1
|
Zhao X, Zhou XL, Cao CX, Xi X, Liu XW. Plasmonic in-situ imaging of zeta potential distributions at electrochemical interfaces of 2D materials in water. Nat Commun 2025; 16:3494. [PMID: 40221391 PMCID: PMC11993736 DOI: 10.1038/s41467-025-58793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Understanding the electrical double layer (EDL) at solid-liquid interfaces is pivotal across various fields, including energy storage, electrowetting, and electrocatalysis, yet probing its structure and heterogeneity remains a considerable challenge. Here, we report an optical method for the direct visualization and quantification of the zeta potential (ζ) across the interfaces between 2D materials and aqueous solutions. By modulating surface charge density, we map the heterogenous distribution of ζ potential across the MoS2 nanosheet interface, revealing how both external factors and intrinsic material properties shape interfacial charge. This approach overcomes the drawbacks of conventional methods for evaluating ζ potential in 2D materials, providing insights into elucidate the complex interplay between the ζ potential and the catalytic activity of 2D materials. Furthermore, it establishes a robust framework for exploring the EDL in various electrochemical systems. Our findings reveal a deeper understanding of complex electrochemical interface interactions, offering valuable insights into the fundamental processes governing these systems.
Collapse
Affiliation(s)
- Xiaona Zhao
- State Key Lab of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao-Li Zhou
- State Key Lab of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cheng-Xin Cao
- State Key Lab of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Xi
- State Key Lab of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Wei Liu
- State Key Lab of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
2
|
Li J, Lin P, Wu L, Yue Y, Ma G. Deciphering Complex Electrochemical Reaction Dynamics and Interactions of Single Nanoentities via Evanescent Scattering Microscopy. Angew Chem Int Ed Engl 2025:e202506226. [PMID: 40219640 DOI: 10.1002/anie.202506226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Electrochemical reactions at the nanoscale are governed by intricate surface interactions, yet existing imaging techniques often lack the surface sensitivity and throughput needed to resolve these dynamics clearly. Here, we introduce electrochemical evanescent scattering microscopy (EC-ESM), a high-throughput, surface-sensitive imaging technique that enables real-time tracking of single-nanoentity electrochemistry with high resolution. Using EC-ESM, we monitored the motion and dissolution dynamics of silver nanoparticles and identified a clear relationship between nanoparticle velocity and electron transfer rates. The high throughput of EC-ESM not only ensures statistical reliability but also allows the detection of rare electron transfer events in molecularly modified AgNPs. Additionally, EC-ESM's high resolution enabled direct imaging of both single and interacting silver nanowires, revealing diverse dissolution behaviors that provide insights into structural and surface properties. We envision EC-ESM as a powerful platform for advancing nanoscale electrochemical research and interfacial charge transfer studies.
Collapse
Affiliation(s)
- Jiaying Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Peng Lin
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Liwei Wu
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Yuxi Yue
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| | - Guangzhong Ma
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, P.R. China
| |
Collapse
|
3
|
Wang Z, Liu L, Li P, Nie A, Zhai K, Xiang J, Mu C, Wen F, Wang B, Xue T, Liu Z. Ferroelectric Bi 2O 2Te-Based Plasmonic Biosensor for Ultrasensitive Biomolecular Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312175. [PMID: 38534021 DOI: 10.1002/smll.202312175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Ultrasensitive detection of biomarkers, particularly proteins, and microRNA, is critical for disease early diagnosis. Although surface plasmon resonance biosensors offer label-free, real-time detection, it is challenging to detect biomolecules at low concentrations that only induce a minor mass or refractive index change on the analyte molecules. Here an ultrasensitive plasmonic biosensor strategy is reported by utilizing the ferroelectric properties of Bi2O2Te as a sensitive-layer material. The polarization alteration of ferroelectric Bi2O2Te produces a significant plasmonic biosensing response, enabling the detection of charged biomolecules even at ultralow concentrations. An extraordinary ultralow detection limit of 1 fm is achieved for protein molecules and an unprecedented 0.1 fm for miRNA molecules, demonstrating exceptional specificity. The finding opens a promising avenue for the integration of 2D ferroelectric materials into plasmonic biosensors, with potential applications spanning a wide range.
Collapse
Affiliation(s)
- Zheng Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Penghui Li
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
4
|
Gao S, Li H, Liu L, Tian Y, Wang R, Pan X, Wen F, Xiang J, Nie A, Zhai K, Wang B, Mu C, Xue T, Liu Z. Ultrasensitive CCL2 Detection in Urine for Diabetic Nephropathy Diagnosis Using a WS 2-Based Plasmonic Biosensor. NANO LETTERS 2024; 24:5301-5307. [PMID: 38625005 DOI: 10.1021/acs.nanolett.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.
Collapse
Affiliation(s)
- Shuangshuang Gao
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Huili Li
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Yiming Tian
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Rui Wang
- Department of Endocrinology, The First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Xuanlin Pan
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Luo SH, Zhao XJ, Cao MF, Xu J, Wang WL, Lu XY, Huang QT, Yue XX, Liu GK, Yang L, Ren B, Tian ZQ. Signal2signal: Pushing the Spatiotemporal Resolution to the Limit by Single Chemical Hyperspectral Imaging. Anal Chem 2024; 96:6550-6557. [PMID: 38642045 DOI: 10.1021/acs.analchem.3c04609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.
Collapse
Affiliation(s)
- Si-Heng Luo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xiao-Jiao Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiu-Ting Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xia-Xia Yue
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Liu Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Ullberg N, Filoramo A, Campidelli S, Derycke V. In Operando Study of Charge Modulation in MoS 2 Transistors by Excitonic Reflection Microscopy. ACS NANO 2024; 18:9886-9894. [PMID: 38547872 PMCID: PMC11008581 DOI: 10.1021/acsnano.3c09337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 04/10/2024]
Abstract
Monolayers of transition metal dichalcogenides (2D TMDs) experience strong modulation of their optical properties when the charge density is varied. Indeed, the transition from carriers composed mostly of excitons at low electron density to a situation in which trions dominate at high density is accompanied by a significant evolution of both the refractive index and the extinction coefficient. Using optical interference reflection microscopy at the excitonic wavelength, this (n, κ)-q relationship can be exploited to directly image the electron density in operating TMD devices. In this work, we show how this technique, which we call XRM (excitonic reflection microscopy), can be used to study charge distribution in MoS2 field-effect transistors with subsecond throughput, in wide-field mode. Complete maps of the charge distribution in the transistor channel at any drain and gate bias polarization point (VDS, VGS) are obtained, at ∼3 orders of magnitude faster than with scanning probe techniques such as KPFM. We notably show how the advantages of XRM enable real-time mapping of bias-dependent charge inhomogeneities, the study of resistive delays in 2D polycrystalline networks, and the evaluation of the VDS vs VGS competition to control the charge distribution in active devices.
Collapse
Affiliation(s)
- Nathan Ullberg
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Arianna Filoramo
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Stéphane Campidelli
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| | - Vincent Derycke
- Université Paris-Saclay, CEA,
CNRS, NIMBE, LICSEN, 91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
He YF, Yang SY, Lv WL, Qian C, Wu G, Zhao X, Liu XW. Deep-Learning Driven, High-Precision Plasmonic Scattering Interferometry for Single-Particle Identification. ACS NANO 2024; 18:9704-9712. [PMID: 38512797 DOI: 10.1021/acsnano.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Label-free probing of the material composition of (bio)nano-objects directly in solution at the single-particle level is crucial in various fields, including colloid analysis and medical diagnostics. However, it remains challenging to decipher the constituents of heterogeneous mixtures of nano-objects with high sensitivity and resolution. Here, we present deep-learning plasmonic scattering interferometric microscopy, which is capable of identifying the composition of nanoparticles automatically with high throughput at the single-particle level. By employing deep learning to decode the quantitative relationship between the interferometric scattering patterns of nanoparticles and their intrinsic material properties, this technique is capable of high-throughput, label-free identification of diverse nanoparticle types. We demonstrate its versatility in analyzing dynamic surface chemical reactions on single nanoparticles, revealing its potential as a universal platform for nanoparticle imaging and reaction analysis. This technique not only streamlines the process of nanoparticle characterization, but also proposes a methodology for a deeper understanding of nanoscale dynamics, holding great potential for addressing extensive fundamental questions in nanoscience and nanotechnology.
Collapse
Affiliation(s)
- Yi-Fan He
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Yu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Li Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaona Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Xu J, Zhang P, Chen Y. Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution. BIOSENSORS 2024; 14:84. [PMID: 38392003 PMCID: PMC10886473 DOI: 10.3390/bios14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Surface plasmon resonance (SPR) is a powerful tool for determining molecular interactions quantitatively. SPR imaging (SPRi) further improves the throughput of SPR technology and provides the spatially resolved capability for observing the molecular interaction dynamics in detail. SPRi is becoming more and more popular in biological and chemical sensing and imaging. However, SPRi suffers from low spatial resolution due to the imperfect optical components and delocalized features of propagating surface plasmonic waves along the surface. Diverse kinds of approaches have been developed to improve the spatial resolution of SPRi, which have enormously impelled the development of the methodology and further extended its possible applications. In this minireview, we introduce the mechanisms for building a high-spatial-resolution SPRi system and present its experimental schemes from prism-coupled SPRi and SPR microscopy (SPRM) to surface plasmonic scattering microscopy (SPSM); summarize its exciting applications, including molecular interaction analysis, molecular imaging and profiling, tracking of single entities, and analysis of single cells; and discuss its challenges in recent decade as well as the promising future.
Collapse
Affiliation(s)
- Jiying Xu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Zhang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Liu Y, Yang Z, Zou Y, Wang S, He J. Interfacial Micro-Environment of Electrocatalysis and Its Applications for Organic Electro-Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306488. [PMID: 37712127 DOI: 10.1002/smll.202306488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.
Collapse
Affiliation(s)
- Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junying He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
10
|
Wang Z, Liu L, Zhai K, Nie A, Xiang J, Mu C, Wen F, Wang B, Shu Y, Xue T, Liu Z. An Ultrasensitive Plasmonic Sensor Based on 2D Ferroelectric Bi 2 O 2 Se. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303026. [PMID: 37394706 DOI: 10.1002/smll.202303026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Plasmonic biosensing is a label-free detection method that is commonly used to measure various biomolecular interactions. However, one of the main challenges in this approach is the ability to detect biomolecules at low concentrations with sufficient sensitivity and detection limits. Here, 2D ferroelectric materials are employed to address the issues with sensitivity in biosensor design. A plasmonic sensor based on Bi2 O2 Se nanosheets, a ferroelectric 2D material, is presented for the ultrasensitive detection of the protein molecule. Through imaging the surface charge density of Bi2 O2 Se, a detection limit of 1 fM is achieved for bovine serum albumin (BSA). These findings underscore the potential of ferroelectric 2D materials as critical building blocks for future biosensor and biomaterial architectures.
Collapse
Affiliation(s)
- Zheng Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Electronics and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Kun Zhai
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jianyong Xiang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Congpu Mu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Fusheng Wen
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Bochong Wang
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yu Shu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Tianyu Xue
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhongyuan Liu
- Center for High Pressure Science, State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
11
|
An C, Wang T, Wang S, Chen X, Han X, Wu S, Deng Q, Zhao L, Hu N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. ULTRASONICS SONOCHEMISTRY 2023; 98:106503. [PMID: 37393853 PMCID: PMC10316695 DOI: 10.1016/j.ultsonch.2023.106503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Developing green, environmental, sustainable new energy sources is an important problem to be solved in the world. Among the new energy technologies, water splitting system, fuel cell technology and metal-air battery technology are the main energy production and conversion methods, which involve three main electrocatalytic reactions, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). The efficiency of the electrocatalytic reaction and the power consumption are very dependent on the activity of the electrocatalysts. Among various electrocatalysts, the two-dimensional (2D) materials have received widespread attention due to multiple advantages, such as their easy availability and low price. What' important is that they have adjustable physical and chemical properties. It is possible to develop them as electrocatalysts to replace the noble metals. Therefore, the design of two-dimensional electrocatalysts is a focus in the research area. Some recent advances in ultrasound-assisted preparation of two-dimensional (2D) materials have been overviewed according to the kind of materials in this review. Firstly, the effect of the ultrasonic cavitation and its applications in the synthesis of inorganic materials are introduced. The ultrasonic-assisted synthesis of representative 2D materials for example transition metal dichalcogenides (TMDs), graphene, layered double metal hydroxide (LDH), and MXene, and their catalytic properties as electrocatalysts are discussed in detail. For example, the CoMoS4 electrocatalysts have been synthesized through a facile ultrasound-assisted hydrothermal method. The obatined HER and OER overpotential of CoMoS4 electrode is 141 and 250 mV, respectively. This review points out some problems that need to be solved urgently at present, and provides some ideas for designing and constructing two-dimensional materials with better electrocatalytic performance.
Collapse
Affiliation(s)
- Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Tianyu Wang
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shikang Wang
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xiaodong Chen
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China.
| | - Libin Zhao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China
| | - Ning Hu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; Advanced Equipment Research Institute Co., Ltd. of HEBUT, Tianjin 300401, China.
| |
Collapse
|