1
|
Mussulini BHM, Maruszczak KK, Draczkowski P, Borrero-Landazabal MA, Ayyamperumal S, Wnorowski A, Wasilewski M, Chacinska A. MIA40 suppresses cell death induced by apoptosis-inducing factor 1. EMBO Rep 2025; 26:1835-1862. [PMID: 40055465 PMCID: PMC11976965 DOI: 10.1038/s44319-025-00406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondria harbor respiratory complexes that perform oxidative phosphorylation. Complex I is the first enzyme of the respiratory chain that oxidizes NADH. A dysfunction in complex I can result in higher cellular levels of NADH, which in turn strengthens the interaction between apoptosis-inducing factor 1 (AIFM1) and Mitochondrial intermembrane space import and assembly protein 40 (MIA40) in the mitochondrial intermembrane space. We investigated whether MIA40 modulates the activity of AIFM1 upon increased NADH/NAD+ balance. We found that in model cells characterized by an increase in NADH the AIFM1-MIA40 interaction is strengthened and these cells demonstrate resistance to AIFM1-induced cell death. Either silencing of MIA40, rescue of complex I, or depletion of NADH through the expression of yeast NADH-ubiquinone oxidoreductase-2 sensitized NDUFA13-KO cells to AIFM1-induced cell death. These findings indicate that the complex of MIA40 and AIFM1 suppresses AIFM1-induced cell death in a NADH-dependent manner. This study identifies an effector complex involved in regulating the programmed cell death that accommodates the metabolic changes in the cell and provides a molecular explanation for AIFM1-mediated chemoresistance of cancer cells.
Collapse
Affiliation(s)
- Ben Hur Marins Mussulini
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| | | | - Piotr Draczkowski
- National Bioinformatics Infrastructure Sweden, SciLifeLab, Solna, Sweden
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin, Poland
| | | | | | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Michal Wasilewski
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Chacinska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
- IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Parkhitko AA, Cracan V. Xenotopic synthetic biology: Prospective tools for delaying aging and age-related diseases. SCIENCE ADVANCES 2025; 11:eadu1710. [PMID: 40153513 DOI: 10.1126/sciadv.adu1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Metabolic dysregulation represents one of the major driving forces in aging. Although multiple genetic and pharmacological manipulations are known to extend longevity in model organisms, aging is a complex trait, and targeting one's own genes may be insufficient to prevent age-dependent deterioration. An alternative strategy could be to use enzymes from other species to reverse age-associated metabolic changes. In this review, we discuss a set of enzymes from lower organisms that have been shown to affect various metabolic parameters linked to age-related processes. These enzymes include modulators of steady-state levels of amino acids (METase, ASNase, and ADI), NADPH/NADP+ and/or reduced form of coenzyme Q (CoQH2)/CoQ redox potentials (NDI1, AOX, LbNOX, TPNOX, EcSTH, RquA, LOXCAT, Grubraw, and ScURA), GSH (StGshF), mitochondrial membrane potential (mtON and mito-dR), or reactive oxygen species (DAAO and KillerRed-SOD1). We propose that leveraging non-mammalian enzymes represents an untapped resource that can be used to delay aging and age-related diseases.
Collapse
Affiliation(s)
- Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
3
|
An L, Peng W, Yang Y, Chen G, Luo QT, Ni M, Wang X, Fu Y, Zhou Y, Liu X. Emilia sonchifolia (L.) DC. inhibits the growth of Methicillin-Resistant Staphylococcus epidermidis by modulating its physiology through multiple mechanisms. Sci Rep 2025; 15:9779. [PMID: 40119097 PMCID: PMC11928732 DOI: 10.1038/s41598-025-93561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
Bloodstream infections (BSIs) are a public health concern, causing substantial morbidity and mortality. Staphylococcus epidermidis (S. epidermidis) is a leading cause BSIs. Antibiotics targeting S. epidermidis have been the mainstay of treatment for BSIs, however their efficacy is diminishing in combating with drug-resistant bacteria. Therefore, alternative treatments for antibiotic-resistant infections are urgently required. Studies have demonstrated that certain traditional Chinese medicine (TCM) exhibit notable antimicrobial activity and can help mitigate bacterial resistance. Among these, The ethanol extract of Emilia sonchifolia (L.) DC (E. sonchifolia) (10 g crude drug/1 g extract ) exhibits a noteworthy anti-methicillin-resistant S. epidermidis (MRSE) effect. This study explores antibacterial activity and underlying mechanisms of E. sonchifolia against MRSE. The antibacterial activity of E. sonchifolia against MRSE was assessed in vitro by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The MRSE-induced mouse BSIs model was used to evaluate the antibacterial activity of E. sonchifolia in vivo. Proteomic and transcriptomic analyses were performed to elucidate the underlying antibacterial mechanisms. The MIC and MBC values of E. sonchifolia against MRSE were 5 mg/mL and 20 mg/mL, respectively. In vivo, E. sonchifolia effectively treated MRSE-induced BSIs. Additionally, proteomic and transcriptomic analyses revealed considerable down-regulation of purine metabolism, that were associated with oxidative stress and cell wall synthesis. The enzyme linked immunosorbent assay(ELISA) results showed decreased levels of inosine monophosphate (IMP), Adenosine monophosphate(AMP) and guanine monophosphate (GMP), indicating inhibited purine metabolism. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis confirmed bacterial cell wall damage. E. sonchifolia exerts antibacterial effects by inhibiting purine metabolism, promoting bacterial oxidative stress, and impairing cell wall synthesis. These findings provide novel insights into the mechanistic understanding of E. sonchifolia's efficacy against MRSE, offering potential strategies for managing MRSE infections.
Collapse
Affiliation(s)
- Lili An
- Dermatology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wei Peng
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Yuqi Yang
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Gongzhen Chen
- Dermatology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Tonghan Luo
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Meng Ni
- Dermatology Department, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xuebing Wang
- College of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yufeng Fu
- College of Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yonghui Zhou
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xin Liu
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Jiang J, Lu Y, Zheng X, Xie M, Jauković A, Gao M, Zheng H. Engineering probiotic biohydrogen micro-factories to initiate reductive stress for boosting tumor vulnerability. Biomaterials 2025; 314:122892. [PMID: 39426122 DOI: 10.1016/j.biomaterials.2024.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Disruption of redox homeostasis profoundly affects cellular metabolism and activities. While oxidative stress is extensively studied in cancer therapies, research on reductive stress remains in its infancy. Molecular hydrogen (H2), a well-known antioxidant, holds significant potential to induce reductive stress due to its strong antioxidative properties, making it a promising candidate for cancer therapy. However, it remains a major challenge to develop a sustainable H2 delivery system in vivo. Herein, we designed a micro-factory by engineering a gel-based microcapsule that encapsulates Enterobacter aerogenes, a.k.a. probiotic biohydrogen microcapsules (PBMCs), enabling the sustained H2 generation within tumor microenvironment. Notably, PBMCs effectively suppressed the proliferation of eight tumor cell lines as well as drug-resistant cancer cells. The prolonged H2 release from PBMCs induced reductive stress, as evidenced by a significant increase in the GSH/GSSG ratio in 4T1 cells. Moreover, PBMCs displayed significant antitumor effects in breast, melanoma and liver cancer models. The inhibition of PI3K-AKT pathway and the activation of MAPK pathway were identified as key mechanisms responsible for inducing tumor cell cycle arrest and apoptosis. The PBMCs also exhibited synergistic effects in combination with chemotherapeutics, resulting in robust inhibitions of preinvasive carcinoma growth and commonly associated pulmonary metastasis. Overall, our study introduces an innovative strategy to manipulate reductive stress in the tumor microenvironment through in situ H2 generation, thereby enhancing tumor vulnerability.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuhao Lu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xinyi Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Maomao Xie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade, 11000, Serbia
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Yadav S, Pan X, Li S, Martin PL, Hoang N, Chen K, Karhadkar A, Malhotra J, Zuckerman AL, Munan S, Klose MK, Wang L, Cracan V, Parkhitko AA. Tissue-specific modulation of NADH consumption as an anti-aging intervention in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631511. [PMID: 39829793 PMCID: PMC11741393 DOI: 10.1101/2025.01.06.631511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD+) or reduced (NADH) states, which together form a key NADH/NAD+ redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process. Supplementation with NAD precursors boosts total cellular NAD levels and provides some therapeutic benefits in human clinical trials. However, supplementation studies cannot determine tissue-specific effects of an altered NADH/NAD+ ratio. Here, we created transgenic Drosophila expressing a genetically encoded xenotopic tool LbNOX to directly manipulate the cellular NADH/NAD+ ratio. We found that LbNOX expression in Drosophila impacts both NAD(H) and NADP(H) metabolites in a sex-specific manner. LbNOX rescues neuronal cell death induced by the expression of mutated alpha-B crystallin in the Drosophila eye, a widely used system to study reductive stress. Utilizing LbNOX, we demonstrate that targeting redox NAD metabolism in different tissues may have drastically different outcomes, as the expression of LbNOX solely in the muscle is much more effective for rescuing paraquat-induced oxidative stress compared to whole-body expression. Excitingly, we demonstrate that perturbing NAD(P) metabolism in non-neuronal tissues is sufficient to rejuvenate sleep profiles in aged flies to a youthful state. In summary, we used xenotopic tool LbNOX to identify tissues and metabolic processes which benefited the most from the modulation of the NAD metabolism thereby highlighting important aspects of rebalancing the NAD and NADP pools, all of which can be translated into novel designs of NAD-related human clinical trials.
Collapse
Affiliation(s)
- Shweta Yadav
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Xingxiu Pan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
| | - Shengxi Li
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Paige LaRae Martin
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Ngoc Hoang
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Kejin Chen
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Aditi Karhadkar
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Jatin Malhotra
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Austin L. Zuckerman
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
- Program in Mathematics and Science Education, University of California San Diego and San Diego State University, San Diego, USA
| | - Subrata Munan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
| | - Markus K. Klose
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, PA, USA
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Valentin Cracan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Zhai X, Yang R, Chu Q, Guo Z, Hou P, Li X, Bai C, Lu Z, Qiao L, Fu Y, Niu J, Li B. AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress. Nat Cell Biol 2025; 27:141-153. [PMID: 39747579 DOI: 10.1038/s41556-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/29/2024] [Indexed: 01/04/2025]
Abstract
Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L. Blocking GPD1, GPD1L or glycerol 3-phosphate phosphatase exacerbates reductive stress and suppresses cell proliferation under hypoxia and tumour growth in vivo. Overexpression of these enzymes increases glycerol excretion but still reduces cell viability under hypoxia and tumour proliferation due to energy stress. AMPK inactivates aldolase B to mitigate glycerol synthesis that dissipates ATP, alleviating NADH accumulation-induced energy crisis. Therefore, glycerol biosynthesis/excretion regulates the trade-off between reductive stress and energy stress. Moreover, this mode of regulation seems to be prevalent in reductive stress-driven transformations, enhancing our understanding of the metabolic complexity and guiding tumour treatment.
Collapse
Affiliation(s)
- Xuewei Zhai
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zihao Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengjiao Hou
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xuexue Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Changsen Bai
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ziwen Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Luxin Qiao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yanxia Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Binghui Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
7
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
8
|
Luo M, Ma X, Ye J. Reductive stress-a common metabolic feature of obesity and cancer. Acta Pharm Sin B 2024; 14:5181-5185. [PMID: 39807313 PMCID: PMC11725146 DOI: 10.1016/j.apsb.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 01/16/2025] Open
Abstract
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD+ ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently. NADH is used in production of NADPH, glutathione, ATP and heat in the classical biochemistry. In obesity, elevation of NADH/NAD+ ratio, likely from overproduction due to substrate overloading, has been found in the liver for insulin resistance and gluconeogenesis. New evidence demonstrates that the elevation may induce lipogenesis, purine biosynthesis and gluconeogenesis through activation of transcription factors of ChREBP and NRF2. In cancer cells, NADH/NAD+ elevation under the Warburg effect is primarily derived from decreased NADH consumption in the mitochondrial respiration. Alternatively, NRF2 overactivation from gene mutation represents another mechanism of NADH/NAD+ elevation from NADH production in the cancer cells. The elevation is required for quick proliferation of cancer cells through induction of biosynthesis of the essential molecules. It appears that the causes of reductive stress are different between obesity and cancer, while its impact in anabolism is similar in the two conditions.
Collapse
Affiliation(s)
- Man Luo
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| | - Xiwen Ma
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
- Institute of Trauma and Metabolism, Zhengzhou University, Zhengzhou 450052, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Zhengzhou Key laboratory of Obesity Research, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Kunwar A, Aishwarya J. "Reductive stress" the overlooked side of cellular redox modulation in cancer: opportunity for design of next generation redox chemotherapeutics. Free Radic Res 2024; 58:782-795. [PMID: 39604822 DOI: 10.1080/10715762.2024.2433988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The last three decades of redox biology research have been dominated by the term "oxidative stress" since it was first coined by Helmut Sies to represent a form of cellular redox modulation characterized by redox imbalance toward overproduction of oxidants. Almost every pathological condition, including cancer, has been linked with oxidative stress and so forth; targeting oxidative stress became the strategy for the new drug discovery with anticancer drugs aiming to selectively induce oxidative stress in cancerous cells while antioxidants aiming to prevent carcinogenesis as prophylactic agents. Time has now come to realize, how harmful the other side of the cellular redox spectrum, "reductive stress," characterized by redox imbalance toward the accumulation of reducing equivalents, maybe during carcinogenesis, and to tap its potential for the design of next-generation chemotherapeutic agents. Adjuvants-causing reductive stress may also work synergistically with radiation therapy under hypoxia to achieve better tumor control. Keeping this evolving field into account, the present review provides a current understating of the role of reductive stress in carcinogenesis, the status of reductive stress-based chemotherapeutic agents with particular emphasis on sulfhydryl and selenium-containing compounds and the gap areas that need to be addressed in future.
Collapse
Affiliation(s)
- Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
- Advanced Centre for Treatment, Research and Education in Cancer, Mumbai, India
| |
Collapse
|
10
|
Gan Z, van der Stelt I, Li W, Hu L, Song J, Grefte S, van de Westerlo E, Zhang D, van Schothorst EM, Claahsen-van der Grinten HL, Teerds KJ, Adjobo-Hermans MJW, Keijer J, Koopman WJH. Mitochondrial Nicotinamide Nucleotide Transhydrogenase: Role in Energy Metabolism, Redox Homeostasis, and Cancer. Antioxid Redox Signal 2024; 41:927-956. [PMID: 39585234 DOI: 10.1089/ars.2024.0694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Significance: Dimeric nicotinamide nucleotide transhydrogenase (NNT) is embedded in the mitochondrial inner membrane and couples the conversion of NADP+/NADH into NADPH/NAD+ to mitochondrial matrix proton influx. NNT was implied in various cancers, but its physiological role and regulation still remain incompletely understood. Recent Advances: NNT function was analyzed by studying: (1) NNT gene mutations in human (adrenal) glucocorticoid deficiency 4 (GCCD4), (2) Nnt gene mutation in C57BL/6J mice, and (3) the effect of NNT knockdown/overexpression in (cancer) cells. In these three models, altered NNT function induced both common and differential aberrations. Critical Issues: Information on NNT protein expression in GCCD4 patients is still scarce. Moreover, NNT expression levels are tissue-specific in humans and mice and the functional consequences of NNT deficiency strongly depend on experimental conditions. In addition, data from intact cells and isolated mitochondria are often unsuited for direct comparison. This prevents a proper understanding of NNT-linked (patho)physiology in GCCD4 patients, C57BL/6J mice, and cancer (cell) models, which complicates translational comparison. Future Directions: Development of mice with conditional NNT deletion, cell-reprogramming-based adrenal (organoid) models harboring specific NNT mutations, and/or NNT-specific chemical inhibitors/activators would be useful. Moreover, live-cell analysis of NNT substrate levels and mitochondrial/cellular functioning with fluorescent reporter molecules might provide novel insights into the conditions under which NNT is active and how this activity links to other metabolic and signaling pathways. This would also allow a better dissection of local signaling and/or compartment-specific (i.e., mitochondrial matrix, cytosol, nucleus) effects of NNT (dys)function in a cellular context. Antioxid. Redox Signal. 41, 927-956.
Collapse
Affiliation(s)
- Zhuohui Gan
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Weiwei Li
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Liangyu Hu
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Katja J Teerds
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Tang J, Wang X, Chen S, Chang T, Gu Y, Zhang F, Hou J, Luo Y, Li M, Huang J, Liu M, Zhang L, Wang Y, Shen X, Xu L. Disruption of glucose homeostasis by bacterial infection orchestrates host innate immunity through NAD +/NADH balance. Cell Rep 2024; 43:114648. [PMID: 39167491 DOI: 10.1016/j.celrep.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shukun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Chang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianan Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mohua Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Li X, Pham K, Ysaguirre J, Mahmud I, Tan L, Wei B, Shao LJ, Elizondo M, Habib R, Elizondo F, Sesaki H, Lorenzi PL, Sun K. Mechanistic insights into metabolic function of dynamin-related protein 1. J Lipid Res 2024; 65:100633. [PMID: 39182608 PMCID: PMC11426057 DOI: 10.1016/j.jlr.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-related protein 1 (DRP1) plays crucial roles in mitochondrial and peroxisome fission. However, the mechanisms underlying the functional regulation of DRP1 in adipose tissue during obesity remain unclear. To elucidate the metabolic and pathological significance of diminished DRP1 in obese adipose tissue, we utilized adipose tissue-specific DRP1 KO mice challenged with a high-fat diet. We observed significant metabolic dysregulations in the KO mice. Mechanistically, DRP1 exerts multifaceted functions in mitochondrial dynamics and endoplasmic reticulum (ER)-lipid droplet crosstalk in normal mice. Loss of function of DRP1 resulted in abnormally giant mitochondrial shapes, distorted mitochondrial membrane structure, and disrupted cristae architecture. Meanwhile, DRP1 deficiency induced the retention of nascent lipid droplets in ER, leading to perturbed overall lipid dynamics in the KO mice. Collectively, dysregulation of the dynamics of mitochondria, ER, and lipid droplets contributes to whole-body metabolic disorders, as evidenced by perturbations in energy metabolites. Our findings demonstrate that DRP1 plays diverse and critical roles in regulating energy metabolism within adipose tissue during the progression of obesity.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Katherine Pham
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long J Shao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryam Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rabie Habib
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fathima Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA; Graduate Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
13
|
Fayaz F, Ganie MA, Kumar S, Raheem S, Rizvi MA, Shah BA. Modular access to sulfur substituted analogues of isocytosine via photoredox catalysis. Chem Commun (Camb) 2024; 60:8256-8259. [PMID: 39011863 DOI: 10.1039/d4cc02076f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A photoredox approach for synthesizing sulfur-substituted analogues of isocytosine via coupling of modular phenyl propargyl chloride with thiourea has been reported. The resulting product with an amine group was found amenable to various late-stage modifications, providing access to a broad range of sulfur-containing isocytosine derivatives.
Collapse
Affiliation(s)
- Faheem Fayaz
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
14
|
Wu G, Liao J, Zhu X, Zhang Y, Lin Y, Zeng Y, Zhao J, Zhang J, Yao T, Shen X, Li H, Hu L, Zhang W. Shexiang Baoxin Pill enriches Lactobacillus to regulate purine metabolism in patients with stable coronary artery disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155727. [PMID: 38781732 DOI: 10.1016/j.phymed.2024.155727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It has been clinically confirmed that the Shexiang Baoxin Pill (SBP) dramatically reduces the frequency of angina in patients with stable coronary artery disease (SCAD). However, potential therapeutic mechanism of SBP has not been fully explored. PURPOSE The study explored the therapeutic mechanism of SBP in the treatment of SCAD patients. METHODS We examined the serum metabolic profiles of patients with SCAD following SBP treatment. A rat model of acute myocardial infarction (AMI) was established, and the potential therapeutic mechanism of SBP was explored using metabolomics, transcriptomics, and 16S rRNA sequencing. RESULTS SBP decreased inosine production and improved purine metabolic disorders in patients with SCAD and in animal models of AMI. Inosine was implicated as a potential biomarker for SBP efficacy. Furthermore, SBP inhibited the expression of genes involved in purine metabolism, which are closely associated with thrombosis, inflammation, and platelet function. The regulation of purine metabolism by SBP was associated with the enrichment of Lactobacillus. Finally, the effects of SBP on inosine production and vascular function could be transmitted through the transplantation of fecal microbiota. CONCLUSION Our study reveals a novel mechanism by which SBP regulates purine metabolism by enriching Lactobacillus to exert cardioprotective effects in patients with SCAD. The data also provide previously undocumented evidence indicating that inosine is a potential biomarker for evaluating the efficacy of SBP in the treatment of SCAD.
Collapse
Affiliation(s)
- Gaosong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyu Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuhao Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Lin
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zeng
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jingfang Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Tingting Yao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xiaoxu Shen
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liang Hu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
15
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Marques-Carvalho A, Silva B, Pereira FB, Kim HN, Almeida M, Sardão VA. Oestradiol and osteoclast differentiation: Effects on p53 and mitochondrial metabolism. Eur J Clin Invest 2024; 54:e14195. [PMID: 38519718 DOI: 10.1111/eci.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Oestrogen deficiency increases bone resorption, contributing to osteoporosis development. Yet, the mechanisms mediating the effects of oestrogen on osteoclasts remain unclear. This study aimed to elucidate the early metabolic alteration induced by RANKL, the essential cytokine in osteoclastogenesis and 17-beta-oestradiol (E2) on osteoclast progenitor cells, using RAW 264.7 macrophage cell line and primary bone marrow-derived macrophages as biological models. RESULTS This research demonstrated that, in osteoclast precursors, RANKL stimulates complex I activity, oxidative phosphorylation (OXPHOS) and mitochondria-derived ATP production as early as 3 h of exposure. This effect on mitochondrial bioenergetics is associated with an increased capacity to oxidize TCA cycle substrates, fatty acids and amino acids. E2 inhibited all effects of RANKL on mitochondria metabolism. In the presence of RANKL, E2 also decreased cell number and stimulated the mitochondrial-mediated apoptotic pathway, detected as early as 3 h. Further, the pro-apoptotic effects of E2 during osteoclast differentiation were associated with an accumulation of p392S-p53 in mitochondria. CONCLUSIONS These findings elucidate the early effects of RANKL on osteoclast progenitor metabolism and suggest novel p53-mediated mechanisms that contribute to postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Beatriz Silva
- Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Francisco B Pereira
- Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Coimbra, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Aging (MIA-Portugal), University of Coimbra, Portugal
| |
Collapse
|
17
|
Hao Z, Guo S, Tu W, Wang Q, Wang J, Zhang X, He Y, Gao D. Piezoelectric Catalysis Induces Tumor Cell Senescence to Boost Chemo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309487. [PMID: 38197548 DOI: 10.1002/smll.202309487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD+ to NADH for local tumor cell senescence for the first time. In detail, a biocompatible nanomedicine (BTO/Rh-D@M) is constructed by wrapping the piezoelectric BaTiO3/(Cp*RhCl2)2 (BTO/Rh) and doxorubicin (DOX) in the homologous cytomembrane with tumor target. After tumors are stimulated by ultrasound, negative and positive charges are generated on the BTO/Rh by piezoelectric catalysis, which reduce the intracellular NAD+ to NADH for cellular senescence and oxidize H2O to reactive oxygen species (ROS) for mitochondrial damage. Thus, the therapeutic efficacy of tumor immunogenic cell death-induced chemo-immunotherapy is boosted by combining cellular senescence, DOX, and ROS. The results indicate that 23.9% of the piezoelectric catalysis-treated tumor cells senesced, and solid tumors in mice disappeared completely after therapy. Collectively, this study highlights a novel strategy to realize cellular senescence utilizing piezoelectric catalysis and the significance of inducing tumor cellular senescence to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Shu Guo
- School of Vehicle and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Qiang Wang
- School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
18
|
Pan X, Heacock ML, Abdulaziz EN, Violante S, Zuckerman AL, Shrestha N, Yao C, Goodman RP, Cross JR, Cracan V. A genetically encoded tool to increase cellular NADH/NAD + ratio in living cells. Nat Chem Biol 2024; 20:594-604. [PMID: 37884806 PMCID: PMC11045668 DOI: 10.1038/s41589-023-01460-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Impaired redox metabolism is a key contributor to the etiology of many diseases, including primary mitochondrial disorders, cancer, neurodegeneration and aging. However, mechanistic studies of redox imbalance remain challenging due to limited strategies that can perturb redox metabolism in various cellular or organismal backgrounds. Most studies involving impaired redox metabolism have focused on oxidative stress; consequently, less is known about the settings where there is an overabundance of NADH reducing equivalents, termed reductive stress. Here we introduce a soluble transhydrogenase from Escherichia coli (EcSTH) as a novel genetically encoded tool to promote reductive stress in living cells. When expressed in mammalian cells, EcSTH, and a mitochondrially targeted version (mitoEcSTH), robustly elevated the NADH/NAD+ ratio in a compartment-specific manner. Using this tool, we determined that metabolic and transcriptomic signatures of the NADH reductive stress are cellular background specific. Collectively, our novel genetically encoded tool represents an orthogonal strategy to promote reductive stress.
Collapse
Affiliation(s)
- Xingxiu Pan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
| | - Mina L Heacock
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Calibr, The Scripps Research Institute, La Jolla, CA, USA
| | - Evana N Abdulaziz
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Process Development Associate, Amgen, Thousand Oaks, CA, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Austin L Zuckerman
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
- Program in Mathematics and Science Education, University of California San Diego, San Diego, CA, USA
- Program in Mathematics and Science Education, San Diego State University, San Diego, USA
| | - Nirajan Shrestha
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Canglin Yao
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA
| | - Russell P Goodman
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Valentin Cracan
- Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
19
|
Liu X, Wan Z, Chen K, Yan Y, Li X, Wang Y, Wang M, Zhao R, Pei J, Zhang L, Sun S, Li J, Chen X, Xin Q, Zhang S, Liu S, Wang H, Liu C, Mu X, Zhang XD. Mated-Atom Nanozymes with Efficient Assisted NAD + Replenishment for Skin Regeneration. NANO LETTERS 2024. [PMID: 38619329 DOI: 10.1021/acs.nanolett.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Excessive accumulation of reduced nicotinamide adenine dinucleotide (NADH) within biological organisms is closely associated with many diseases. It remains a challenge to efficiently convert superfluous and detrimental NADH to NAD+. NADH oxidase (NOX) is a crucial oxidoreductase that catalyzes the oxidation of NADH to NAD+. Herein, M1M2 (Mi=V/Mn/Fe/Co/Cu/Mo/Rh/Ru/Pd, i = 1 or 2) mated-atom nanozymes (MANs) are designed by mimicking natural enzymes with polymetallic active centers. Excitingly, RhCo MAN possesses excellent and sustainable NOX-like activity, with Km-NADH (16.11 μM) being lower than that of NOX-mimics reported so far. Thus, RhCo MAN can significantly promote the regeneration of NAD+ and regulate macrophage polarization toward the M2 phenotype through down-regulation of TLR4 expression, which may help to recover skin regeneration. However, RhRu MAN with peroxidase-like activity and RhMn MAN with superoxide dismutase-like activity exhibit little modulating effects on eczema. This work provides a new strategy to inhibit skin inflammation and promote skin regeneration.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Zhen Wan
- Haihe Hospital, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiahui Pei
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiarong Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xinzhu Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
20
|
Wang Y, Qian J, Shi T, Wang Y, Ding Q, Ye C. Application of extremophile cell factories in industrial biotechnology. Enzyme Microb Technol 2024; 175:110407. [PMID: 38341913 DOI: 10.1016/j.enzmictec.2024.110407] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.
Collapse
Affiliation(s)
- Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; Ministry of Education Key Laboratory of NSLSCS.
| |
Collapse
|
21
|
Xu K, Zhang L, Wang T, Ren Z, Yu T, Zhang Y, Zhao X. Untargeted metabolomics reveals dynamic changes in metabolic profiles of rat supraspinatus tendon at three different time points after diabetes induction. Front Endocrinol (Lausanne) 2023; 14:1292103. [PMID: 38053726 PMCID: PMC10694349 DOI: 10.3389/fendo.2023.1292103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Objective To investigate the dynamic changes of metabolite composition in rat supraspinatus tendons at different stages of diabetes by untargeted metabolomics analysis. Methods A total of 80 Sprague-Dawley rats were randomly divided into normal (NG, n = 20) and type 2 diabetes mellitus groups (T2DM, n = 60) and subdivided into three groups according to the duration of diabetes: T2DM-4w, T2DM-12w, and T2DM-24w groups; the duration was calculated from the time point of T2DM rat model establishment. The three comparison groups were set up in this study, T2DM-4w group vs. NG, T2DM-12w group vs. T2DM-4w group, and T2DM-24w group vs. T2DM-12w group. The metabolite profiles of supraspinatus tendon were obtained using tandem mass spectrometry. Metabolomics multivariate statistics were used for metabolic data analysis and differential metabolite (DEM) determination. The intersection of the three comparison groups' DEMs was defined as key metabolites that changed consistently in the supraspinatus tendon after diabetes induction; then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed. Results T2DM-4w group vs. NG, T2DM-12w group vs. T2DM-4w group, and T2DM-24w group vs. T2DM-12w group detected 94 (86 up-regulated and 8 down-regulated), 36 (13 up-regulated and 23 down-regulated) and 86 (24 up-regulated and 62 down-regulated) DEMs, respectively. Seven key metabolites of sustained changes in the supraspinatus tendon following induction of diabetes include D-Lactic acid, xanthine, O-acetyl-L-carnitine, isoleucylproline, propoxycarbazone, uric acid, and cytidine, which are the first identified biomarkers of the supraspinatus tendon as it progresses through the course of diabetes. The results of KEGG pathway enrichment analysis showed that the main pathway of supraspinatus metabolism affected by diabetes (p < 0.05) was purine metabolism. The results of the KEGG metabolic pathway vs. DEMs correlation network graph revealed that uric acid and xanthine play a role in more metabolic pathways. Conclusion Untargeted metabolomics revealed the dynamic changes of metabolite composition in rat supraspinatus tendons at different stages of diabetes, and the newly discovered seven metabolites, especially uric acid and xanthine, may provide novel research to elucidate the mechanism of diabetes-induced tendinopathy.
Collapse
Affiliation(s)
- Kuishuai Xu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongkai Ren
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Yingze Zhang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xia Zhao
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Wang M, Sun Y, Yu Q, Zhao Z, Li Y, Zhang Y. Sustainable disposal of Fenton sludge and enhanced organics degradation based on dissimilatory iron reduction in the hydrolytic acidification process. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132258. [PMID: 37572610 DOI: 10.1016/j.jhazmat.2023.132258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Fenton sludge generated in the flocculation stage of the Fenton oxidation process contains significant amounts of ferric iron and organic pollutants, which require proper treatment. Previous studies have demonstrated that adding Fenton sludge to an anaerobic digester can decompose some of the organic pollutants in the Fenton sludge to lower its environmental risk, but iron gradually accumulates in the reactor, which weakens the sustainability of the method. In this study, Fenton sludge was introduced into a hydrolytic acidification reactor with a weak acid environment to relieve the iron accumulation as well as improve the degradation of organic matter. The results showed that the added Fenton sludge acted as an extracellular electron acceptor to induce dissimilatory iron reduction, which increased chemical oxygen demand (COD) removal and acidification efficiency by 16.1% and 19.8%, respectively, compared to the group without Fenton sludge. Along with the operation, more than 90% of the Fe(III) in Fenton sludge was reduced to Fe(II), and part of them was released to the effluent. Moreover, the Fe(II) in the effluent could be used as flocculants and Fenton reagents to further decrease the effluent COD by 29.8% and 44.5%, respectively. It provided a sustainable strategy to reuse Fenton sludge to enhance organic degradation based on the iron cycle.
Collapse
Affiliation(s)
- Mingwei Wang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Ye Sun
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Zhiqiang Zhao
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yang Li
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yaobin Zhang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| |
Collapse
|
23
|
Zhou L, Hou G, Zhou H, Abouelezz K, Ye Y, Rao J, Guan S, Wang D. Antagonistic Activity of Oroxylin A against Fusarium graminearum and Its Inhibitory Effect on Zearalenone Production. Toxins (Basel) 2023; 15:535. [PMID: 37755961 PMCID: PMC10535041 DOI: 10.3390/toxins15090535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium graminearum produces zearalenone (ZEA), a mycotoxin that is widely found in food and feed products and is toxic to humans and livestock. Piper sarmentosum extract (PSE) inhibits F. graminearum, and Oroxylin A appears to be a major antifungal compound in PSE. The aim of this study is to quantify the Oroxylin A content in PSE using UPLC-QTOF-MS/MS, and to investigate the antagonistic activity of Oroxylin A against F. graminearum and its inhibitory effect on ZEA production. The results indicate that Oroxylin A inhibits both fungal growth and ZEA production in a dose-dependent manner. Oroxylin A treatment downregulated the mRNA expression of zearalenone biosynthesis protein 1 (ZEB1) and zearalenone biosynthesis protein 2 (ZEB2). The metabolomics analysis of F. graminearum mycelia indicated that the level of ribose 5-phosphate (R5P) deceased (p < 0.05) after Oroxylin A treatment (64-128 ng/mL). Moreover, as the Oroxylin A treatment content increased from 64 to 128 ng/mL, the levels of cis-aconitate (p < 0.05) and fumarate (p < 0.01) were upregulated successively. A correlation analysis further showed that the decreased R5P level was positively correlated with ZEB1 and ZEB2 expression, while the increased cis-aconitate and fumarate levels were negatively correlated with ZEB1 and ZEB2 expression. These findings demonstrate the potential of Oroxylin A as a natural agent to control toxigenic fungi and their mycotoxin.
Collapse
Affiliation(s)
- Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.); (S.G.)
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.); (S.G.)
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China;
| | - Khaled Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt;
| | - Yuxiu Ye
- Hainan Yitian Biotechnology Co., Ltd., Haikou 570228, China;
| | - Jun Rao
- Tianjin Ninghe Original Pig Farm Co., Ltd., Tianjin 301500, China;
| | - Song Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.); (S.G.)
| | - Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (L.Z.); (G.H.); (S.G.)
| |
Collapse
|
24
|
Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, Wu Y, Li X, Niu J, Chu Q, Fu Y, Li B. De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol 2023; 25:836-847. [PMID: 37291265 DOI: 10.1038/s41556-023-01146-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023]
Abstract
De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.
Collapse
Affiliation(s)
- Chuanzhen Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiliang Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zihao Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lingdi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ronghui Yang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuexue Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jing Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yanxia Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
- Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
25
|
Wu Z, Bezwada D, Harris RC, Pan C, Nguyen PT, Faubert B, Cai L, Cai F, Vu HS, Chen H, Sandoval MM, Do D, Gu W, Zhang Y, Ko B, Brooks B, Kelekar S, Zhang Y, Zacharias LG, Oaxaca KC, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540429. [PMID: 37214913 PMCID: PMC10197673 DOI: 10.1101/2023.05.11.540429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
Collapse
|