of a related receptor, the GLP-2R. Using variants of the hormone GLP-2 and the designed clinical agonist glepaglutide (GLE), we find that the GLP-2R is quite tolerant of variations in α-helical propensity near the agonist N-terminus, which contrasts with signaling at the GLP-1R. A fully α-helical conformation of the bound agonist may be sufficient for GLP-2R signal transduction. GLE is a GLP-2R/GLP-1R dual agonist, and the GLE system therefore enables direct comparison of the responses of these two GPCRs to a single set of agonist variants. This comparison supports the conclusion that the GLP-1R and GLP-2R differ in their response to variations in helical propensity near the agonist N-terminus. The data offer a basis for development of new hormone analogues with distinctive and potentially useful activity profiles; for example, one of the GLE analogues is a potent agonist of the GLP-2R but also a potent antagonist of the GLP-1R, a novel form of polypharmacology.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian P. Cary
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|