1
|
Lui Y, Ferreira Fernandes J, Vuong MT, Sharma S, Santos AM, Davis SJ. The Structural Biology of T-Cell Antigen Detection at Close Contacts. Immunol Rev 2025; 331:e70014. [PMID: 40181535 PMCID: PMC11969063 DOI: 10.1111/imr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 04/05/2025]
Abstract
T cells physically interrogate their targets using tiny membrane protrusions called microvilli, forming junctions ~400 nm in diameter and ~ 15 nm deep, referred to as "close contacts". These contacts, which are stabilized by the binding of the small adhesion protein CD2 to its ligand, CD58 and locally exclude large proteins such as the phosphatase CD45, are the sites of antigen recognition by the T-cell receptor (TCR) and very early signaling by T cells. With our collaborators, we have characterized the molecular structures of several of the key proteins mediating these early events: i.e., CD2 and its ligands, CD45, the αβ- and γδ-TCRs, and the accessory proteins CD28, CTLA-4, and PD-1. Here, we review our structural work and the insights it offers into the early events underpinning T-cell responsiveness that take place in the confined space of the close contact. We reflect on the crucial roles that the structural organization and dimensions of these proteins are likely to have in determining the sequence of events leading to antigen recognition at close contacts and consider the general implications of the structural work for explanations of how immune receptor signaling is initiated.
Collapse
Affiliation(s)
- Yuan Lui
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - João Ferreira Fernandes
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Mai T. Vuong
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Sumana Sharma
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Ana Mafalda Santos
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Simon J. Davis
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Medical Research Council Translational Immune Discovery Unit, John Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
2
|
Yu X, Zhang H. Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells. J Mol Biol 2025; 437:168951. [PMID: 39826712 DOI: 10.1016/j.jmb.2025.168951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements. By regulating replication stress and promoting DNA synthesis, ALT condensates create an environment conducive to HDR-based telomere extension. This review explores recent advancements in ALT, focusing on understanding the role of biomolecular condensates in ALT and how they impact telomere dynamics and stability.
Collapse
Affiliation(s)
- Xiaoyang Yu
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huaiying Zhang
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Isogai T, Hirosawa KM, Suzuki KGN. Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles. Molecules 2024; 29:5828. [PMID: 39769916 PMCID: PMC11728280 DOI: 10.3390/molecules29245828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Extracellular vesicles (EVs), secreted from most cells, are small lipid membranes of vesicles of 30 to 1000 nm in diameter and contain nucleic acids, proteins, and intracellular organelles originating from donor cells. EVs play pivotal roles in intercellular communication, particularly in forming niches for cancer cell metastasis. However, EVs derived from donor cells exhibit significant heterogeneity, complicating the investigation of EV subtypes using ensemble averaging methods. In this context, we highlight recent studies that characterize individual EVs using advanced techniques, including single-fluorescent-particle tracking, single-metal-nanoparticle tracking, single-non-label-particle tracking, super-resolution microscopy, and atomic force microscopy. These techniques have facilitated high-throughput analyses of the properties of individual EV particles such as their sizes, compositions, and physical properties. Finally, we address the challenges that need to be resolved via single-particle (-molecule) imaging and super-resolution microscopy in future research.
Collapse
Affiliation(s)
- Tatsuki Isogai
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
| | - Kenichi G. N. Suzuki
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan;
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo 104-0045, Japan
| |
Collapse
|
4
|
Sánchez MF, Faria S, Frühschulz S, Werkmann L, Winter C, Karimian T, Lanzerstorfer P, Plochberger B, Weghuber J, Tampé R. Engineering Mesoscale T Cell Receptor Clustering by Plug-and-Play Nanotools. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310407. [PMID: 38924642 DOI: 10.1002/adma.202310407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
T cell receptor (TCR) clustering and formation of an immune synapse are crucial for TCR signaling. However, limited information is available about these dynamic assemblies and their connection to transmembrane signaling. In this work, TCR clustering is controlled via plug-and-play nanotools based on an engineered irreversible conjugation pair and a peptide-loaded major histocompatibility complex (pMHC) molecule to compare receptor assembly in a ligand (pMHC)-induced or ligand-independent manner. A streptavidin-binding peptide displayed in both tools enabled their anchoring in streptavidin-pre-structured matrices. Strikingly, pMHC-induced clustering in the confined regions exhibit higher density and dynamics than the ligand-free approach, indicating that the size and architecture of the pMHC ligand influences TCR assembly. This approach enables the control of membrane receptor clustering with high specificity and provides the possibility to explore different modalities of receptor activation.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Sevi Faria
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Lars Werkmann
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Tina Karimian
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, 4600, Austria
| | - Peter Lanzerstorfer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, 4600, Austria
| | - Birgit Plochberger
- University of Applied Sciences Upper Austria, Campus Linz, Linz, 4020, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstr. 13, Vienna, 1200, Austria
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, 4600, Austria
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1D, Tulln an der Donau, 3430, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Ren H, Lee AA, Lew LJN, DeGrandchamp JB, Groves JT. Positive feedback in Ras activation by full-length SOS arises from autoinhibition release mechanism. Biophys J 2024; 123:3295-3303. [PMID: 39021073 PMCID: PMC11480760 DOI: 10.1016/j.bpj.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
Signaling through the Ras-MAPK pathway can exhibit switch-like activation, which has been attributed to the underlying positive feedback and bimodality in the activation of RasGDP to RasGTP by SOS. SOS contains both catalytic and allosteric Ras binding sites, and a common assumption is that allosteric activation selectively by RasGTP provides the mechanism of positive feedback. However, recent single-molecule studies have revealed that SOS catalytic rates are independent of the nucleotide state of Ras in the allosteric binding site, raising doubt about this as a positive feedback mechanism. Here, we perform detailed kinetic analyses of receptor-mediated recruitment of full-length SOS to the membrane while simultaneously monitoring its catalytic activation of Ras. These results, along with kinetic modeling, expose the autoinhibition release step in SOS, rather than either recruitment or allosteric activation, as the underlying mechanism giving rise to positive feedback in Ras activation.
Collapse
Affiliation(s)
- He Ren
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | - Albert A Lee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California
| | - L J Nugent Lew
- Department of Chemistry, University of California Berkeley, Berkeley, California
| | | | - Jay T Groves
- Department of Chemistry, University of California Berkeley, Berkeley, California; Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| |
Collapse
|
6
|
Wilhelm KB, Vissa A, Groves JT. Differential roles of kinetic on- and off-rates in T-cell receptor signal integration revealed with a modified Fab'-DNA ligand. Proc Natl Acad Sci U S A 2024; 121:e2406680121. [PMID: 39298491 PMCID: PMC11441509 DOI: 10.1073/pnas.2406680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide major histocompatibility complex (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rates of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells, which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from TCR ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
MESH Headings
- Humans
- Kinetics
- Ligands
- Signal Transduction
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- DNA/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Lymphocyte Activation
- Point Mutation
Collapse
Affiliation(s)
- Kiera B. Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Jay T. Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
7
|
Bagheri Y, Rouches M, Machta B, Veatch SL. Prewetting couples membrane and protein phase transitions to greatly enhance coexistence in models and cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609758. [PMID: 39253471 PMCID: PMC11383005 DOI: 10.1101/2024.08.26.609758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Both membranes and biopolymers can individually separate into coexisting liquid phases. Here we explore biopolymer prewetting at membranes, a phase transition that emerges when these two thermodynamic systems are coupled. In reconstitution, we couple short poly-L-Lysine and poly-L-Glutamic Acid polyelectrolytes to membranes of saturated lipids, unsaturated lipids, and cholesterol, and detect coexisting prewet and dry surface phases well outside of the region of coexistence for each individual system. Notability, polyelectrolyte prewetting is highly sensitive to membrane lipid composition, occurring at 10 fold lower polymer concentration in a membrane close to its phase transition compared to one without a phase transition. In cells, protein prewetting is achieved using an optogenetic tool that enables titration of condensing proteins and tethering to the plasma membrane inner leaflet. Here we show that protein prewetting occurs for conditions well outside those where proteins condense in the cytoplasm, and that the stability of prewet domains is sensitive to perturbations of plasma membrane composition and structure. Our work presents an example of how thermodynamic phase transitions can impact cellular structure outside their individual coexistence regions, suggesting new possible roles for phase-separation-prone systems in cell biology.
Collapse
Affiliation(s)
- Yousef Bagheri
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| | - Mason Rouches
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT USA
| | | | - Sarah L. Veatch
- Program in Biophysics, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
8
|
Lidke DS, Low-Nam ST. Biophysics of immune cell signaling. Biophys J 2024; 123:E1-E3. [PMID: 39002539 PMCID: PMC11331040 DOI: 10.1016/j.bpj.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Affiliation(s)
- Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico.
| | - Shalini T Low-Nam
- Department of Chemistry and Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
9
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
10
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Morita S, O'Dair MK, Groves JT. Discrete protein condensation events govern calcium signal dynamics in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606035. [PMID: 39211144 PMCID: PMC11360922 DOI: 10.1101/2024.07.31.606035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Calcium level variations, which occur downstream of T cell receptor (TCR) signaling, are an essential aspect of T cell antigen recognition. Although coordinated ion channel activities are known to drive calcium oscillations in other cell types, observations of nonperiodic and heterogeneous calcium patterns in T cells are inconsistent with this mechanism. Here, we track the complete ensemble of individual molecular peptide-major histocompatibility complex (pMHC) binding events to TCR, while simultaneously imaging LAT condensation events and calcium level. Individual LAT condensates induce a rapid and additive calcium response, which quickly attenuates upon condensate dissolution. No evidence of cooperativity between LAT condensates or oscillatory calcium response was detected. These results reveal stochastic LAT protein condensation events as a primary driver of calcium signal dynamics in T cells. One-Sentence Summary Ca 2+ fluctuations in T cells reflect stochastic protein condensation events triggered by single molecular antigen-TCR binding.
Collapse
|
12
|
Weiss A. Peeking Into the Black Box of T Cell Receptor Signaling. Annu Rev Immunol 2024; 42:1-20. [PMID: 37788477 DOI: 10.1146/annurev-immunol-090222-112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation.
Collapse
Affiliation(s)
- Arthur Weiss
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
13
|
Wilhelm KB, Vissa A, Groves JT. Differential Roles of Kinetic On- and Off-Rates in T-Cell Receptor Signal Integration Revealed with a Modified Fab'-DNA Ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587588. [PMID: 38617215 PMCID: PMC11014569 DOI: 10.1101/2024.04.01.587588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly-binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide-MHC (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rate of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells (LAT), which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from synthetic ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
Affiliation(s)
- Kiera B Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Jay T Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| |
Collapse
|
14
|
Schmidt HN, Gaetjens TK, Leopin EE, Abel SM. Compartmental exchange regulates steady states and stochastic switching of a phosphorylation network. Biophys J 2024; 123:598-609. [PMID: 38317416 PMCID: PMC10938077 DOI: 10.1016/j.bpj.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The phosphoregulation of proteins with multiple phosphorylation sites is governed by biochemical reaction networks that can exhibit multistable behavior. However, the behavior of such networks is typically studied in a single reaction volume, while cells are spatially organized into compartments that can exchange proteins. In this work, we use stochastic simulations to study the impact of compartmentalization on a two-site phosphorylation network. We characterize steady states and fluctuation-driven transitions between them as a function of the rate of protein exchange between two compartments. Surprisingly, the average time spent in a state before stochastically switching to another depends nonmonotonically on the protein exchange rate, with the most frequent switching occurring at intermediate exchange rates. At sufficiently small exchange rates, the state of the system and mean switching time are controlled largely by fluctuations in the balance of enzymes in each compartment. This leads to negatively correlated states in the compartments. For large exchange rates, the two compartments behave as a single effective compartment. However, when the compartmental volumes are unequal, the behavior differs from a single compartment with the same total volume. These results demonstrate that exchange of proteins between distinct compartments can regulate the emergent behavior of a common signaling motif.
Collapse
Affiliation(s)
- Hannah N Schmidt
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee
| | - Thomas K Gaetjens
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee
| | - Emily E Leopin
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee
| | - Steven M Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
15
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Sun Y, Florio TJ, Gupta S, Young MC, Marshall QF, Garfinkle SE, Papadaki GF, Truong HV, Mycek E, Li P, Farrel A, Church NL, Jabar S, Beasley MD, Kiefel BR, Yarmarkovich M, Mallik L, Maris JM, Sgourakis NG. Structural principles of peptide-centric chimeric antigen receptor recognition guide therapeutic expansion. Sci Immunol 2023; 8:eadj5792. [PMID: 38039376 PMCID: PMC10782944 DOI: 10.1126/sciimmunol.adj5792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Peptide-centric chimeric antigen receptors (PC-CARs) recognize oncoprotein epitopes displayed by cell-surface human leukocyte antigens (HLAs) and offer a promising strategy for targeted cancer therapy. We have previously developed a PC-CAR targeting a neuroblastoma-associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes. Here, we determine the 2.1-angstrom crystal structure of the PC-CAR-PHOX2B-HLA-A*24:02-β2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). This PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactive group, covering a combined global population frequency of up to 46.7%. Biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation, and CAR T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.
Collapse
Affiliation(s)
- Yi Sun
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler J. Florio
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sagar Gupta
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C. Young
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Quinlen F. Marshall
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Samuel E. Garfinkle
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Georgia F. Papadaki
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hau V. Truong
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Mycek
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peiyao Li
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alvin Farrel
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | - Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Leena Mallik
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Parmryd I. Barrier and signal transduction functions could explain the lipid asymmetry of the plasma membrane. Bioessays 2023; 45:e2300191. [PMID: 37840356 DOI: 10.1002/bies.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Rajakaruna H, Desai M, Das J. PASCAR: a multiscale framework to explore the design space of constitutive and inducible CAR T cells. Life Sci Alliance 2023; 6:e202302171. [PMID: 37507138 PMCID: PMC10387492 DOI: 10.26508/lsa.202302171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
CAR T cells are engineered to bind and destroy tumor cells by targeting overexpressed surface antigens. However, healthy cells expressing lower abundances of these antigens can also be lysed by CAR T cells. Various CAR T cell designs increase tumor cell elimination, whereas reducing damage to healthy cells. However, these efforts are costly and labor-intensive, constraining systematic exploration of potential hypotheses. We develop a protein abundance structured population dynamic model for CAR T cells (PASCAR), a framework that combines multiscale population dynamic models and multi-objective optimization approaches with data from cytometry and cytotoxicity assays to systematically explore the design space of constitutive and tunable CAR T cells. PASCAR can quantitatively describe in vitro and in vivo results for constitutive and inducible CAR T cells and can successfully predict experiments outside the training data. Our exploration of the CAR design space reveals that optimal CAR affinities in the intermediate range of dissociation constants effectively reduce healthy cell lysis, whereas maintaining high tumor cell-killing rates. Furthermore, our modeling offers guidance for optimizing CAR expressions in synthetic notch CAR T cells. PASCAR can be extended to other CAR immune cells.
Collapse
Affiliation(s)
- Harshana Rajakaruna
- The Steve and Cindy Rasmussen Institute for Genomics, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Milie Desai
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Jayajit Das
- The Steve and Cindy Rasmussen Institute for Genomics, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics and Pelotonia Institute for Immuno-Oncology, College of Medicine, Columbus, OH, USA
- Biophysics Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Guo X, Zhu K, Zhu X, Zhao W, Miao Y. Two-dimensional molecular condensation in cell signaling and mechanosensing. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1064-1074. [PMID: 37475548 PMCID: PMC10423693 DOI: 10.3724/abbs.2023132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/21/2023] [Indexed: 07/22/2023] Open
Abstract
Membraneless organelles (MLO) regulate diverse biological processes in a spatiotemporally controlled manner spanning from inside to outside of the cells. The plasma membrane (PM) at the cell surface serves as a central platform for forming multi-component signaling hubs that sense mechanical and chemical cues during physiological and pathological conditions. During signal transduction, the assembly and formation of membrane-bound MLO are dynamically tunable depending on the physicochemical properties of the surrounding environment and partitioning biomolecules. Biomechanical properties of MLO-associated membrane structures can control the microenvironment for biomolecular interactions and assembly. Lipid-protein complex interactions determine the catalytic region's assembly pattern and assembly rate and, thereby, the amplitude of activities. In this review, we will focus on how cell surface microenvironments, including membrane curvature, surface topology and tension, lipid-phase separation, and adhesion force, guide the assembly of PM-associated MLO for cell signal transductions.
Collapse
Affiliation(s)
- Xiangfu Guo
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingapore637457Singapore
| | - Kexin Zhu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xinlu Zhu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Wenting Zhao
- School of ChemistryChemical Engineering and BiotechnologyNanyang Technological UniversitySingapore637457Singapore
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingapore636921Singapore
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Institute for Digital Molecular Analytics and ScienceNanyang Technological UniversitySingapore636921Singapore
| |
Collapse
|
20
|
Chen H, Xu X, Hu W, Wu S, Xiao J, Wu P, Wang X, Han X, Zhang Y, Zhang Y, Jiang N, Liu W, Lou C, Chen W, Xu C, Lou J. Self-programmed dynamics of T cell receptor condensation. Proc Natl Acad Sci U S A 2023; 120:e2217301120. [PMID: 37399423 PMCID: PMC10334747 DOI: 10.1073/pnas.2217301120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xinyi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Wei Hu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310003, China
| | - Songfang Wu
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Jianhui Xiao
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Peng Wu
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310012, China
| | - Xiaowen Wang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xuling Han
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanruo Zhang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang150001, China
| | - Wei Chen
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Education Frontier Science Center for Brain Science & Brain-machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang310012, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang311121, China
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang310024, China
| | - Jizhong Lou
- Key Laboratory of RNA Biology, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
21
|
Rochussen AM, Lippert AH, Griffiths GM. Imaging the T-cell receptor: new approaches, new insights. Curr Opin Immunol 2023; 82:102309. [PMID: 37011462 DOI: 10.1016/j.coi.2023.102309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
T cells recognize pathogenic antigens via the T-cell antigen receptor (TCR). This protein complex binds to antigen fragments on the surface of antigen-presenting cells. To understand how cellular activation can ensue rapidly from molecular recognition, the localization and distribution of the TCR on the surface of the resting T cell are of particular importance. Conflicting results regarding TCR distribution have emerged from recent studies using a range of imaging techniques, including total internal reflection and single-molecule localization microscopy modalities. Here, we review the differing results and the potential biases inherent in differing imaging approaches. In addition, we review studies showing the impact of differing imaging surfaces on T-cell activation.
Collapse
|
22
|
Sun Y, Florio TJ, Gupta S, Young MC, Marshall QF, Garfinkle SE, Papadaki GF, Truong HV, Mycek E, Li P, Farrel A, Church NL, Jabar S, Beasley MD, Kiefel BR, Yarmarkovich M, Mallik L, Maris JM, Sgourakis NG. Structural principles of peptide-centric Chimeric Antigen Receptor recognition guide therapeutic expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542108. [PMID: 37292750 PMCID: PMC10245919 DOI: 10.1101/2023.05.24.542108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peptide-Centric Chimeric Antigen Receptors (PC-CARs), which recognize oncoprotein epitopes displayed by human leukocyte antigens (HLAs) on the cell surface, offer a promising strategy for targeted cancer therapy 1 . We have previously developed a PC-CAR targeting a neuroblastoma- associated PHOX2B peptide, leading to robust tumor cell lysis restricted by two common HLA allotypes 2 . Here, we determine the 2.1 Å structure of the PC-CAR:PHOX2B/HLA-A*24:02/β2m complex, which reveals the basis for antigen-specific recognition through interactions with CAR complementarity-determining regions (CDRs). The PC-CAR adopts a diagonal docking mode, where interactions with both conserved and polymorphic HLA framework residues permit recognition of multiple HLA allotypes from the A9 serological cross-reactivity group, covering a combined American population frequency of up to 25.2%. Comprehensive characterization using biochemical binding assays, molecular dynamics simulations, and structural and functional analyses demonstrate that high-affinity PC-CAR recognition of cross-reactive pHLAs necessitates the presentation of a specific peptide backbone, where subtle structural adaptations of the peptide are critical for high-affinity complex formation and CAR-T cell killing. Our results provide a molecular blueprint for engineering CARs with optimal recognition of tumor-associated antigens in the context of different HLAs, while minimizing cross-reactivity with self-epitopes.
Collapse
|