1
|
Gao J, Perras FA, Conley MP. A Broad-Spectrum Catalyst for Aliphatic Polymer Breakdown. J Am Chem Soc 2025; 147:18145-18154. [PMID: 40358696 PMCID: PMC12123612 DOI: 10.1021/jacs.5c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Thermolysis of the well-defined aluminum fluoroalkoxide supported on silica (≡SiOAl(OC(CF3)3)2(O(Si≡)2), 1, 0.20 mmolAl g-1) at 200 °C forms a fluorinated amorphous silica-alumina (F-ASA) containing a distribution of Al(IV), Al(V), and Al(VI) sites that maintain relatively strong Lewis acidity. Small amounts of Brønsted sites are also present in F-ASA. Solid-state NMR studies show that a majority of the aluminum centers in F-ASA are not close to the Si-F groups that form during thermolysis. F-ASA is exceptionally reactive in cracking (or pyrolysis) reactions of neat polymer melts. Catalyst loadings as low as 2 wt % (0.017 mol % aluminum) efficiently break down isotactic polypropylene, high-density polyethylene, ethylene/1-octene copolymer, and postconsumer wastes. The major products of this reaction are hyperbranched liquid paraffins containing internal olefins and very small amounts of aromatics. Under continuous distillation of oils from the reaction mixtures, pyrolysis on 50 g reaction scales is feasible. F-ASA cokes and deactivates during this reaction but can be reactivated by calcination in air. These properties are complementary to other state-of-the-art catalysts for polymer breakdown, but unlike those catalysts F-ASA does not require an additional cofed reactant (e.g., H2, olefin, etc.) to drive the reaction.
Collapse
Affiliation(s)
- Jiaxin Gao
- Department
of Chemistry, University of California, Riverside, California92507, United States
| | - Frédéric A. Perras
- Chemical
and Biological Sciences Division, Ames National
Laboratory, Ames, Iowa50011, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa50011, United States
| | - Matthew P. Conley
- Department
of Chemistry, University of California, Riverside, California92507, United States
| |
Collapse
|
2
|
Zhang W, Kim S, Sarazen ML, He M, Chen JG, Lercher JA. Advances and Challenges in Low-Temperature Upcycling of Waste Polyolefins via Tandem Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500559. [PMID: 40082210 DOI: 10.1002/anie.202500559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Polyolefin waste is the largest polymer waste stream that could potentially serve as an advantageous hydrocarbon feedstock. Upcycling polyolefins poses significant challenges due to their inherent kinetic and thermodynamic stability. Traditional methods, such as thermal and catalytic cracking, are straightforward but require temperatures exceeding 400 °C for complete conversion because of thermodynamic constraints. We summarize and critically compare recent advances in upgrading spent polyolefins and model reactants via kinetic (and thermodynamic) coupling of the endothermic C─C bond cleavage of polyolefins with exothermic reactions including hydrogenation, hydrogenolysis, metathesis, cyclization, oxidation, and alkylation. These approaches enable complete conversion to desired products at low temperatures (<300 °C). The goal is to identify challenges and possible pathways for catalytic conversions that minimize energy and carbon footprints.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mingyuan He
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, Garching, 85747, Germany
| |
Collapse
|
3
|
Wang X, Zhang R, Wu X, Li Y, Wang Z, Zhao M, Song S, Zhang H, Wang X. Enhancing Waste Plastic Hydrogenolysis on Ru/CeO 2 Through Concurrent Incorporation of Fe Single Atoms and FeO x Nanoclusters. Angew Chem Int Ed Engl 2025:e202506035. [PMID: 40289246 DOI: 10.1002/anie.202506035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Ru-based catalysts have exhibited significant promise in converting waste plastics into valuable long-carbon chain products. However, their efficiency is hindered by the uncontrollable cascade hydrogenation, which stems from their exceptional reactivity for C─C cleavage. Herein, we reported a multi-scale regulation strategy by selectively anchoring Fe single atoms (SAs) and FeOx nanoclusters (NCs) by Ru NCs-decorated CeO2 substrates. This catalyst demonstrates an extraordinary performance, achieving nearly 100% low density polyethylene (LDPE) conversion under the conditions of 250 °C and 2 MPa hydrogen after 1 h, along with remarkably-improved liquid product selectivity of 86.4% compared to that of bare Ru/CeO2 (59.8%). Through a variety of spectroscopic studies, we revealed the unique interactions between FeOx NCs and Ru NCs, which leads to an increased Ru° content. More significantly, we also confirmed the crucial role of Fe SAs in adsorbing active hydrogen species, thereby increasing the hydrogen coverage. Such precise regulations towards both the intrinsic surface state of Ru and its adjacent chemical environment successfully inhibited the cascade hydrogenation, ultimately resulting in a significant enhancement in the selectivity of liquid products.
Collapse
Affiliation(s)
- Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Rui Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xueting Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zijian Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- China-Belarus "Belt and Road" Joint Laboratory for Advanced Materials and Manufacturing, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
4
|
Gao J, Zhao J, Xing Z, Guo M, Xie H, Ma W, Liu J. Microwave-Powered Liquid Metal Degradation of Polyolefins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412539. [PMID: 39696906 DOI: 10.1002/adma.202412539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Upcycling waste plastics is highly promising to tackle global white pollution while achieving sustainable development. However, prevailing approaches often encounter challenges in scalable engineering practices due to either insufficient plastic upcycling capability or arduousness in the separation, recovery, and purification of catalysts, which inevitably augments the cost of plastic upcycling. Here, the microwave-powered liquid metal synergetic depolymerization is presented to facilitate low-cost plastic upcycling. By leveraging the fluidity of liquid metals and their exceptional chemical-bond activation ability under microwave field, this method efficiently converts various polyolefins into narrowband hydrocarbon oil (Oil yield: 81 wt.% for polypropylene (PP), 85.9 wt.% for polyethylene (PE)) and high-value olefin monomers (C2-4 selectivity: 50% for PE, 65.3% for PP) over 30 successive cycles, resulting in a high turnover frequency of 2.83 kgPlastic mLLiquid metal -1. These captivating advantages offered by electromagnetically-powered liquid metals are also supported by their self-separation features, thereby paving the way for large-scale engineering solutions in waste plastic upcycling.
Collapse
Affiliation(s)
- Jianye Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zerong Xing
- Key Lab of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Minghui Guo
- Key Lab of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Wangjing Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- Key Lab of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
5
|
Miao R, Yin Y, Ding Y, Liu J, Liu J, Liu XL, Xin Z, Bao C. Chemically Recyclable, Reprocessable, and Mechanically Robust Reversible Cross-Linked Polyurea Plastics for Fully Recyclable Aramid Fiber Reinforced Composites. ACS Macro Lett 2024; 13:1515-1520. [PMID: 39454132 DOI: 10.1021/acsmacrolett.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Aramid fiber reinforced composites (AFRCs) have received increasing attention because of their excellent comprehensive performance including high mechanical strength, high modulus, and light weight. However, full recycling of AFs from ARCFs is difficult to achieve. Herein, fully recyclable ARCFs are fabricated using reversible cross-linked polyurea plastics (PUHA) as the matrix. PUHA plastics are fabricated by cross-linking linear polyurea using hemiaminal groups. By changing the main chain structures, two types of PUHA plastics are prepared with excellent mechanical performance, which is comparable to that of traditional engineering plastics. PUHA plastics can be reprocessed at least five times without losing their original mechanical properties because of the dynamic exchangeability of the hemiaminal groups. Meanwhile, PUHA plastics can be rapidly depolymerized into linear polyurea under acidic conditions. When PUHA plastics are used as a matrix to fabricate AFRCs, the AFRCs exhibit excellent mechanical strength. Moreover, due to the simple chemical recycling ability of PUHA plastics, AFRCs can be fully decomposed into intact AFs and linear polyurea with high purity. This work presents the use of reversible cross-linked polyurea plastics in the fabrication of fully recyclable AFRCs and provides the future direction of developing fully recyclable and high-performance fiber-reinforced composites.
Collapse
Affiliation(s)
- Ruoxuan Miao
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yanlong Yin
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yuhan Ding
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jianyu Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jie Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao Li Liu
- Yantai Tayho Advanced Materials Research Institute Co., Ltd., Tayho Advanced Materials Group Co., Ltd., Yantai 264005, China
| | - Zhirong Xin
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Chunyang Bao
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
6
|
Heng JZX, Tan TTY, Li X, Loh WW, Chen Y, Xing Z, Lim Z, Ong JLY, Lin KS, Nishiyama Y, Yoshida T, Zhang L, Otake KI, Kitagawa S, Loh XJ, Ye E, Lim JYC. Pyrolytic Depolymerization of Polyolefins Catalysed by Zirconium-based UiO-66 Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202408718. [PMID: 39088314 DOI: 10.1002/anie.202408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Polyolefins such as polyethylenes and polypropylenes are the most-produced plastic waste globally, yet are difficult to convert into useful products due to their unreactivity. Pyrolysis is a practical method for large-scale treatment of mixed, contaminated plastic, allowing for their conversion into industrially-relevant petrochemicals. Metal-organic frameworks (MOFs), despite their tremendous utility in heterogeneous catalysis, have been overlooked for polyolefin depolymerization due to their perceived thermal instabilities and inability of polyethylenes and polypropylenes to penetrate their pores. Herein, we demonstrate the viability of UiO-66 MOFs containing coordinatively-unsaturated zirconium nodes, as effective catalysts for pyrolysis that significantly enhances the yields of valuable liquid and gas hydrocarbons, whilst halving the amounts of residual solids produced. Reactions occur on the Lewis-acidic UiO-66 nodes, without the need for noble metals, and yield aliphatic product distributions distinctly different from the aromatic-rich hydrocarbons that can be obtained from zeolite catalysis. We also demonstrate the first unambiguous characterization of polyolefin penetration into UiO-66 pores at pyrolytic temperatures, allowing access to the abundant Zr-oxo nodes within the MOF interior for efficient C-C cleavage. Our work highlights the potential of MOFs as highly-designable heterogeneous catalysts for depolymerisation of plastics, which can complement conventional catalysts in reactivity.
Collapse
Affiliation(s)
- Jerry Zhi Xiong Heng
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Tristan Tsai Yuan Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Wei Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yuting Chen
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhenxiang Xing
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhiyan Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jennet Li Ying Ong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Katherine Shiyun Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | | | - Takefumi Yoshida
- Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama, 640-8510, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Hyogo, 679-5148, Japan
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Enyi Ye
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore, 117576, Republic of Singapore
| |
Collapse
|
7
|
Ma Y, Zhao Z, Chen J, Chen Y, Wang B, Luo Y. Hydroborative Depolymerization of Polyesters and Polycarbonates to Diols Catalyzed by Heterogeneous Lanthanum Materials La(CH 2C 6H 4NMe 2- o) 3@SBA-15. Inorg Chem 2024. [PMID: 39235131 DOI: 10.1021/acs.inorgchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Chemical recycling is a promising strategy to establish a circular plastic economy, and it is still in an early stage of development. In this work, the reductive depolymerization of polyesters and polycarbonates into their corresponding borylated alcohols promoted by heterogeneous lanthanum materials was described. Grafting the easily accessible lanthanum tris(aminobenzyl) complex La(CH2C6H4NMe2-o)3 (1) onto the partially dehydroxylated silica support SBA-15 (SBA-15500 or SBA-15700) gave the inorganic-organic hybrid materials 1@SBA-15500 and 1@SBA-15700. These hybrid lanthanum materials, in combination with pinacolborane (HBpin), could serve as highly active heterogeneous catalysts for the selective depolymerization of aliphatic and aromatic polyesters, as well as polycarbonates into their corresponding borylated diols through a hydroboration reaction under mild conditions. The lanthanum materials exhibited a practical application in plastic waste recycling for their easy preparation, high catalytic efficiency, and recyclable property.
Collapse
Affiliation(s)
- Yansong Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zheyu Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Jue Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Yanjun Chen
- Ningbo Polytechnic, Ningbo 315800, P. R. China
| | - Bin Wang
- Ningbo Tianli Petrochemical Co., Ltd., Ningbo 315200, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
8
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
9
|
Mason AH, Motta A, Kratish Y, Marks TJ. Demystifying group-4 polyolefin hydrogenolysis catalysis. Gaseous propane hydrogenolysis mechanism over the same catalysts. Proc Natl Acad Sci U S A 2024; 121:e2406133121. [PMID: 39008674 PMCID: PMC11287269 DOI: 10.1073/pnas.2406133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
A kinetic/mechanistic investigation of gaseous propane hydrogenolysis over the single-site heterogeneous polyolefin depolymerization catalysts AlS/ZrNp2 and AlS/HfNp2 (AlS = sulfated alumina, Np = neopentyl), is use to probe intrinsic catalyst properties without the complexities introduced by time- and viscosity-dependent polymer medium effects. In a polymer-free automated plug-flow catalytic reactor, propane hydrogenolysis turnover frequencies approach 3,000 h-1 at 150 °C. Both catalysts exhibit approximately linear relationships between rate and [H2] at substoichiometric [H2] with rate law orders of 0.66 ± 0.09 and 0.48 ± 0.07 for Hf and Zr, respectively; at higher [H2], the rates approach zero-order in [H2]. Reaction orders in [C3H8] and [catalyst] are essentially zero-order under all conditions, with the former implying rapid, irreversible alkane binding/activation. This rate law, activation parameter, and DFT energy span analysis support a scenario in which [H2] is pivotal in one of two plausible and competing rate-determining transition states-bimolecular metal-alkyl bond hydrogenolysis vs. unimolecular β-alkyl elimination. The Zr and Hf catalyst activation parameters, ΔH‡ = 16.8 ± 0.2 kcal mol-1 and 18.2 ± 0.6 kcal mol-1, respectively, track the relative turnover frequencies, while ΔS‡ = -19.1 ± 0.8 and -16.7 ± 1.4 cal mol-1 K-1, respectively, imply highly organized transition states. These catalysts maintain activity up to 200 °C, while time-on-stream data indicate multiday activities with an extrapolated turnover number ~92,000 at 150 °C for the Zr catalyst. This methodology is attractive for depolymerization catalyst discovery and process optimization.
Collapse
Affiliation(s)
- Alexander H. Mason
- Department of Chemistry, Northwestern University, Evanston, IL60208 3113
- Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208 3113
| | - Alessandro Motta
- Department of Chemistry, Università di Roma “La Sapienza” and National Interuniversity Consortium of Materials Science and Technology, research unit of Roma, RomaI-00185, Italy
| | - Yosi Kratish
- Department of Chemistry, Northwestern University, Evanston, IL60208 3113
- Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208 3113
| | - Tobin J. Marks
- Department of Chemistry, Northwestern University, Evanston, IL60208 3113
- Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL60208 3113
| |
Collapse
|
10
|
Lu B, Takahashi K, Zhou J, Nakagawa S, Yamamoto Y, Katashima T, Yoshie N, Nozaki K. Mild Catalytic Degradation of Crystalline Polyethylene Units in a Solid State Assisted by Carboxylic Acid Groups. J Am Chem Soc 2024; 146:19599-19608. [PMID: 38952064 DOI: 10.1021/jacs.4c07458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Crystalline polyethylenes bearing carboxylic acid groups in the main chain were successfully degraded with a Ce catalyst and visible light. The reaction proceeds in a crystalline solid state without swelling in acetonitrile or water at a reaction temperature as low as 60 or 80 °C, employing dioxygen in air as the only stoichiometric reactant with nearly quantitative recovery of carbon atoms. Heterogeneous features of the reaction allowed us to reveal a dynamic morphological change of polymer crystals during the degradation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kohei Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jian Zhou
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Shintaro Nakagawa
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Yuta Yamamoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoko Yoshie
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Shaw WJ, Kidder MK, Bare SR, Delferro M, Morris JR, Toma FM, Senanayake SD, Autrey T, Biddinger EJ, Boettcher S, Bowden ME, Britt PF, Brown RC, Bullock RM, Chen JG, Daniel C, Dorhout PK, Efroymson RA, Gaffney KJ, Gagliardi L, Harper AS, Heldebrant DJ, Luca OR, Lyubovsky M, Male JL, Miller DJ, Prozorov T, Rallo R, Rana R, Rioux RM, Sadow AD, Schaidle JA, Schulte LA, Tarpeh WA, Vlachos DG, Vogt BD, Weber RS, Yang JY, Arenholz E, Helms BA, Huang W, Jordahl JL, Karakaya C, Kian KC, Kothandaraman J, Lercher J, Liu P, Malhotra D, Mueller KT, O'Brien CP, Palomino RM, Qi L, Rodriguez JA, Rousseau R, Russell JC, Sarazen ML, Sholl DS, Smith EA, Stevens MB, Surendranath Y, Tassone CJ, Tran B, Tumas W, Walton KS. A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy. Nat Rev Chem 2024; 8:376-400. [PMID: 38693313 DOI: 10.1038/s41570-024-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 05/03/2024]
Abstract
Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.
Collapse
Affiliation(s)
- Wendy J Shaw
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | | | - Simon R Bare
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | | | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Institute of Functional Materials for Sustainability, Helmholtz Zentrum Hereon, Teltow, Brandenburg, Germany.
| | | | - Tom Autrey
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Shannon Boettcher
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mark E Bowden
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Robert C Brown
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | | | - Jingguang G Chen
- Brookhaven National Laboratory, Upton, NY, USA
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | | | - Peter K Dorhout
- Vice President for Research, Iowa State University, Ames, IA, USA
| | | | | | - Laura Gagliardi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Aaron S Harper
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David J Heldebrant
- Pacific Northwest National Laboratory, Richland, WA, USA
- Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | | | - Jonathan L Male
- Pacific Northwest National Laboratory, Richland, WA, USA
- Biological Systems Engineering Department, Washington State University, Pullman, WA, USA
| | | | | | - Robert Rallo
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachita Rana
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Aaron D Sadow
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Lisa A Schulte
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Bryan D Vogt
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Robert S Weber
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Elke Arenholz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brett A Helms
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wenyu Huang
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - James L Jordahl
- Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, USA
| | | | - Kourosh Cyrus Kian
- Independent consultant, Washington DC, USA
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | - Johannes Lercher
- Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Ping Liu
- Brookhaven National Laboratory, Upton, NY, USA
| | | | - Karl T Mueller
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | | | - Long Qi
- Ames National Laboratory, Ames, IA, USA
| | | | | | - Jake C Russell
- Advanced Research Projects Agency - Energy, Department of Energy, Washington DC, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - Emily A Smith
- Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | | | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ba Tran
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - William Tumas
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
12
|
Cleary SR, Starace AK, Curran-Velasco CC, Ruddy DA, McGuirk CM. The Overlooked Potential of Sulfated Zirconia: Reexamining Solid Superacidity Toward the Controlled Depolymerization of Polyolefins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6612-6653. [PMID: 38509763 DOI: 10.1021/acs.langmuir.3c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Closed-loop recycling via an efficient chemical process can help alleviate the global plastic waste crisis. However, conventional depolymerization methods for polyolefins, which compose more than 50% of plastics, demand high temperatures and pressures, employ precious noble metals, and/or yield complex mixtures of products limited to single-use fuels or oils. Superacidic forms of sulfated zirconia (SZrO) with Hammet Acidity Functions (H0) ≤ - 12 (i.e., stronger than 100% H2SO4) are industrially deployed heterogeneous catalysts capable of activating hydrocarbons under mild conditions and are shown to decompose polyolefins at temperatures near 200 °C and ambient pressure. Additionally, confinement of active sites in porous supports is known to radically increase selectivity, coking and sintering resistance, and acid site activity, presenting a possible approach to low-energy polyolefin depolymerization. However, a critical examination of the literature on SZrO led us to a surprising conclusion: despite 40 years of catalytic study, engineering, and industrial use, the surface chemistry of SZrO is poorly understood. Ostensibly spurred by SZrO's impressive catalytic activity, the application-driven study of SZrO has resulted in deleterious ambiguity in requisite synthetic conditions for superacidity and insufficient characterization of acidity, porosity, and active site structure. This ambiguity has produced significant knowledge gaps surrounding the synthesis, structure, and mechanisms of hydrocarbon activation for optimized SZrO, stunting the potential of this catalyst in olefin cracking and other industrially relevant reactions, such as isomerization, esterification, and alkylation. Toward mitigating these long extant issues, we herein identify and highlight these current shortcomings and knowledge gaps, propose explicit guidelines for characterization of and reporting on characterization of solid acidity, and discuss the potential of pore-confined superacids in the efficient and selective depolymerization of polyolefins.
Collapse
Affiliation(s)
- Scott R Cleary
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Anne K Starace
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Caleb C Curran-Velasco
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Daniel A Ruddy
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - C Michael McGuirk
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
13
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
14
|
Xu S, Tang J, Fu L. Catalytic Strategies for the Upcycling of Polyolefin Plastic Waste. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3984-4000. [PMID: 38364857 DOI: 10.1021/acs.langmuir.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Chemical upgrading of waste plastics is currently one of the most important methods for addressing plastic pollution. In comparison to the current methods of incineration or landfill, chemical upgrading enables the utilization of carbon and hydrogen elements in waste plastics as resources. This process strongly relies on efficient catalysts and reaction systems. Through catalyst design, waste plastics can be converted into fuels or chemicals under the optimized reaction conditions, extending their life cycles. In this review, we systematically discuss various chemical conversion methods for polyolefin waste plastics, which account for a large proportion of waste plastics. We further explore the remaining challenges and future development trends in this field, including improving product value through product engineering and shifting research perspectives to exploring the tolerance of catalysts toward impurities in practical waste plastic waste rather than using pure plastic feedstock.
Collapse
Affiliation(s)
- Shaodan Xu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Junhong Tang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Li Fu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
15
|
Han XW, Zhang X, Zhou Y, Maimaitiming A, Sun XL, Gao Y, Li P, Zhu B, Chen EYX, Kuang X, Tang Y. Circular olefin copolymers made de novo from ethylene and α-olefins. Nat Commun 2024; 15:1462. [PMID: 38368405 PMCID: PMC10874424 DOI: 10.1038/s41467-024-45219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Ethylene/α-olefin copolymers are produced in huge scale and widely used, but their after-use disposal has caused plastic pollution problems. Their chemical inertness made chemical re/upcycling difficult. Ideally, PE materials should be made de novo to have a circular closed-loop lifecycle. However, synthesis of circular ethylene/α-olefin copolymers, including high-volume, linear low-density PE as well as high-value olefin elastomers and block copolymers, presents a particular challenge due to difficulties in introducing branches while simultaneously installing chemical recyclability and directly using industrial ethylene and α-olefin feedstocks. Here we show that coupling of industrial coordination copolymerization of ethylene and α-olefins with a designed functionalized chain-transfer agent, followed by modular assembly of the resulting AB telechelic polyolefin building blocks by polycondensation, affords a series of ester-linked PE-based copolymers. These new materials not only retain thermomechanical properties of PE-based materials but also exhibit full chemical circularity via simple transesterification and markedly enhanced adhesion to polar surfaces.
Collapse
Affiliation(s)
- Xing-Wang Han
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xun Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Youyun Zhou
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Aizezi Maimaitiming
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanshan Gao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Peizhi Li
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boyu Zhu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA.
| | - Xiaokang Kuang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong Tang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
16
|
Chauhan M, Antil N, Rana B, Akhtar N, Thadhani C, Begum W, Manna K. Isoreticular Metal-Organic Frameworks Confined Mononuclear Ru-Hydrides Enable Highly Efficient Shape-Selective Hydrogenolysis of Polyolefins. JACS AU 2023; 3:3473-3484. [PMID: 38155638 PMCID: PMC10751774 DOI: 10.1021/jacsau.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Upcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH2), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis. UiO-66-RuH2 catalyzed hydrogenolysis of single-use low-density polyethylene (LDPE) produced a C12 centered narrow bell-shaped distribution of C8-C16 alkanes in >80% yield and 90% selectivity in the liquid phase. By tuning the pore sizes of the isoreticular UiO-RuH2 MOF catalysts, the distribution of the products could be systematically altered, affording different fuel-grade liquid hydrocarbons from LDPE in high yields. Our spectroscopic and theoretical studies and control experiments reveal that UiO-RuH2 catalysts enable highly efficient upcycling of plastic wastes under mild conditions owing to their unique combination of coordinatively unsaturated single-site Ru-active sites, uniform and tunable pores, well-defined porous structure, and superior stability. The kinetics and theoretical calculations also identify the C-C bond scission involving β-alkyl transfer as the turnover-limiting step.
Collapse
Affiliation(s)
- Manav Chauhan
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Antil
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
17
|
Lai Q, Mason AH, Agarwal A, Edenfield WC, Zhang X, Kobayashi T, Kratish Y, Marks TJ. Rapid Polyolefin Hydrogenolysis by a Single-Site Organo-Tantalum Catalyst on a Super-Acidic Support: Structure and Mechanism. Angew Chem Int Ed Engl 2023; 62:e202312546. [PMID: 37948306 DOI: 10.1002/anie.202312546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 11/12/2023]
Abstract
The novel electrophilic organo-tantalum catalyst AlS/TaNpx (1) (Np=neopentyl) is prepared by chemisorption of the alkylidene Np3 Ta=CHt Bu onto highly Brønsted acidic sulfated alumina (AlS). The proposed catalyst structure is supported by EXAFS, XANES, ICP, DRIFTS, elemental analysis, and SSNMR measurements and is in good agreement with DFT analysis. Catalyst 1 is highly effective for the hydrogenolysis of diverse linear and branched hydrocarbons, ranging from C2 to polyolefins. To the best of our knowledge, 1 exhibits one of the highest polyolefin hydrogenolysis activities (9,800 (CH2 units) ⋅ mol(Ta)-1 ⋅ h-1 at 200 °C/17 atm H2 ) reported to date in the peer-reviewed literature. Unlike the AlS/ZrNp2 analog, the Ta catalyst is more thermally stable and offers multiple potential C-C bond activation pathways. For hydrogenolysis, AlS/TaNpx is effective for a wide variety of pre- and post-consumer polyolefin plastics and is not significantly deactivated by standard polyolefin additives at typical industrial concentrations.
Collapse
Affiliation(s)
- Qingheng Lai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Alexander H Mason
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Amol Agarwal
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL-60208-3113, USA
| | - Wilson C Edenfield
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Xinrui Zhang
- Department of Materials Science & Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL-60208-3113, USA
| | - Takeshi Kobayashi
- U.S. DOE Ames National Laboratory, IOWA State University, Ames, IA50011-3020, USA
| | - Yosi Kratish
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL-60208-3113, USA
| |
Collapse
|
18
|
Samudrala K, Conley MP. A Supported Ziegler-Type Organohafnium Site Metabolizes Polypropylene. J Am Chem Soc 2023; 145. [PMID: 37921588 PMCID: PMC10655186 DOI: 10.1021/jacs.3c05940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Cp2Hf(CH3)2 reacts with silica containing strong aluminum Lewis sites to form Cp2Hf-13CH3+ paired with aluminate anions. Solid-state NMR studies show that this reaction also forms neutral organohafnium and hafnium sites lacking methyl groups. Cp2Hf-13CH3+ reacts with isotatic polypropylene (iPP, Mn = 13.3 kDa; Đ = 2.4; mmmm = 94%; ∼110 C3H6/Hf) and H2 to form oils with moderate molecular weights (Mn = 290-1200 Da) in good yields. The aliphatic oils show characteristic 13C{1H} NMR properties consistent with complete loss of diastereoselectivity and formation of regioirregular errors under 1 atm H2. These results show that a Ziegler-Natta-type active site is compatible in a common reaction used to digest waste plastic into smaller aliphatic fragments.
Collapse
Affiliation(s)
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
19
|
Zhao Y, Rettner EM, Harry KL, Hu Z, Miscall J, Rorrer NA, Miyake GM. Chemically recyclable polyolefin-like multiblock polymers. Science 2023; 382:310-314. [PMID: 37856598 PMCID: PMC10710102 DOI: 10.1126/science.adh3353] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Polyolefins are the most important and largest volume plastics produced. Unfortunately, the enormous use of plastics and lack of effective disposal or recycling options have created a plastic waste catastrophe. In this work, we report an approach to create chemically recyclable polyolefin-like materials with diverse mechanical properties through the construction of multiblock polymers from hard and soft oligomeric building blocks synthesized with ruthenium-mediated ring-opening metathesis polymerization of cyclooctenes. The multiblock polymers exhibit broad mechanical properties, spanning elastomers to plastomers to thermoplastics, while integrating a high melting transition temperature (Tm) and low glass transition temperature (Tg), making them suitable for use across diverse applications (Tm as high as 128°C and Tg as low as -60°C). After use, the different plastics can be combined and efficiently deconstructed back to the fundamental hard and soft building blocks for separation and repolymerization to realize a closed-loop recycling process.
Collapse
Affiliation(s)
- Yucheng Zhao
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma M. Rettner
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Katherine L. Harry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhitao Hu
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Miscall
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Fernando-López O, Trujillo-Hernández K, Moreno-Martínez VA, Martínez-Otero D, Bernabé-Pablo E, Huerta-Lavorie R, Jancik V. Molecular Alumo- and Gallosilicate Hydrides Functionalized with Terminal M(NR 2) 3 and Bridging M(NR 2) 2 (M = Ti, Zr, Hf; R = Me, Et) Moieties. Inorg Chem 2023; 62:14533-14545. [PMID: 37642323 DOI: 10.1021/acs.inorgchem.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A general synthetic strategy for the systematic synthesis of group 4 MIV heterometallic complexes LMIII(H)(μ-O)Si(μ-O)(OtBu)2}nMIV(NR2)4-n (L = {[HC{C(Me)N(2,6-iPr2C6H3)}2; MIII = Al or Ga; n = 1 or 2; MIV = Ti, Zr, Hf; R = Me, Et), based on alumo- or gallosilicate hydride ligands bearing a Si-OH moiety, is presented. The challenging isolation of these metalloligands involved two strategies. On the one hand, the acid-base reaction of LAlH2 with (HO)2Si(OtBu)2 yielded LAlH(μ-O)Si(OH)(OtBu)2 (1), while on the other hand, the oxidative addition of (HO)2Si(OtBu)2 to LGa produced the gallium analog (2). These metalloligands successfully stabilized two hydrogen atoms with different acid-base properties (MIII-H and SiO-H) in the same molecule. Reactivity studies between 1 and 2 and group 4 amides MIV(NR2)4 (MIV = Ti, Zr, Hf; R = Me, Et) and tuning the reactions conditions and stoichiometry led to isolation and structural characterization of heterometallic complexes 3-11 with a 1:1 or 2:1 metalloligand/MIV ratio. Notably, some of these molecular heterometallic silicate complexes stabilize for the first time terminal (O3Si-O-)MIV(NR2)3 moieties known from single-site silica-grafted species. Furthermore, the aluminum-containing heterometallic complexes possess Al-H vibrational energies similar to those reported for modified alumina surfaces, which makes them potentially suitable models for the proposed MIV species grafted onto silica/alumina surfaces with hydride and dihydride architectures.
Collapse
Affiliation(s)
- Oscar Fernando-López
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Karla Trujillo-Hernández
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
| | - Víctor Augusto Moreno-Martínez
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Diego Martínez-Otero
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Erandi Bernabé-Pablo
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Raúl Huerta-Lavorie
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| | - Vojtech Jancik
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carr. Toluca-Atlacomulco km. 14.5, Toluca, Estado de México 50200, México
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
21
|
Vance B, Najmi S, Kots PA, Wang C, Jeon S, Stach EA, Zakharov DN, Marinkovic N, Ehrlich SN, Ma L, Vlachos DG. Structure-Property Relationships for Nickel Aluminate Catalysts in Polyethylene Hydrogenolysis with Low Methane Selectivity. JACS AU 2023; 3:2156-2165. [PMID: 37654574 PMCID: PMC10466342 DOI: 10.1021/jacsau.3c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Earth-abundant metals have recently been demonstrated as cheap catalyst alternatives to scarce noble metals for polyethylene hydrogenolysis. However, high methane selectivities hinder industrial feasibility. Herein, we demonstrate that low-temperature ex-situ reduction (350 °C) of coprecipitated nickel aluminate catalysts yields a methane selectivity of <5% at moderate polymer deconstruction (25-45%). A reduction temperature up to 550 °C increases the methane selectivity nearly sevenfold. Catalyst characterization (XRD, XAS, 27Al MAS NMR, H2 TPR, XPS, and CO-IR) elucidates the complex process of Ni nanoparticle formation, and air-free XPS directly after reaction reveals tetrahedrally coordinated Ni2+ cations promote methane production. Metallic and the specific cationic Ni appear responsible for hydrogenolysis of internal and terminal C-C scissions, respectively. A structure-methane selectivity relationship is discovered to guide the design of Ni-based catalysts with low methane generation. It paves the way for discovering other structure-property relations in plastics hydrogenolysis. These catalysts are also effective for polypropylene hydrogenolysis.
Collapse
Affiliation(s)
- Brandon
C. Vance
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Sean Najmi
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Pavel A. Kots
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Cong Wang
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
| | - Sungho Jeon
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A. Stach
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dmitri N. Zakharov
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Nebojsa Marinkovic
- Department
of Chemical Engineering, Columbia University, 500W 120th Street, New York, New York 10027, United States
| | - Steven N. Ehrlich
- National
Synchrotron Light Source, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Lu Ma
- National
Synchrotron Light Source, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Dionisios G. Vlachos
- Center
for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716, United States
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
22
|
Nifant’ev IE, Komarov PD, Kostomarova OD, Kolosov NA, Ivchenko PV. MAO- and Borate-Free Activating Supports for Group 4 Metallocene and Post-Metallocene Catalysts of α-Olefin Polymerization and Oligomerization. Polymers (Basel) 2023; 15:3095. [PMID: 37514483 PMCID: PMC10384419 DOI: 10.3390/polym15143095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Modern industry of advanced polyolefins extensively uses Group 4 metallocene and post-metallocene catalysts. High-throughput polyolefin technologies demand the use of heterogeneous catalysts with a given particle size and morphology, high thermal stability, and controlled productivity. Conventional Group 4 metal single-site heterogeneous catalysts require the use of high-cost methylalumoxane (MAO) or perfluoroaryl borate activators. However, a number of inorganic phases, containing highly acidic Lewis and Brønsted sites, are able to activate Group 4 metal pre-catalysts using low-cost and affordable alkylaluminums. In the present review, we gathered comprehensive information on MAO- and borate-free activating supports of different types and discussed the surface nature and chemistry of these phases, examples of their use in the polymerization of ethylene and α-olefins, and prospects of the further development for applications in the polyolefin industry.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel D. Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
| | | | - Nikolay A. Kolosov
- NIOST LLC, Kuzovlevsky Tr. 2-270, 634067 Tomsk, Russia; (O.D.K.); (N.A.K.)
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
23
|
Gao J, Zhu L, Conley MP. Cationic Tantalum Hydrides Catalyze Hydrogenolysis and Alkane Metathesis Reactions of Paraffins and Polyethylene. J Am Chem Soc 2023; 145:4964-4968. [PMID: 36827508 DOI: 10.1021/jacs.2c13610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sulfated aluminum oxide (SAO), a high surface area material containing sulfate anions that behave like weakly coordinating anions, reacts with Ta(═CHtBu)(CH2tBu)3 to form [Ta(CH2tBu)2(O-)2][SAO] (1). Subsequent treatment with H2 forms Ta-H+ sites supported on SAO that are active in hydrogenolysis and alkane metathesis reactions. In both reactions Ta-H+ is more active than related neutral Ta-H sites supported on silica. This reaction chemistry extends to melts of high-density polyethylene (HDPE), where Ta-H+ converts 30% of a low molecular weight HDPE (Mn = 2.5 kg mol-1; Đ = 3.6) to low molecular weight paraffins under hydrogenolysis conditions. Under alkane metathesis conditions Ta-H+ converts this HDPE to a high MW fraction (Mn = 6.2 kDa; Đ = 2.3) and low molecular weight alkane products (C13-C32). These results show that incorporating charge as a design element in supported d0 metal hydrides is a viable strategy to increase the reaction rate in challenging reactions involving reorganization of C-C bonds in alkanes.
Collapse
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lingchao Zhu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|