1
|
Hou Y, Fu Z, Wang C, Kucharzewska P, Guo Y, Zhang S. 27-Hydroxycholesterol in cancer development and drug resistance. J Enzyme Inhib Med Chem 2025; 40:2507670. [PMID: 40401382 PMCID: PMC12100970 DOI: 10.1080/14756366.2025.2507670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/25/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
27-Hydroxycholesterol (27HC), a cholesterol metabolite, functions both as a selective oestrogen receptor (ER) modulator and a ligand for liver X receptors (LXRs). The discovery of 27HC involvement in carcinogenesis has unveiled new research avenues, yet its precise role remains controversial and context-dependent. In this review, we provide an overview of the biosynthesis and metabolism of 27HC and explore its cancer-associated signalling, with a particular focus on ER- and LXR-mediated pathways. Given the tissue-specific dual role of 27HC, we discuss its differential impact across various cancer types. Furthermore, we sort out 27HC-contributed drug resistance mechanisms from the perspectives of drug efflux, cellular proliferation, apoptosis, epithelial-mesenchymal transition (EMT), antioxidant defence, epigenetic modification, and metabolic reprogramming. Finally, we highlight the chemical inhibitors to mitigate 27HC-driven cancer progression and drug resistance. This review offers an updated role of 27HC in cancer biology, setting the stage for future research and the development of targeted therapeutics.
Collapse
Affiliation(s)
- Yaxin Hou
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, People’s Liberation Army of China (PLA), Beijing, China
| | - Chenhui Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, Warsaw, Poland
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Szkalisity Á, Vanharanta L, Saito H, Vörös C, Li S, Isomäki A, Tomberg T, Strachan C, Belevich I, Jokitalo E, Ikonen E. Nuclear envelope-associated lipid droplets are enriched in cholesteryl esters and increase during inflammatory signaling. EMBO J 2025; 44:2774-2802. [PMID: 40195500 DOI: 10.1038/s44318-025-00423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Cholesteryl esters (CEs) and triacylglycerols (TAGs) are stored in lipid droplets (LDs), but their compartmentalisation is not well understood. Here, we established a hyperspectral stimulated Raman scattering microscopy system to identify and quantitatively assess CEs and TAGs in individual LDs of human cells. We found that nuclear envelope-associated lipid droplets (NE-LDs) were enriched in cholesteryl esters compared to lipid droplets in the cytoplasm. Correlative light-volume-electron microscopy revealed that NE-LDs projected towards the cytoplasm and associated with type II nuclear envelope (NE) invaginations. The nuclear envelope localization of sterol O-acyltransferase 1 (SOAT1) contributed to NE-LD generation, as trapping of SOAT1 to the NE further increased their number. Upon stimulation by the pro-inflammatory cytokine TNFα, the number of NE-LDs moderately increased. Moreover, TNFα-induced NF-κB nuclear translocation was fine-tuned by SOAT1: increased SOAT1 activity and NE-LDs associated with faster NF-κB translocation, whereas reduced SOAT1 activity and NE-LDs associated with slower NF-κB translocation. Our findings suggest that the NE is enriched in CEs and that cholesterol esterification can modulate nuclear translocation.
Collapse
Affiliation(s)
- Ábel Szkalisity
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Hodaka Saito
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Csaba Vörös
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Hungarian Research Network (HUN-REN), 6726, Szeged, Hungary
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Antti Isomäki
- Biomedicum Imaging Unit, Department of Anatomy, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Teemu Tomberg
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Clare Strachan
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Silva A, Prior R, D'Antonio M, Swinnen JV, Van Den Bosch L. Lipid metabolism alterations in peripheral neuropathies. Neuron 2025:S0896-6273(25)00262-4. [PMID: 40311611 DOI: 10.1016/j.neuron.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Alterations in lipid metabolism are increasingly recognized as central pathological hallmarks of inherited and acquired peripheral neuropathies. Correct lipid balance is critical for cellular homeostasis. However, the mechanisms linking lipid disturbances to cellular dysfunction and whether these changes are primary drivers or secondary effects of disease remain unresolved. This is particularly relevant in the peripheral nervous system, where the lipid-rich myelin integrity is critical for axonal function, and even subtle perturbations can cause widespread effects. This review explores the role of lipids as structural components as well as signaling molecules, emphasizing their metabolic role in peripheral neurons and Schwann cells. Additionally, we explore the genetic and environmental connections in both inherited and acquired peripheral neuropathies, respectively, which are known to affect lipid metabolism in peripheral neurons or Schwann cells. Overall, we highlight how understanding lipid-centric mechanisms could advance biomarker discovery and therapeutic interventions for peripheral nerve disorders.
Collapse
Affiliation(s)
- Alessio Silva
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| | - Robert Prior
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium; Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Maurizio D'Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven, University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
4
|
Angel M, Kleinberg Y, Newaz T, Li V, Zaid R, Oved K, Dorot O, Pichinuk E, Avitan-Hersh E, Saada A, Weiss K, Zaremberg V, Tal G, Zalckvar E. Using chanarin-dorfman syndrome patient fibroblasts to explore disease mechanisms and new treatment avenues. Orphanet J Rare Dis 2025; 20:195. [PMID: 40275410 PMCID: PMC12020101 DOI: 10.1186/s13023-025-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Chanarin-Dorfman syndrome (CDS) is a multisystemic autosomal recessive rare disorder. CDS is caused by variants in the abhydrolase domain containing 5 (ABHD5) encoding gene (CGI-58), which ultimately leads to excessive lipid storage, and therefore a high abundance of cellular lipid droplets (LDs). Although the molecular etiology of the disease was described many years ago, no treatment for CDS is currently available. RESULTS To further characterize the molecular basis of the disease and to uncover new treatment avenues, we used skin fibroblasts originating from a young patient diagnosed with CDS due to a homozygous nonsense mutation. We show that dysfunctional ABHD5 does not only affect LDs, but also influences other metabolic-related organelles; the mitochondria and peroxisomes. Additionally, we found that expressing functional ABHD5 in CDS patient cells reduced LD number. Finally, we developed and applied a high content-based drug repurposing screen based on a collection of ∼2500 FDA approved compounds, yielding several compounds that affected LD total area and size. CONCLUSIONS Our findings enhance the understanding of the dysfunction underlying CDS and propose new avenues for the treatment of CDS patients.
Collapse
Affiliation(s)
- Mor Angel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yuval Kleinberg
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tanmoy Newaz
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Victoria Li
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Rinat Zaid
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
| | - Keren Oved
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Orly Dorot
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Emily Avitan-Hersh
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, PO Box 9602, Haifa, 3109601, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Medical Laboratory Sciences Jerusalem Multidisciplinary College, Jerusalem, Israel
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109601, Israel
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, PO Box 9602, Haifa, 3109601, Israel.
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3109601, Israel.
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat- Gan, 52900, Israel.
| |
Collapse
|
5
|
Cocchiararo I, Castets P. Recent advances in the clinical spectrum and pathomechanisms associated with X-linked myopathy with excessive autophagy and other VMA21-related disorders. J Neuromuscul Dis 2025:22143602251314767. [PMID: 40033998 DOI: 10.1177/22143602251314767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
X-linked myopathy with excessive autophagy (XMEA) is a rare neuromuscular disorder caused by mutations in the VMA21 gene, encoding a chaperone protein present in the endoplasmic reticulum (ER). In yeast and human, VMA21 has been shown to chaperone the assembly of the vacuolar (v)-ATPase proton pump required for the acidification of lysosomes and other organelles. In line with this, VMA21 deficiency in XMEA impairs autophagic degradation steps, which would be key in XMEA pathogenesis. Recent years have witnessed a surge of interest in VMA21, with the identification of novel mutations causing a congenital disorder of glycosylation (CDG) with liver affection, and its potent implication in cancer predisposition. With this, VMA21 deficiency has been further linked to defective glycosylation, lipid metabolism dysregulation and ER stress. Moreover, the identification of two VMA21 isoforms, namely VMA21-101 and VMA21-120, has opened novel avenues regarding the pathomechanisms leading to XMEA and VMA21-CDG. In this review, we discuss recent advances on the clinical spectrum associated with VMA21 deficiency and on the pathophysiological roles of VMA21.
Collapse
Affiliation(s)
- Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Lan F, Wang X, Zhou Q, Li X, Jin J, Zhang W, Wen C, Wu G, Li G, Yan Y, Yang N, Sun C. Deciphering the coordinated roles of the host genome, duodenal mucosal genes, and microbiota in regulating complex traits in chickens. MICROBIOME 2025; 13:62. [PMID: 40025569 PMCID: PMC11871680 DOI: 10.1186/s40168-025-02054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The complex interactions between host genetics and the gut microbiome are well documented. However, the specific impacts of gene expression patterns and microbial composition on each other remain to be further explored. RESULTS Here, we investigated this complex interplay in a sizable population of 705 hens, employing integrative analyses to examine the relationships among the host genome, mucosal gene expression, and gut microbiota. Specific microbial taxa, such as the cecal family Christensenellaceae, which showed a heritability of 0.365, were strongly correlated with host genomic variants. We proposed a novel concept of regulatability ( r b 2 ), which was derived from h2, to quantify the cumulative effects of gene expression on the given phenotypes. The duodenal mucosal transcriptome emerged as a potent influencer of duodenal microbial taxa, with much higher r b 2 values (0.17 ± 0.01, mean ± SE) than h2 values (0.02 ± 0.00). A comparative analysis of chickens and humans revealed similar average microbiability values of genes (0.18 vs. 0.20) and significant differences in average r b 2 values of microbes (0.17 vs. 0.04). Besides, cis ( h cis 2 ) and trans heritability ( h trans 2 ) were estimated to assess the effects of genetic variations inside and outside the cis window of the gene on its expression. Higher h trans 2 values than h cis 2 values and a greater prevalence of trans-regulated genes than cis-regulated genes underscored the significant role of loci outside the cis window in shaping gene expression levels. Furthermore, our exploration of the regulatory effects of duodenal mucosal genes and the microbiota on 18 complex traits enhanced our understanding of the regulatory mechanisms, in which the CHST14 gene and its regulatory relationships with Lactobacillus salivarius jointly facilitated the deposition of abdominal fat by modulating the concentration of bile salt hydrolase, and further triglycerides, total cholesterol, and free fatty acids absorption and metabolism. CONCLUSIONS Our findings highlighted a novel concept of r b 2 to quantify the phenotypic variance attributed to gene expression and emphasize the superior role of intestinal mucosal gene expressions over host genomic variations in elucidating host‒microbe interactions for complex traits. This understanding could assist in devising strategies to modulate host-microbe interactions, ultimately improving economic traits in chickens.
Collapse
Affiliation(s)
- Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiqiong Wang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiaming Jin
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiqin Wu
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Guangqi Li
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Yiyuan Yan
- Beijing Engineering Research Centre of Layer, Beijing, 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Lu S, Zhao Y, Liu D, He Z, Li H, Zhang W, Li X, Ma H, Shi W. Analyzing the Cholesteryl Ester Fraction in Lipid Droplets with a Polarity-Ultrasensitive Fluorescence Lifetime Probe. Anal Chem 2025; 97:4137-4143. [PMID: 39937626 DOI: 10.1021/acs.analchem.4c06472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Quantifying the lipid composition of cellular lipid droplets (LDs) in situ is challenging but crucial for understanding lipid metabolic diseases. Here, we propose a fluorescence lifetime imaging method based on a polarity-sensitive probe (LD660) for analyzing the lipid composition of the LDs. The probe emits strong fluorescence at 660 nm only in apolar LD environments, with dielectric constants of 2-4, and outperforms Nile red in LD imaging. Importantly, the fluorescence lifetime of LD660 increases with the incremental fraction of cholesteryl ester in neutral lipid mixtures. Using fluorescence lifetime microscopy with LD660, we imaged and quantified the cholesteryl ester fractions of LDs in cells and tissues. It is found that macrophages and surrounding hepatocytes in fatty liver diseases show significantly higher cholesteryl ester contents than other hepatocytes. This finding suggests that cholesteryl ester may serve as a potential indicator of the degree of hepatic steatosis.
Collapse
Affiliation(s)
- Sijia Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Medicine and Nursing, Dezhou University, Dezhou, Shandong 253023, China
| | - Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - He Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Knyazeva OS, Oreshkin AA, Kisil SI, Samarina EA, Mikheeva KN, Tsukanov AA, Gosteva IV, Grachev EA. Cholesterol-ester prevents lipoprotein core from solidifying: Molecular dynamics simulation. Biosystems 2025; 248:105390. [PMID: 39778622 DOI: 10.1016/j.biosystems.2024.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
As an important part of lipid metabolism the liver produces large particles called very low density lipoproteins, filled mostly with triglyceride and cholesterol esters mixture. A large percentage of the mixture composition components has a melting point above physiological temperature. Thus solid cluster formation or phase transition could be expected. Though various single-component triglyceride systems are well researched both experimentally and by various simulation techniques, to our best knowledge, tripalmitin/cholesteryl-palmitate binary mixture was not yet studied. We study tripalmitin single component system, as well as 20%-80% and 50%-50% binary mixtures of cholesteryl-palmitate and tripalmitin using molecular dynamics approach. All systems are studied at the pressure of 1 atm and the physiological temperature of 310 K, which is below the melting points of both tripalmitin and cholesteryl-palmitate. Our results show that at the time of 1000 ns, there is still no phase transition, but there is a noticeable tendency to intermolecular organizing and early signs of clustering. We check fatty acid arrangements of tripalmitin molecules in both single component system and binary mixtures with two different percentages of cholesteryl-palmitate mixed in. Our results show that the more cholesteryl-palmitate molecules are in the mixture the smaller number of tripalmitin molecules transitions to 'a fork/chair' configuration during the same calculation time. Calculated angle distributions between fatty acid chains of tripalmitin molecules confirm that. Thus, our simulation results suggest slowing down or interfering effect of cholesteryl-palmitate on the crystallizing process of the binary mixture.
Collapse
Affiliation(s)
- Olga S Knyazeva
- Lomonosov Moscow State University, Moscow, Russian Federation.
| | | | - Sofia I Kisil
- Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ekaterina A Samarina
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Kristina N Mikheeva
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation
| | - Alexey A Tsukanov
- Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia; Institute of Strength Physics and Materials Science of SB RAS, Tomsk, Russia
| | - Irina V Gosteva
- Sarov Physical and Technical Institute, National Research Nuclear University MEPhI, Sarov, Russian Federation.
| | | |
Collapse
|
10
|
Alharithi YJ, Phillips EA, Wilson TD, Couvillion SP, Nicora CD, Darakjian P, Rakshe S, Fei SS, Counts BR, Metz TO, Searles RP, Kumar S, Maloyan A. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. Am J Physiol Endocrinol Metab 2025; 328:E254-E271. [PMID: 39792089 DOI: 10.1152/ajpendo.00333.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Maternal obesity puts the offspring at high risk of developing obesity and cardiometabolic diseases in adulthood. Here, we utilized a mouse model of maternal high-fat diet (HFD)-induced obesity that recapitulates metabolic perturbations seen in humans. We show increased adiposity in the offspring of HFD-fed mothers (Off-HFD) when compared with the offspring of regular diet-fed mothers (Off-RD). We have previously reported significant immune perturbations in the bone marrow of newly weaned Off-HFD. Here, we hypothesized that lipid metabolism is altered in the bone marrow of Off-HFD versus Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from 3-week-old Off-RD and Off-HFD. Diacylglycerols (DAGs), triacylglycerols (TAGs), sphingolipids, and phospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in Off-HFD, suggesting reduced delivery of cholesterol. These were accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from 3-wk-old mice and conducted metabolomic, lipidomic, and transcriptomic analyses. The lipidomic profiles of myeloid cells were similar to those of bone marrow cells and included increases in DAGs and decreased TAGs. Transcriptomics revealed altered expression of genes related to immune pathways, including macrophage alternative activation, B-cell receptors, and transforming growth factor-β signaling. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly weaned offspring of mothers with obesity, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.NEW & NOTEWORTHY Our data revealed significant immunometabolic perturbations in the bone marrow and myeloid cells in the newly weaned offspring born to mothers with obesity. Adaptation to an adverse maternal intrauterine environment affects bone marrow metabolism at a very young age and might affect responses to immune challenges that appear later in life, for example, infections or cancer.
Collapse
Affiliation(s)
- Yem J Alharithi
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Elysse A Phillips
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Tim D Wilson
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington, United States
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington, United States
| | - Priscila Darakjian
- Massively Parallel Sequencing Shared Resource, Oregon Health & Science University, Portland, Oregon, United States
| | - Shauna Rakshe
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Portland, Oregon, United States
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Portland, Oregon, United States
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Brittany R Counts
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington, United States
| | - Robert P Searles
- Massively Parallel Sequencing Shared Resource, Oregon Health & Science University, Portland, Oregon, United States
| | - Sushil Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
11
|
Zhao T, Yang W, Pan F, Wang J, Shao W, Chen F, Liu K, Zhao S, Zhao L. Bisphenol A attenuates testosterone synthesis via increasing apolipoprotein A1-mediated reverse cholesterol transport in mice. Front Endocrinol (Lausanne) 2025; 16:1514105. [PMID: 39936102 PMCID: PMC11810737 DOI: 10.3389/fendo.2025.1514105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Bisphenol A (BPA), a widely used chemical compound in plastic manufacturing, has become ubiquitous in the environment. Previous studies have highlighted its adverse effects on reproductive function, as BPA exposure reduces testosterone levels. Cholesterol is involved in testosterone synthesis in Leydig cells. However, research on the mechanisms by which BPA affects testosterone synthesis from the perspective of reverse cholesterol transport (RCT) remains limited. This study aimed to investigate the effects of BPA on cholesterol levels, lipid droplet accumulation, and testosterone synthesis in TM3 cells and mice via Apolipoprotein A1 (APOA1)-mediated RCT. Adult male mice were treated by intraperitoneal injection of corn oil containing BPA (20 mg/kg) for 7 days. Testes were collected for protein extraction, RNA extraction, Oil red O staining or for Biochemical analysis. Serums were collected for detection of testosterone levels. flow cytometry, CCK8 assay, immunofluorescence or Filipin III staining was used to detect the effect of BPA on the TM3 cells. It was observed that serum and testicular testosterone levels were drastically reduced in BPA-treated mice. Moreover, lipid droplets accumulation and testicular total (TC) and free cholesterol (FC) levels were reduced in the mouse testes. Conversely, testicular high-density lipoprotein (HDL) content was partially elevated. Furthermore, BPA markedly enhanced Apoa1 mRNA and protein expression in the mouse model. Notably, BPA significantly upregulated Apoa1 mRNA and protein level, reduced cholesterol levels and lipid droplets accumulation, and attenuated testosterone synthesis in TM3 cells. In addition, exogenous supplement with 22-hydoxycholesterol promoted testosterone synthesis and alleviated the inhibitory effect of BPA on testosterone synthesis. Taken together, these results suggest that BPA upregulates APOA1 expression, enhances RCT, and ultimately reduces TC and FC levels in the testis. This cholesterol reduction likely led to testosterone synthesis disorders in the model, indicating that BPA inhibits testosterone synthesis in mice by disrupting cholesterol transport.
Collapse
Affiliation(s)
- Tong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Wenzhe Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Feilong Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Jinhao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Wenqi Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Fangfang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Kexiang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Shuchen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Ko K, Bandara SR, Zhou W, Svenningsson L, Porras-Gómez M, Kambar N, Dreher-Threlkeld J, Topgaard D, Hernández-Saavedra D, Anakk S, Leal C. Diet-Induced Obesity Modulates Close-Packing of Triacylglycerols in Lipid Droplets of Adipose Tissue. J Am Chem Soc 2024; 146:34796-34810. [PMID: 39644234 DOI: 10.1021/jacs.4c13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Adipose-derived lipid droplets (LDs) are rich in triacylglycerols (TAGs), which regulate essential cellular processes, such as energy storage. Although TAG accumulation and LD expansion in adipocytes occur during obesity, how LDs dynamically package TAGs in response to excessive nutrients remains elusive. Here, we found that LD lipidomes display a remarkable increase in TAG acyl chain saturation under calorie-dense diets, turning them conducive to close-packing. Using high-resolution X-ray diffraction, solid-state NMR, and imaging, we show that beyond size expansion LDs from mice under varied obesogenic diets govern fat accumulation by packing TAGs in different crystalline polymorphs. Consistently, LDs and tissue stiffen for high-calorie-fed mice with more than a 2-fold increase in elastic moduli compared to normal diet. Our data suggest that in addition to expanding, adipocyte LDs undergo structural remodeling by close-packing rigid and highly saturated TAGs in response to caloric overload, as opposed to liquid TAGs in a low-calorie diet. This work provides insights into how lipid packing within LDs can allow for the rapid and optimal expansion of fat during the initial stages of obesity.
Collapse
Affiliation(s)
- Kyungwon Ko
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarith R Bandara
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Leo Svenningsson
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Marilyn Porras-Gómez
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nurila Kambar
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julia Dreher-Threlkeld
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecília Leal
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Kumar A, Yadav S, Choudhary V. The evolving landscape of ER-LD contact sites. Front Cell Dev Biol 2024; 12:1483902. [PMID: 39421023 PMCID: PMC11484260 DOI: 10.3389/fcell.2024.1483902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Lipid droplets (LDs) are evolutionarily conserved dynamic organelles that play an important role in cellular physiology. Growing evidence suggests that LD biogenesis occurs at discrete endoplasmic reticulum (ER) subdomains demarcated by the lipodystrophy protein, Seipin, lack of which impairs adipogenesis. However, the mechanisms of how these domains are selected is not completely known. These ER sites undergo ordered assembly of proteins and lipids to initiate LD biogenesis and facilitate establishment of ER-LD contact sites, a prerequisite for proper growth and maturation of droplets. LDs retain both physical and functional association with the ER throughout their lifecycle to facilitate bi-directional communication, such as exchange of proteins and lipids between the two organelles at these ER-LD contact sites. In recent years several molecular tethers have been identified that bridge ER and LDs together including few proteins that are found exclusively at these ER-LD contact interface. Here, we discuss recent advances in understanding the role of factors that ensure functionality of ER-LD contact site machinery for LD homeostasis.
Collapse
Affiliation(s)
| | | | - Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
14
|
Lockhart SM, Muso M, Zvetkova I, Lam BYH, Ferrari A, Schoenmakers E, Duckett K, Leslie J, Collins A, Romartínez-Alonso B, Tadross JA, Jia R, Gardner EJ, Kentistou K, Zhao Y, Day F, Mörseburg A, Rainbow K, Rimmington D, Mastantuoni M, Harrison J, Nus M, Guma'a K, Sherratt-Mayhew S, Jiang X, Smith KR, Paul DS, Jenkins B, Koulman A, Pietzner M, Langenberg C, Wareham N, Yeo GS, Chatterjee K, Schwabe J, Oakley F, Mann DA, Tontonoz P, Coll AP, Ong K, Perry JRB, O'Rahilly S. Damaging mutations in liver X receptor-α are hepatotoxic and implicate cholesterol sensing in liver health. Nat Metab 2024; 6:1922-1938. [PMID: 39322746 PMCID: PMC11496107 DOI: 10.1038/s42255-024-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024]
Abstract
Liver X receptor-α (LXRα) regulates cellular cholesterol abundance and potently activates hepatic lipogenesis. Here we show that at least 1 in 450 people in the UK Biobank carry functionally impaired mutations in LXRα, which is associated with biochemical evidence of hepatic dysfunction. On a western diet, male and female mice homozygous for a dominant negative mutation in LXRα have elevated liver cholesterol, diffuse cholesterol crystal accumulation and develop severe hepatitis and fibrosis, despite reduced liver triglyceride and no steatosis. This phenotype does not occur on low-cholesterol diets and can be prevented by hepatocyte-specific overexpression of LXRα. LXRα knockout mice exhibit a milder phenotype with regional variation in cholesterol crystal deposition and inflammation inversely correlating with steatosis. In summary, LXRα is necessary for the maintenance of hepatocyte health, likely due to regulation of cellular cholesterol content. The inverse association between steatosis and both inflammation and cholesterol crystallization may represent a protective action of hepatic lipogenesis in the context of excess hepatic cholesterol.
Collapse
Affiliation(s)
- Sam M Lockhart
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Milan Muso
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Ilona Zvetkova
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Brian Y H Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Erik Schoenmakers
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Katie Duckett
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amy Collins
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Beatriz Romartínez-Alonso
- Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - John A Tadross
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Histopathology and Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Raina Jia
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Katherine Kentistou
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Yajie Zhao
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Day
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alexander Mörseburg
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kara Rainbow
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Debra Rimmington
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Matteo Mastantuoni
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - James Harrison
- VPD Heart and Lung Research Institute, Dept. Medicine, University of Cambridge, Cambridge, UK
| | - Meritxell Nus
- VPD Heart and Lung Research Institute, Dept. Medicine, University of Cambridge, Cambridge, UK
| | - Khalid Guma'a
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sam Sherratt-Mayhew
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Xiao Jiang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine R Smith
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dirk S Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Benjamin Jenkins
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Albert Koulman
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Nicholas Wareham
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Giles S Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Krishna Chatterjee
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John Schwabe
- Department of Histopathology and Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Anthony P Coll
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ken Ong
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John R B Perry
- Medical Research Council (MRC) Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stephen O'Rahilly
- Medical Research Council (MRC) Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
15
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
16
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
17
|
Alharithi YJ, Phillips EA, Wilson TD, Couvillion SP, Nicora CD, Darakjian P, Rakshe S, Fei SS, Counts B, Metz TO, Searles R, Kumar S, Maloyan A. Metabolomic and transcriptomic remodeling of bone marrow myeloid cells in response to maternal obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608809. [PMID: 39229218 PMCID: PMC11370391 DOI: 10.1101/2024.08.20.608809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Maternal obesity puts the offspring at high risk of developing obesity and cardio-metabolic diseases in adulthood. Here, using a mouse model of maternal high-fat diet (HFD)-induced obesity, we show that whole body fat content of the offspring of HFD-fed mothers (Off-HFD) increases significantly from very early age when compared to the offspring regular diet-fed mothers (Off-RD). We have previously shown significant metabolic and immune perturbations in the bone marrow of newly-weaned offspring of obese mothers. Therefore, we hypothesized that lipid metabolism is altered in the bone marrow Off-HFD in newly-weaned offspring of obese mothers when compared to the Off-RD. To test this hypothesis, we investigated the lipidomic profile of bone marrow cells collected from three-week-old offspring of regular and high fat diet-fed mothers. Diacylgycerols (DAGs), triacylglycerols (TAGs), sphingolipids and phospholipids, including plasmalogen, and lysophospholipids were remarkably different between the groups, independent of fetal sex. Levels of cholesteryl esters were significantly decreased in offspring of obese mothers, suggesting reduced delivery of cholesterol to bone marrow cells. This was accompanied by age-dependent progression of mitochondrial dysfunction in bone marrow cells. We subsequently isolated CD11b+ myeloid cells from three-week-old mice and conducted metabolomics, lipidomics, and transcriptomics analyses. The lipidomic profiles of these bone marrow myeloid cells were largely similar to that seen in bone marrow cells and included increases in DAGs and phospholipids alongside decreased TAGs, except for long-chain TAGs, which were significantly increased. Our data also revealed significant sex-dependent changes in amino acids and metabolites related to energy metabolism. Transcriptomic analysis revealed altered expression of genes related to major immune pathways including macrophage alternative activation, B-cell receptor signaling, TGFβ signaling, and communication between the innate and adaptive immune systems. All told, this study revealed lipidomic, metabolomic, and gene expression abnormalities in bone marrow cells broadly, and in bone marrow myeloid cells particularly, in the newly-weaned offspring of obese mothers, which might at least partially explain the progression of metabolic and cardiovascular diseases in their adulthood.
Collapse
|
18
|
Bairos JA, Njoku U, Zafar M, Akl MG, Li L, Parlakgul G, Arruda AP, Widenmaier SB. Sterol O-acyltransferase (SOAT/ACAT) activity is required to form cholesterol crystals in hepatocyte lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159512. [PMID: 38761895 DOI: 10.1016/j.bbalip.2024.159512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE Excess cholesterol storage can induce the formation of cholesterol crystals in hepatocyte lipid droplets. Such crystals distinguish metabolic dysfunction associated steatohepatitis (MASH) from simple steatosis and may underlie its pathogenesis by causing cell damage that triggers liver inflammation. The mechanism linking cholesterol excess to its crystallization in lipid droplets is unclear. As cholesteryl esters localize to and accumulate in lipid droplets more readily than unesterified free cholesterol, we investigated whether cholesterol esterification by sterol O-acyltransferase (SOAT), also known as acyl co-A cholesterol acyltransferase (ACAT), is required for hepatocyte lipid droplet crystal formation. METHOD Cholesterol crystals were measured in cholesterol loaded Hep3B hepatocytes, RAW264.7 macrophages, and mouse liver using polarizing light microscopy. We examined the effect of blocking SOAT activity on crystal formation and compared these results to features of cholesterol metabolism and the progression to intracellular crystal deposits. RESULTS Cholesterol loading of Hep3B cells caused robust levels of lipid droplet localized crystal formation in a dose- and time-dependent manner. Co-treatment with SOAT inhibitors and genetic ablation of SOAT1 blocked crystal formation. SOAT inhibitor also blocked crystal formation in low density lipoprotein (LDL) treated Hep3B cells, acetylated LDL treated RAW 264.7 macrophages, and in the liver of mice genetically predisposed to hepatic cholesterol overload and in mice with cholesterol enriched diet-induced MASH. CONCLUSION SOAT1-mediated esterification may underlie cholesterol crystals associated with MASH by concentrating it in lipid droplets. These findings imply that inhibiting hepatocyte SOAT1 may be able to alleviate cholesterol associated MASH. Moreover, that either a lipid droplet localized cholesteryl ester hydrolase is required for cholesterol crystal formation, or the crystals are composed of cholesteryl ester.
Collapse
Affiliation(s)
- Jordan A Bairos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Uche Njoku
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Zafar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - May G Akl
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Lei Li
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gunes Parlakgul
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA
| | - Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Scott B Widenmaier
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
19
|
Jiang D, Jiao L, Li Q, Xie R, Jia H, Wang S, Chen Y, Liu S, Huang D, Zheng J, Song W, Li Y, Chen J, Li J, Ying B, Yu L. Neutrophil-derived migrasomes are an essential part of the coagulation system. Nat Cell Biol 2024; 26:1110-1123. [PMID: 38997457 PMCID: PMC11251984 DOI: 10.1038/s41556-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 07/14/2024]
Abstract
Migrasomes are organelles that are generated by migrating cells. Here we report the key role of neutrophil-derived migrasomes in haemostasis. We found that a large number of neutrophil-derived migrasomes exist in the blood of mice and humans. Compared with neutrophil cell bodies and platelets, these migrasomes adsorb and enrich coagulation factors on the surface. Moreover, they are highly enriched with adhesion molecules, which enable them to preferentially accumulate at sites of injury, where they trigger platelet activation and clot formation. Depletion of neutrophils, or genetic reduction of the number of these migrasomes, significantly decreases platelet plug formation and impairs coagulation. These defects can be rescued by intravenous injection of purified neutrophil-derived migrasomes. Our study reveals neutrophil-derived migrasomes as a previously unrecognized essential component of the haemostasis system, which may shed light on the cause of various coagulation disorders and open therapeutic possibilities.
Collapse
Affiliation(s)
- Dong Jiang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haohao Jia
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - ShiHui Wang
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yining Chen
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siyuan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dandan Huang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wenhao Song
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - JianFeng Chen
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
20
|
Sapia J, Vanni S. Molecular dynamics simulations of intracellular lipid droplets: a new tool in the toolbox. FEBS Lett 2024; 598:1143-1153. [PMID: 38627196 DOI: 10.1002/1873-3468.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are ubiquitous intracellular organelles with a central role in multiple lipid metabolic pathways. However, identifying correlations between their structural properties and their biological activity has proved challenging, owing to their unique physicochemical properties as compared with other cellular membranes. In recent years, molecular dynamics (MD) simulations, a computational methodology allowing the accurate description of molecular assemblies down to their individual components, have been demonstrated to be a useful and powerful approach for studying LD structural and dynamical properties. In this short review, we attempt to highlight, as comprehensively as possible, how MD simulations have contributed to our current understanding of multiple molecular mechanisms involved in LD biology.
Collapse
Affiliation(s)
- Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Wölk M, Fedorova M. The lipid droplet lipidome. FEBS Lett 2024; 598:1215-1225. [PMID: 38604996 DOI: 10.1002/1873-3468.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Lipid droplets (LDs) are intracellular organelles with a hydrophobic core formed by neutral lipids surrounded by a phospholipid monolayer harboring a variety of regulatory and enzymatically active proteins. Over the last few decades, our understanding of LD biology has evolved significantly. Nowadays, LDs are appreciated not just as passive energy storage units, but rather as active players in the regulation of lipid metabolism and quality control machineries. To fulfill their functions in controlling cellular metabolic states, LDs need to be highly dynamic and responsive organelles. A large body of evidence supports a dynamic nature of the LD proteome and its contact sites with other organelles. However, much less is known about the lipidome of LDs. Numerous examples clearly indicate the intrinsic link between LD lipids and proteins, calling for a deeper characterization of the LD lipidome in various physiological and pathological settings. Here, we reviewed the current state of knowledge in the field of the LD lipidome, providing a brief overview of the lipid classes and their molecular species present within the neutral core and phospholipid monolayer.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| |
Collapse
|
22
|
Klug YA, Ferreira JV, Carvalho P. A unifying mechanism for seipin-mediated lipid droplet formation. FEBS Lett 2024; 598:1116-1126. [PMID: 38785192 PMCID: PMC11421547 DOI: 10.1002/1873-3468.14825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles essential for cellular lipid homeostasis. Assembly of LDs occurs in the endoplasmic reticulum (ER), and the conserved ER membrane protein seipin emerged as a key player in this process. Here, we review recent advances provided by structural, biochemical, and in silico analysis that revealed mechanistic insights into the molecular role of the seipin complexes and led to an updated model for LD biogenesis. We further discuss how other ER components cooperate with seipin during LD biogenesis. Understanding the molecular mechanisms underlying seipin-mediated LD assembly is important to uncover the fundamental aspects of lipid homeostasis and organelle biogenesis and to provide hints on the pathogenesis of lipid storage disorders.
Collapse
Affiliation(s)
- Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
23
|
Liu M, Feng Y, Lu Y, Huang R, Zhang Y, Zhao Y, Mo R. Lymph-targeted high-density lipoprotein-mimetic nanovaccine for multi-antigenic personalized cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk2444. [PMID: 38478602 PMCID: PMC10936870 DOI: 10.1126/sciadv.adk2444] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/07/2024] [Indexed: 11/02/2024]
Abstract
Cancer vaccines show huge potential for cancer prevention and treatment. However, their efficacy remains limited due to weak immunogenicity regarding inefficient stimulation of cytotoxic T lymphocyte (CTL) responses. Inspired by the unique characteristic and biological function of high-density lipoprotein (HDL), we here develop an HDL-mimicking nanovaccine with the commendable lymph-targeted capacity to potently elicit antitumor immunity using lipid nanoparticle that is co-loaded with specific cancer cytomembrane harboring a collection of tumor-associated antigens and an immune adjuvant. The nanoparticulate impact is explored on the efficiency of lymphatic targeting and dendritic cell uptake. The optimized nanovaccine promotes the co-delivery of antigens and adjuvants to lymph nodes and maintains antigen presentation of dendritic cells, resulting in long-term immune surveillance as the elevated frequency of CTLs within lymphoid organs and tumor tissue. Immunization of nanovaccine suppresses tumor formation and growth and augments the therapeutic efficacy of checkpoint inhibitors notably on the high-stemness melanoma in the mouse models.
Collapse
Affiliation(s)
| | | | - Yougong Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Renqi Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | | |
Collapse
|
24
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Xu FX, Ioannou GN, Lee SP, Savard C, Horn CL, Fu D. Discrimination of lipid composition and cellular localization in human liver tissues by stimulated Raman scattering microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:016008. [PMID: 38269081 PMCID: PMC10807871 DOI: 10.1117/1.jbo.29.1.016008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Significance The molecular mechanisms driving the progression from nonalcoholic fatty liver (NAFL) to fibrosing steatohepatitis (NASH) are insufficiently understood. Techniques enabling the characterization of different lipid species with both chemical and spatial information can provide valuable insights into their contributions to the disease progression. Aim We extend the utility of stimulated Raman scattering (SRS) microscopy to characterize and quantify lipid species in liver tissue sections from patients with NAFL and NASH. Approach We applied a dual-band hyperspectral SRS microscopy system for imaging tissue sections in both the C-H stretching and fingerprint regions. The same sections were imaged with polarization microscopy for detecting birefringent liquid crystals in the tissues. Results Our imaging and analysis pipeline provides accurate classification and quantification of free cholesterol, saturated cholesteryl esters (CEs), unsaturated CE, and triglycerides in liver tissue sections. The subcellular resolution enables investigations of the heterogeneous distribution of saturated CE, which has been under-examined in previous studies. We also discovered that the birefringent crystals, previously found to be associated with NASH development, are predominantly composed of saturated CE. Conclusions Our method allows for a detailed characterization of lipid composition in human liver tissues and enables further investigation into the potential mechanism of NASH progression.
Collapse
Affiliation(s)
- Fiona Xi Xu
- University of Washington, Department of Chemistry, Seattle, Washington, United States
| | - George N. Ioannou
- Veterans Affairs Puget Sound Health Care System, Department of Medicine, Division of Gastroenterology, Seattle, Washington, United States
- University of Washington, Department of Medicine, Division of Gastroenterology, Seattle, Washington, United States
- Veterans Affairs Puget Sound Health Care System, Research and Development, Seattle, Washington, United States
| | - Sum P. Lee
- University of Washington, Department of Medicine, Division of Gastroenterology, Seattle, Washington, United States
| | - Christopher Savard
- Veterans Affairs Puget Sound Health Care System, Department of Medicine, Division of Gastroenterology, Seattle, Washington, United States
- University of Washington, Department of Medicine, Division of Gastroenterology, Seattle, Washington, United States
- Veterans Affairs Puget Sound Health Care System, Research and Development, Seattle, Washington, United States
| | - Christian L. Horn
- San Antonio Military Medical Center, Department of Medicine, Division of Gastroenterology and Hepatology, Fort Sam Houston, Texas, United States
| | - Dan Fu
- University of Washington, Department of Chemistry, Seattle, Washington, United States
| |
Collapse
|
26
|
Stribny J, Schneiter R. Binding of perilipin 3 to membranes containing diacylglycerol is mediated by conserved residues within its PAT domain. J Biol Chem 2023; 299:105384. [PMID: 37898398 PMCID: PMC10694602 DOI: 10.1016/j.jbc.2023.105384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Perilipins (PLINs) constitute an evolutionarily conserved family of proteins that specifically associate with the surface of lipid droplets (LDs). These proteins function in LD biogenesis and lipolysis and help to stabilize the surface of LDs. PLINs are typically composed of three different protein domains. They share an N-terminal PAT domain of unknown structure and function, a central region containing 11-mer repeats that form amphipathic helices, and a C-terminal domain that adopts a 4-helix bundle structure. How exactly these three distinct domains contribute to PLIN function remains to be determined. Here, we show that the N-terminal PAT domain of PLIN3 binds diacylglycerol (DAG), the precursor to triacylglycerol, a major storage lipid of LDs. PLIN3 and its PAT domain alone bind liposomes with micromolar affinity and PLIN3 binds artificial LDs containing low concentrations of DAG with nanomolar affinity. The PAT domain of PLIN3 is predicted to adopt an amphipathic triangular shaped structure. In silico ligand docking indicates that DAG binds to one of the highly curved regions within this domain. A conserved aspartic acid residue in the PAT domain, E86, is predicted to interact with DAG, and we found that its substitution abrogates high affinity binding of DAG as well as DAG-stimulated association with liposome and artificial LDs. These results indicate that the PAT domain of PLINs harbor specific lipid-binding properties that are important for targeting these proteins to the surface of LDs and to ER membrane domains enriched in DAG to promote LD formation.
Collapse
Affiliation(s)
- Jiri Stribny
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
27
|
Harayama T. Metabolic bias: Lipid structures as determinants of their metabolic fates. Biochimie 2023; 215:34-41. [PMID: 37769936 DOI: 10.1016/j.biochi.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Cellular lipids have an enormous diversity in their chemical structures, which affect the physicochemical properties of lipids and membranes, as well as their regulatory roles on protein functions. Here, I review additional roles of lipid structures. Multiple studies show that structural differences affect how lipids, even from the same class, are metabolically converted via distinct pathways. I propose the name "structure-guided metabolic bias" for this phenomenon, and discuss its biological relevance. This metabolic bias seems implicated in the buildup of basic cellular lipid compositions, as well as genetic predisposition to diseases. Thus, guiding metabolic biases is an important function of lipid structures, while having the characteristic of being difficult to study by in vitro biochemical reconstitutions.
Collapse
Affiliation(s)
- Takeshi Harayama
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de La Recherche Scientifique and Université Côte D'Azur, 660 Route des Lucioles, 06560, Valbonne, France.
| |
Collapse
|
28
|
Kumari RM, Khatri A, Chaudhary R, Choudhary V. Concept of lipid droplet biogenesis. Eur J Cell Biol 2023; 102:151362. [PMID: 37742390 PMCID: PMC7615795 DOI: 10.1016/j.ejcb.2023.151362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Lipid droplets (LD) are functionally conserved fat storage organelles found in all cell types. LDs have a unique structure comprising of a hydrophobic core of neutral lipids (fat), triacylglycerol (TAG) and cholesterol esters (CE) surrounded by a phospholipid monolayer. LD surface is decorated by a multitude of proteins and enzymes rendering this compartment functional. Accumulating evidence suggests that LDs originate from discrete ER-subdomains, demarcated by the lipodystrophy protein seipin, however, the mechanisms of which are not well understood. LD biogenesis factors together with biophysical properties of the ER membrane orchestrate spatiotemporal regulation of LD nucleation and growth at specific ER subdomains in response to metabolic cues. Defects in LD formation manifests in several human pathologies, including obesity, lipodystrophy, ectopic fat accumulation, and insulin resistance. Here, we review recent advances in understanding the molecular events during initial stages of eukaryotic LD assembly and discuss the critical role of factors that ensure fidelity of this process.
Collapse
Affiliation(s)
- R Mankamna Kumari
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Khatri
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ritika Chaudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Choudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
29
|
Banerjee S, Prinz WA. Early steps in the birth of four membrane-bound organelles-Peroxisomes, lipid droplets, lipoproteins, and autophagosomes. Curr Opin Cell Biol 2023; 84:102210. [PMID: 37531895 PMCID: PMC10926090 DOI: 10.1016/j.ceb.2023.102210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Abstract
Membrane-bound organelles allow cells to traffic cargo and separate and regulate metabolic pathways. While many organelles are generated by the growth and division of existing organelles, some can also be produced de novo, often in response to metabolic cues. This review will discuss recent advances in our understanding of the early steps in the de novo biogenesis of peroxisomes, lipid droplets, lipoproteins, and autophagosomes. These organelles play critical roles in cellular lipid metabolism and other processes, and their dysfunction causes or is linked to several human diseases. The de novo biogenesis of these organelles occurs in or near the endoplasmic reticulum membrane. This review summarizes recent progress and highlights open questions.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Dept of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William A Prinz
- Dept of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
30
|
Ogier C, Solomon AMC, Lu Z, Recoules L, Klochkova A, Gabitova-Cornell L, Bayarmagnai B, Restifo D, Surumbayeva A, Vendramini-Costa DB, Deneka AY, Francescone R, Lilly AC, Sipman A, Gardiner JC, Luong T, Franco-Barraza J, Ibeme N, Cai KQ, Einarson MB, Nicolas E, Efimov A, Megill E, Snyder NW, Bousquet C, Cros J, Zhou Y, Golemis EA, Gligorijevic B, Soboloff J, Fuchs SY, Cukierman E, Astsaturov I. Trogocytosis of cancer-associated fibroblasts promotes pancreatic cancer growth and immune suppression via phospholipid scramblase anoctamin 6 (ANO6). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557802. [PMID: 37745612 PMCID: PMC10515956 DOI: 10.1101/2023.09.15.557802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), the fibroblastic stroma constitutes most of the tumor mass and is remarkably devoid of functional blood vessels. This raises an unresolved question of how PDAC cells obtain essential metabolites and water-insoluble lipids. We have found a critical role for cancer-associated fibroblasts (CAFs) in obtaining and transferring lipids from blood-borne particles to PDAC cells via trogocytosis of CAF plasma membranes. We have also determined that CAF-expressed phospholipid scramblase anoctamin 6 (ANO6) is an essential CAF trogocytosis regulator required to promote PDAC cell survival. During trogocytosis, cancer cells and CAFs form synapse-like plasma membranes contacts that induce cytosolic calcium influx in CAFs via Orai channels. This influx activates ANO6 and results in phosphatidylserine exposure on CAF plasma membrane initiating trogocytosis and transfer of membrane lipids, including cholesterol, to PDAC cells. Importantly, ANO6-dependent trogocytosis also supports the immunosuppressive function of pancreatic CAFs towards cytotoxic T cells by promoting transfer of excessive amounts of cholesterol. Further, blockade of ANO6 antagonizes tumor growth via disruption of delivery of exogenous cholesterol to cancer cells and reverses immune suppression suggesting a potential new strategy for PDAC therapy.
Collapse
|
31
|
Abstract
Cholesterol is an essential lipid species of mammalian cells. Cells acquire it through synthesis in the endoplasmic reticulum (ER) and uptake from lipoprotein particles. Newly synthesized cholesterol is efficiently distributed from the ER to other organelles via lipid-binding/transfer proteins concentrated at membrane contact sites (MCSs) to reach the trans-Golgi network, endosomes, and plasma membrane. Lipoprotein-derived cholesterol is exported from the plasma membrane and endosomal compartments via a combination of vesicle/tubule-mediated membrane transport and transfer through MCSs. In this review, we provide an overview of intracellular cholesterol trafficking pathways, including cholesterol flux from the ER to other membranes, cholesterol uptake from lipoprotein donors and transport from the plasma membrane to the ER, cellular cholesterol efflux to lipoprotein acceptors, as well as lipoprotein cholesterol secretion from enterocytes, hepatocytes, and astrocytes. We also briefly discuss human diseases caused by defects in these processes and therapeutic strategies available in such conditions.
Collapse
Affiliation(s)
- Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| |
Collapse
|
32
|
Ventura AE, Pokorna S, Huhn N, Santos TCB, Prieto M, Futerman AH, Silva LC. Cell lipid droplet heterogeneity and altered biophysical properties induced by cell stress and metabolic imbalance. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159347. [PMID: 37271251 DOI: 10.1016/j.bbalip.2023.159347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Lipid droplets (LD) are important regulators of lipid metabolism and are implicated in several diseases. However, the mechanisms underlying the roles of LD in cell pathophysiology remain elusive. Hence, new approaches that enable better characterization of LD are essential. This study establishes that Laurdan, a widely used fluorescent probe, can be used to label, quantify, and characterize changes in cell LD properties. Using lipid mixtures containing artificial LD we show that Laurdan GP depends on LD composition. Accordingly, enrichment in cholesterol esters (CE) shifts Laurdan GP from ~0.60 to ~0.70. Moreover, live-cell confocal microscopy shows that cells present multiple LD populations with distinctive biophysical features. The hydrophobicity and fraction of each LD population are cell type dependent and change differently in response to nutrient imbalance, cell density, and upon inhibition of LD biogenesis. The results show that cellular stress caused by increased cell density and nutrient overload increased the number of LD and their hydrophobicity and contributed to the formation of LD with very high GP values, likely enriched in CE. In contrast, nutrient deprivation was accompanied by decreased LD hydrophobicity and alterations in cell plasma membrane properties. In addition, we show that cancer cells present highly hydrophobic LD, compatible with a CE enrichment of these organelles. The distinct biophysical properties of LD contribute to the diversity of these organelles, suggesting that the specific alterations in their properties might be one of the mechanisms triggering LD pathophysiological actions and/or be related to the different mechanisms underlying LD metabolism.
Collapse
Affiliation(s)
- Ana E Ventura
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarka Pokorna
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic
| | - Natalie Huhn
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Tânia C B Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Liana C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
33
|
Henne WM. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr Opin Cell Biol 2023; 82:102178. [PMID: 37295067 PMCID: PMC10782554 DOI: 10.1016/j.ceb.2023.102178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Lipid droplets (LDs) are major lipid storage organelles, sequestering energy-rich triglycerides and serving as nutrient sinks for cellular homeostasis. Observed for over a century but generally ignored, LDs are now appreciated to play key roles in organismal physiology and disease. They also form numerous functional contacts with other organelles. Here, we highlight recent studies examining LDs from distinct perspectives of their life cycle: their biogenesis, "social" life as they interact with other organelles, and deaths via lipolysis or lipophagy. We also discuss recent work showing how changes in LD lipid content alter the biophysical phases of LD lipids, and how this may fine-tune the LD protein landscape and ultimately LD function.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|