1
|
Song T, Han X, Yin H, Zhao J, Ma M, Wen X, Liu C, Yue Y, Zhao H, Zhou J, Yang Y, Ran J, Liu M. HDAC6 deacetylates ENKD1 to regulate mitotic spindle behavior and corneal epithelial homeostasis. EMBO Rep 2025; 26:2597-2621. [PMID: 40155750 PMCID: PMC12116779 DOI: 10.1038/s44319-025-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
Corneal diseases can cause severe visual impairment and even blindness, which have been linked to the interruption of corneal epithelial homeostasis. However, the underlying molecular mechanisms are largely unknown. In this study, by comparing the transcriptomes of keratoconus, bacterial keratitis, viral keratitis, and healthy corneas, we found a steady upregulation of histone deacetylase 6 (HDAC6) in corneal diseases. Consistently, a significant increase in HDAC6 was observed in mouse corneas with bacterial keratitis. Overexpression of HDAC6 in mice results in a significant thickening of the corneal epithelium. Mechanistic studies reveal that HDAC6 overexpression disrupts mitotic spindle orientation and positioning in corneal epithelial cells. Our data further show that HDAC6 deacetylates enkurin domain-containing protein 1 (ENKD1) at lysine 98 and thereby impedes its interaction with γ-tubulin, restraining the centrosomal localization of ENKD1 and its proper function in regulating mitotic spindle behavior. These findings uncover a pivotal role for HDAC6-mediated deacetylation of ENKD1 in the control of corneal epithelial homeostasis, providing potential therapeutic targets for treating corneal diseases.
Collapse
Affiliation(s)
- Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Xueqing Han
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hanxiao Yin
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Junkui Zhao
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Mingming Ma
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Xiaonuan Wen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Chunli Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yiyang Yue
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yang Yang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China.
| |
Collapse
|
2
|
Huang Z, Hu L, Liu Z, Wang S. The Functions and Regulatory Mechanisms of Histone Modifications in Skeletal Muscle Development and Disease. Int J Mol Sci 2025; 26:3644. [PMID: 40332229 PMCID: PMC12027200 DOI: 10.3390/ijms26083644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Skeletal muscle development is a complex biological process regulated by many factors, such as transcription factors, signaling pathways, and epigenetic modifications. Histone modifications are important epigenetic regulatory factors involved in various biological processes, including skeletal muscle development, and play a crucial role in the pathogenesis of skeletal muscle diseases. Histone modification regulators affect the expression of many genes involved in skeletal muscle development and disease by adding or removing certain chemical modifications. In this review, we comprehensively summarize the functions and regulatory activities of the histone modification regulators involved in skeletal muscle development, regeneration, and disease.
Collapse
Affiliation(s)
- Zining Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| | - Linqing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| | - Zhiwei Liu
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, China; (Z.H.); (L.H.)
| |
Collapse
|
3
|
Tan S, Fu G, Xie Y, Xie X, Yan J, Jin L. HDAC6 deficiency aggravates ductular reactions through aggresome-mediated hepatocyte apoptosis. Biochem Biophys Res Commun 2025; 753:151511. [PMID: 39986090 DOI: 10.1016/j.bbrc.2025.151511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Ductular reactions (DRs) contribute significantly to the occurrence and development of liver disease. While histone deacetylase 6 (HDAC6) is known to regulate injury repair in multiple tissues, its exact role in DRs remains unclear. This study examined the role and underlying mechanism of HDAC6 in DRs using an HDAC6 knockout (HDAC6-/y) male mouse model. Wild type and HDAC6-deficient male mice were administered 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC) to induce DRs. The impact of HDAC6 inhibition on aggresome formation was assessed in vitro using AML-12 hepatocytes exposed to H2O2 and treated with tubastatin A (TSA), a selective HDAC6 inhibitor. Fluorescence immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to quantify protein and gene expression levels, respectively. Immunohistochemical and qRT-PCR analyses revealed that HDAC6 deficiency exacerbated DRs and fibrosis, accompanied by increased expression of transforming growth factor β (TGF-β) and activation of the Notch signaling pathway. Additionally, genetic knockout or pharmacological inhibition of HDAC6 promoted hepatocyte apoptosis in vivo and in vitro, as evidenced by elevated caspase3, caspase9, and p53 expression. Furthermore, TSA treatment induced the formation of aggresomes in H2O2-exposed AML-12 hepatocytes, which were encased by vimentin filaments. These findings demonstrate that HDAC6 deficiency promotes DRs and liver fibrosis through the formation of intracellular aggregates, ultimately leading to hepatocyte apoptosis.
Collapse
Affiliation(s)
- Shanshan Tan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Guoquan Fu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, China; Hangzhou Hongwang Medical Laboratory Co. Ltd., Hangzhou, Zhejiang, 310000, China
| | - Yixia Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Xueying Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, China.
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, 312000, China; Hangzhou Hongwang Medical Laboratory Co. Ltd., Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
4
|
Kim JS, Jun JH, Lee J, Park S, Kim E, Hwang SJ, Moon H, Baek SH, Kim HK, Park J, Cho Y, Han J, Kim C, Kim J, Yang HM, Lee C, Chung Y, Lee HJ, Jo DG. HDAC6 mediates NLRP3 inflammasome activation in the pathogenesis of diabetic retinopathy. Metabolism 2025; 164:156108. [PMID: 39689826 DOI: 10.1016/j.metabol.2024.156108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR), a major blindness cause in developed countries, is intricately linked to diabetes management and its duration. Here, we demonstrate that HDAC6 mediates NLRP3 inflammasome activation under diabetic conditions, leading to retinal inflammation and degeneration. METHODS This study demonstrated the therapeutic effects of HDAC6 genetic ablation, pharmacological inhibition, and HDAC6-deficient bone marrow transplantation in a diabetes model induced by streptozotocin and a high-fat diet. The therapeutic potential was evaluated from a metabolic perspective, including ocular pathologies such as retinal lesions, neovascularization, and vascular leakage. RESULTS We discovered that inhibition or genetic ablation of HDAC6 markedly alleviates DR symptoms by dampening NLRP3 inflammasome activation and mitigating retinal damage. Moreover, bone marrow transplantation from HDAC6-deficient mice into wild-type counterparts reversed DR symptoms, underscoring the significance of HDAC6 in systemic immune regulation. The study introduces a novel HDAC6 inhibitor, noted for superior bioavailability and blood-retinal barrier permeability, further highlights the therapeutic promise of targeting HDAC6 in DR. CONCLUSIONS Our findings not only underscore the crucial role of HDAC6 in the immune regulatory mechanisms underlying DR pathogenesis through NLRP3 inflammasome activation but also position HDAC6 inhibition as a promising strategy for addressing diabetic complications beyond DR.
Collapse
Affiliation(s)
- Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin 16995, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heesu Moon
- School of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Baek
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hark Kyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chanhee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun-Mo Yang
- Department of Medical Chemistry, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin 16995, Republic of Korea
| | - Changsik Lee
- Department of Medical Chemistry, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin 16995, Republic of Korea
| | - Yeonseok Chung
- School of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Louie KW, Hasegawa EH, Farr GH, Ignacz A, Paguio A, Maenza A, Paquette AG, Henry C, Maves L. Epigenetic small molecule screening identifies a new HDACi compound for ameliorating Duchenne muscular dystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634796. [PMID: 39974951 PMCID: PMC11838185 DOI: 10.1101/2025.01.24.634796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Duchenne muscular dystrophy (DMD) is the most common inherited muscle disease. There are currently few effective therapies to treat the disease, although many approaches are being pursued. Certain histone deacetylase inhibitors (HDACi) have been shown to ameliorate DMD phenotypes in mouse and zebrafish animal models, and the HDACi givinostat has recently gained FDA approval for DMD. Our goal was to identify additional HDACi, or other classes of epigenetic small molecules, that are beneficial for DMD. Using an established animal model for DMD, the zebrafish dmd mutant strain sapje , we screened a library of over 800 epigenetic small molecules of various classes. We used a quantitative muscle birefringence assay to assess and compare the effects of these small molecule treatments on dmd mutant zebrafish skeletal muscle. Our screening identified a new HDACi, SR-4370, that ameliorated dmd mutant zebrafish skeletal muscle degeneration, in addition to HDACi previously shown to improve dmd zebrafish. We find that a single early treatment of HDACi can ameliorate dmd zebrafish. Furthermore, we find that HDACi that improve dmd muscle also cause increased histone acetylation in zebrafish larvae, whereas givinostat does not appear to increase histone acetylation or improve zebrafish dmd muscle. Our results add to the growing evidence that HDACi are promising candidates for treating DMD. Our study also provides further support for the effectiveness of small-molecule screening in dmd zebrafish. Graphical abstract
Collapse
|
6
|
Aartsma-Rus A. Histone deacetylase inhibition with givinostat: a multi-targeted mode of action with the potential to halt the pathological cascade of Duchenne muscular dystrophy. Front Cell Dev Biol 2025; 12:1514898. [PMID: 39834392 PMCID: PMC11743666 DOI: 10.3389/fcell.2024.1514898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis. HDAC inhibition has consequently been investigated as a therapeutic approach for muscular dystrophies that, significantly, works independently from specific genetic mutations, making it potentially suitable for all patients with DMD. This review discusses how HDAC inhibition addresses DMD pathophysiology in a multi-targeted mode of action and summarizes the recent evidence on the rationale for HDAC inhibition with givinostat, which is now approved by the United States Food and Drug Administration for the treatment of DMD in patients aged 6 years and older.
Collapse
Affiliation(s)
- A. Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
7
|
Osseni A, Schaeffer L. Targeting histone deacetylase 6 (HDAC6) in Duchenne muscular dystrophy: New insights into therapeutic potential. Acta Physiol (Oxf) 2025; 241:e14256. [PMID: 39676737 DOI: 10.1111/apha.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Affiliation(s)
- Alexis Osseni
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université de Lyon, Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université de Lyon, Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
8
|
Rui Y, Zhang H, Yu K, Qiao S, Gao C, Wang X, Yang W, Asadikaram G, Li Z, Zhang K, Peng J, Li J, He J, Wang H. N 6-Methyladenosine Regulates Cilia Elongation in Cancer Cells by Modulating HDAC6 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408488. [PMID: 39535388 PMCID: PMC11727115 DOI: 10.1002/advs.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Primary cilia are microtubule-based organelles that function as cellular antennae to address multiple metabolic and extracellular cues. The past decade has seen significant advances in understanding the pro-tumorigenic role of N6-methyladenosine (m6A) modification in tumorigenesis. Nevertheless, whether m6A modification modulates the cilia dynamics during cancer progression remains unclear. Here, the results show that m6A methyltransferase METTL3 regulates cilia length in cancer cells via HDAC6-dependent deacetylation of axonemal α-tubulin, thereby controlling cancer development. Mechanically, METTL3 positively regulates the translation of HDAC6 in an m6A-dependent manner, while m6A methylation of A3678 in the coding sequence (CDS) of HDAC6 ameliorates its translation efficiency via facilitating the binding with YTHDF3. The upregulation of HDAC6 induced by METTL3 over-expression is capable of inhibiting cilia elongation and acetylation of α-tubulin, thereby shortening cilia length and accelerating the progression of cervical cancer both in vitro and in vivo. Collectively, depletion of METTL3-mediated m6A modification leads to abnormally elongated cilia via suppressing HDAC6-dependent deacetylation of axonemal α-tubulin, ultimately attenuating cell growth and cervical cancer development.
Collapse
Affiliation(s)
- Yalan Rui
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Kangning Yu
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Shiyao Qiao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Chenglin Gao
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Xiansong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Weifeng Yang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesMedical University CampusKerman7616913555Iran
| | - Zigang Li
- Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhen518067China
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengdu Seventh People's HospitalAffiliated Cancer Hospital of Chengdu Medical CollegeSchool of Biological Sciences and TechnologyChengdu Medical CollegeChengdu610500China
| | - Jianxin Peng
- Department of Hepatobiliary SurgeryGuangdong Province Traditional Chinese Medical HospitalGuangzhou510120China
| | - Jiexin Li
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| | - Junming He
- Department of Hepatobiliary SurgeryGuangdong Province Traditional Chinese Medical HospitalGuangzhou510120China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and EvaluationState Key Laboratory of Anti‐Infective Drug Discovery and DevelopmentSchool of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhou510006China
| |
Collapse
|
9
|
Chakravorty A, Simons BD, Yoshida S, Cai L. Spatial Transcriptomics Reveals the Temporal Architecture of the Seminiferous Epithelial Cycle and Precise Sertoli-Germ Synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620681. [PMID: 39554074 PMCID: PMC11565904 DOI: 10.1101/2024.10.28.620681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Spermatogenesis is characterized by the seminiferous epithelial cycle, a periodic pattern of germ cell differentiation with a wave-like progression along the length of seminiferous tubules. While key signaling and metabolic components of the cycle are known, the transcriptional changes across the cycle and the correlations between germ cell and somatic lineages remain undefined. Here, we use spatial transcriptomics via RNA SeqFISH+ to profile 2,638 genes in 216,090 cells in mouse testis and identify a periodic transcriptional pattern across tubules that precisely recapitulates the seminiferous epithelial cycle, enabling us to map cells to specific timepoints along the developmental cycle. Analyzing gene expression in somatic cells reveals that Sertoli cells exhibit a cyclic transcriptional profile closely synchronized with germ cell development while other somatic cells do not demonstrate such synchronization. Remarkably, in mouse testis with drug-induced ablation of germ cells, Sertoli cells independently maintain their cyclic transcriptional dynamics. By analyzing expression data, we identify an innate retinoic acid cycle, a network of transcription factors with cyclic activation, and signaling from germ cells that could interact with this network. Together, this work leverages spatial geometries for mapping the temporal dynamics and reveals a regulatory mechanism in spermatogenesis where Sertoli cells oscillate and coordinate with the cyclical progression of germ cell development.
Collapse
|
10
|
Saeed M, Haque A, Shoaib A, Danish Rizvi SM. Exploring novel natural compound-based therapies for Duchenne muscular dystrophy management: insights from network pharmacology, QSAR modeling, molecular dynamics, and free energy calculations. Front Pharmacol 2024; 15:1395014. [PMID: 39415830 PMCID: PMC11481126 DOI: 10.3389/fphar.2024.1395014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/31/2024] [Indexed: 10/19/2024] Open
Abstract
Muscular dystrophies encompass a heterogeneous group of rare neuromuscular diseases characterized by progressive muscle degeneration and weakness. Among these, Duchenne muscular dystrophy (DMD) stands out as one of the most severe forms. The present study employs an integrative approach combining network pharmacology, quantitative structure-activity relationship (QSAR) modeling, molecular dynamics (MD) simulations, and free energy calculations to identify potential therapeutic targets and natural compounds for DMD. Upon analyzing the GSE38417 dataset, it was found that individuals with DMD exhibited 290 upregulated differentially expressed genes (DEGs) compared to healthy controls. By utilizing gene ontology (GO) and protein-protein interaction (PPI) network analysis, this study provides insights into the functional roles of the identified DEGs, identifying ten hub genes that play a critical role in the pathology of DMD. These key genes include DMD, TTN, PLEC, DTNA, PKP2, SLC24A, FBXO32, SNTA1, SMAD3, and NOS1. Furthermore, through the use of ligand-based pharmacophore modeling and virtual screening, three natural compounds were identified as potential inhibitors. Among these, compounds 3874518 and 12314417 have demonstrated significant promise as an inhibitor of the SMAD3 protein, a crucial factor in the fibrotic and inflammatory mechanisms associated with DMD. The therapeutic potential of the compounds was further supported by molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analysis. These findings suggest that the compounds are viable candidates for experimental validation against DMD.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Ashanul Haque
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
11
|
Wu D, Su J, Wang P, Zhai B, Zhao C, Li W, Chen C, Guan J, Cao Z, Song N, Yang H, Zhang Y, Xu H. Exploration on pharmacological mechanisms of YZP against neuropathic pain via inhibiting spinal inflammation and the rationality of its compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118316. [PMID: 38729540 DOI: 10.1016/j.jep.2024.118316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yuanhu Zhitong Prescription (YZP) is a well-known traditional Chinese medicine (TCM) formula for neuropathic pain (NP) therapy with a satisfying clinical efficacy. However, the underlying pharmacological mechanism and its compatibility principle remain unclear. AIM OF THE STUDY This study aims to investigate the analgesic and compatibility mechanisms of YZP on neuropathic pain (NP) at the gene and biological process levels. MATERIALS AND METHODS The chronic constriction injury (CCI) rats were intragastrically administrated with extracts of YZP, YH and BZ separately, and then mechanical hypersensitivity were measured to evaluate the analgesic effects between YH and BZ before and after compatibility. Then, RNA-seq and bioinformatics analyses were performed to elucidate the potential mechanisms underlying YZP's analgesia and compatibility. Finally, the expression levels and significant differences of key genes were analyzed. RESULTS Behaviorally, both YZP and YH effectively alleviated mechanical allodynia in CCI rats, with YZP being superior to YH. In contrast, we did not observe an analgesic effect of BZ. Genetically, YZP, YH, and BZ reversed the expression levels of 52, 34, and 42 aberrant genes in the spinal cord of CCI rats, respectively. Mechanically, YZP was revealed to alleviate NP mainly by modulating the inflammatory response and neuropeptide signaling pathway, which are the dominant effective processes of YH. Interestingly, the effective targets of YZP were especially enriched in leukocyte activation and cytokine-mediated signaling pathways. Moreover, BZ was found to exert an adjunctive effect in enhancing the analgesic effect of YH by promoting skeletal muscle tissue regeneration and modulating calcium ion transport. CONCLUSIONS YH, as the monarch drug, plays a dominant role in the analgesic effect of YZP that effectively relieves NP by inhibiting the spinal inflammation and neuropeptide signaling pathway. BZ, as the minister drug, not only synergistically enhances analgesic processes of YH but also helps to alleviate the accompanying symptoms of NP. Consequently, YZP exerted a more potent analgesic effect than YH and BZ alone. In conclusion, our findings offer new insights into understanding the pharmacological mechanism and compatibility principle of YZP, which may support its clinical application in NP therapy.
Collapse
Affiliation(s)
- Dan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jin Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baorong Zhai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Weijie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengyu Chen
- Jiaheng (Hengqin, Zhuhai) Pharmaceutical Technology Co. Ltd., Zhuhai, 519000, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co., Ltd., Nanyang, 474450, China
| | - Zhiming Cao
- Jiaheng (Hengqin, Zhuhai) Pharmaceutical Technology Co. Ltd., Zhuhai, 519000, China
| | - Naining Song
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory for Research and Evaluation of TCM, National Medical Products Administration, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
13
|
Agarwal T, Manandhar S, B HK, Famurewa AC, Gurram PC, Suggala RS, Sankhe R, Mudgal J, Pai KSR. Oxyresveratrol-β-cyclodextrin mitigates streptozotocin-induced Alzheimer's model cognitive impairment, histone deacetylase activity in rats: in silico & in vivo studies. Sci Rep 2024; 14:9897. [PMID: 38688962 PMCID: PMC11061296 DOI: 10.1038/s41598-024-57188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
Alzheimer's disease (AD) is associated with cognitive deficits and epigenetic deacetylation that can be modulated by natural products. The role of natural oxyresveratrol-β-cyclodextrin (ORV) on cognition and histone deacetylase activity in AD is unclear. Herein, in-silico docking and molecular dynamics simulation analysis determined that oxyresveratrol potentially targets histone deacetylase-2 (HDAC2). We therefore evaluated the in vivo ameliorative effect of ORV against cognitive deficit, cerebral and hippocampal expression of HDAC in experimental AD rats. Intracerebroventricular injection of STZ (3 mg/kg) induced experimental AD and the rats were treated with low dose (200 mg/kg), high dose (400 mg/kg) of ORV and donepezil (10 mg/kg) for 21 days. The STZ-induced AD caused cognitive and behavioural deficits demonstrated by considerable increases in acetylcholinesterase activity and escape latency compared to sham control. The levels of malondialdehyde (MDA) and HDAC activity were significantly increased in AD disease group comparison to the sham. Interestingly, the ORV reversed the cognitive-behavioural deficit and prominently reduced the MDA and HDAC levels comparable to the effect of the standard drug, donepezil. The findings suggest anti-AD role of ORV via antioxidant effect and inhibition of HDAC in the hippocampal and frontal cortical area of rats for AD.
Collapse
Affiliation(s)
- Tushar Agarwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ademola C Famurewa
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Abakaliki, Ebonyi State, Nigeria
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ramya Shri Suggala
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
14
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
15
|
Mozzetta C, Sartorelli V, Steinkuhler C, Puri PL. HDAC inhibitors as pharmacological treatment for Duchenne muscular dystrophy: a discovery journey from bench to patients. Trends Mol Med 2024; 30:278-294. [PMID: 38408879 PMCID: PMC11095976 DOI: 10.1016/j.molmed.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Pier Lorenzo Puri
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
17
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
18
|
Xu J, Li C, Kang X. The epigenetic regulatory effect of histone acetylation and deacetylation on skeletal muscle metabolism-a review. Front Physiol 2023; 14:1267456. [PMID: 38148899 PMCID: PMC10749939 DOI: 10.3389/fphys.2023.1267456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Skeletal muscles, the largest organ responsible for energy metabolism in most mammals, play a vital role in maintaining the body's homeostasis. Epigenetic modification, specifically histone acetylation, serves as a crucial regulatory mechanism influencing the physiological processes and metabolic patterns within skeletal muscle metabolism. The intricate process of histone acetylation modification involves coordinated control of histone acetyltransferase and deacetylase levels, dynamically modulating histone acetylation levels, and precisely regulating the expression of genes associated with skeletal muscle metabolism. Consequently, this comprehensive review aims to elucidate the epigenetic regulatory impact of histone acetylation modification on skeletal muscle metabolism, providing invaluable insights into the intricate molecular mechanisms governing epigenetic modifications in skeletal muscle metabolism.
Collapse
Affiliation(s)
| | | | - Xiaolong Kang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
19
|
Castellano L, Gache V. [Microtubular network and functionality of the striated skeletal muscle]. Med Sci (Paris) 2023; 39 Hors série n° 1:54-57. [PMID: 37975771 DOI: 10.1051/medsci/2023146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Striated skeletal muscles are made of post-mitotic and multinucleated cells: muscle fibers, in which nuclei are regularly spaced and positioned at their periphery. The specific positioning of nuclei, necessary for the proper functioning of the muscle, is mainly regulated by the microtubule network and partner proteins. Many muscular pathologies present alterations in both the organization of the microtubule network and nuclear positioning, as observed in Duchenne Muscular Dystrophy, centronuclear myopathies or various neuromuscular diseases. The importance of the microtubule interactome and its influence in the maintenance of skeletal muscle homeostasis is a key issue in understanding muscle diseases.
Collapse
Affiliation(s)
- Léa Castellano
- Institut NeuroMyoGène, CNRS UMR 5261 - Inserm U1315, Université Claude Bernard Lyon 1, France
| | - Vincent Gache
- Institut NeuroMyoGène, CNRS UMR 5261 - Inserm U1315, Université Claude Bernard Lyon 1, France
| |
Collapse
|
20
|
Ling X, Wang Q, Wu P, Zhou K, Zhang J, Zhang G. Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis. Genes (Basel) 2023; 14:1764. [PMID: 37761904 PMCID: PMC10530709 DOI: 10.3390/genes14091764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Broiler skeletal muscle growth is significantly influenced by miRNAs. Our earlier research demonstrated that miR-24-3p significantly suppressed the proliferation of chicken myoblasts while promoting their differentiation. The purpose of this study is to investigate miR-24-3p potential target genes in chickens. We collected myoblasts of Jinghai yellow chicken and transfected four samples with mimics of miR-24-3p and another four samples with mimic NC (negative control) for RNA-seq. We obtained 54.34 Gb of raw data in total and 50.79 Gb of clean data remained after filtering. Moreover, 11,635 genes were found to be co-expressed in these two groups. The mimic vs. NC comparison group contained 189 DEGs in total, 119 of which were significantly up-regulated and 70 of which were significantly down-regulated. Important biological process (BP) terminology such as nuclear chromosomal segregation, reproduction, and nuclear division were discovered by GO enrichment analysis for DEGs in the mimic vs. NC comparison group. KEGG pathway analysis showed that focal adhesion, cytokine-cytokine receptor interaction, the TGF-β signaling pathway, and the MAPK signaling pathway were enriched in the top 20. Variation site analysis illustrated the SNP (single nucleotide polymorphisms) and INDEL (insertion-deletion) in the tested samples. By comparing the target genes predicted by miRDB (MicroRNA target prediction database) and TargetScan with the 189 DEGs found by the transcriptome sequencing, we discovered two up-regulated DEGs (NEURL1 and IQSEC3) and two down-regulated DEGs (REEP1 and ST6GAL1). Finally, we carried out qPCR experiments on eight DEGs and discovered that the qPCR results matched the sequencing outcomes. These findings will aid in identifying potential miR-24-3p target genes in chicken skeletal muscle and offer some new directions for upcoming research on broiler breeding.
Collapse
Affiliation(s)
- Xuanze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Qifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Mirouse V. Evolution and developmental functions of the dystrophin-associated protein complex: beyond the idea of a muscle-specific cell adhesion complex. Front Cell Dev Biol 2023; 11:1182524. [PMID: 37384252 PMCID: PMC10293626 DOI: 10.3389/fcell.2023.1182524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
The Dystrophin-Associated Protein Complex (DAPC) is a well-defined and evolutionarily conserved complex in animals. DAPC interacts with the F-actin cytoskeleton via dystrophin, and with the extracellular matrix via the membrane protein dystroglycan. Probably for historical reasons that have linked its discovery to muscular dystrophies, DAPC function is often described as limited to muscle integrity maintenance by providing mechanical robustness, which implies strong cell-extracellular matrix adhesion properties. In this review, phylogenetic and functional data from different vertebrate and invertebrate models will be analyzed and compared to explore the molecular and cellular functions of DAPC, with a specific focus on dystrophin. These data reveals that the evolution paths of DAPC and muscle cells are not intrinsically linked and that many features of dystrophin protein domains have not been identified yet. DAPC adhesive properties also are discussed by reviewing the available evidence of common key features of adhesion complexes, such as complex clustering, force transmission, mechanosensitivity and mechanotransduction. Finally, the review highlights DAPC developmental roles in tissue morphogenesis and basement membrane (BM) assembly that may indicate adhesion-independent functions.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institute of Genetics, Reproduction and Development (iGReD), Université Clermont Auvergne-UMR CNRS 6293-INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| |
Collapse
|
22
|
Actin-microtubule cytoskeletal interplay mediated by MRTF-A/SRF signaling promotes dilated cardiomyopathy caused by LMNA mutations. Nat Commun 2022; 13:7886. [PMID: 36550158 PMCID: PMC9780334 DOI: 10.1038/s41467-022-35639-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.
Collapse
|