1
|
Jeong T, Kim K, Kim BH, Choi SI, Choi CH, Kang J, Kim M. Ligand Engineering of Co-N 4 Single-Atom Catalysts for Highly-Active and Stable Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502230. [PMID: 40305783 DOI: 10.1002/advs.202502230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/21/2025] [Indexed: 05/02/2025]
Abstract
The development of stable and efficient single-atom catalysts (SACs) for the oxygen evolution reaction (OER) in acidic media remains challenging. This work reports a novel NH3-assisted pyrolysis strategy to synthesize Co-N4 SACs with controlled nitrogen coordination environments on crumpled graphene supports. The pyrrolic N4-coordinated Co sites demonstrate superior OER activity compared to their pyridinic counterparts, achieving an overpotential of 351 mV at 10 mA cm-2 in 0.5 m H2SO4. Combined density functional theory calculations and operando X-ray absorption spectroscopy reveal that the pyrrolic coordination environment facilitates enhanced OH- adsorption and subsequent OER kinetics due to its unique electronic structure and geometric flexibility. A multi-layered protective mechanism in the pyrrolic system enables exceptional stability during long-term acidic OER operation, stemming from higher defect formation energy of Co sites and strategic distribution of sacrificial nitrogen species in the graphene network. These findings provide fundamental insights into designing stable single-atom catalysts for challenging electrochemical applications.
Collapse
Affiliation(s)
- Taeyoung Jeong
- School of Energy Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, Republic of Korea
| | - Kiwon Kim
- School of Energy Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, Republic of Korea
| | - Byung-Hyun Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Joonhee Kang
- Department of Nano Fusion Technology, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Myeongjin Kim
- School of Energy Engineering, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
2
|
Yan Q, Chen Y, Tang B, Wu X, Zhou H, Wang H, Li H, Lu L, Zhang H, Yang S, Xu C, Ma T. Precise Engineering of Asymmetric Tri-Active Sites by Symbiotic Strategy for Photocontrolled Directional Reforming of Biomass. Angew Chem Int Ed Engl 2025:e202505718. [PMID: 40263668 DOI: 10.1002/anie.202505718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Sunlight-driven production of high-value chemicals from renewable resources represents a pivotal driver toward achieving sustainable energy supply. However, fundamental barriers include inadequate use of light energy and insufficient understanding of reactive oxygen species (ROS) regulating mechanisms in photocatalytic processes. To address this, a novel symbiotic strategy for the design of Cux/TiO2 single-atom catalysts (SACs) supported by density functional theory (DFT) calculations was proposed. The developed catalyst achieved nearly 100% conversion and selectivity for the directional photooxidative transformation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) or 2,5-furandicarboxylic acid (FDCA) under both vis-light and UV-vis light conditions. Importantly, compared to previous works, this catalyst exhibited the highest photooxidation activity reported to date while effectively suppressing the over-oxidation of HMF to CO2. Mechanistic investigations revealed that rational construction of Cu single-atoms (SAs) could effectively create the asymmetric Cu-Ov-Ti structure, which significantly enhanced the activation of O2 and HMF, facilitating generation of oxygen vacancy (Ov) and Ti3+. Furthermore, Cu SAs served as hole (h+) extractors in the photooxidation process, promoting rapid charge carrier transfer and ROS formation. The applicability of this developed strategy was further demonstrated for photooxidative conversion of various bio-feedstocks, including HMF and alcoholic substrates, indicating its great potential for harnessing light energy for sustainable valorization of biomass into high-value chemicals.
Collapse
Affiliation(s)
- Qiong Yan
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Xu Wu
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Heng Zhou
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hao Wang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| | - Lanlu Lu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Heng Zhang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, 999077, Hong Kong
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Jiang W, Xiao Q, Zhu W, Zhang F. Engineering the regulation strategy of active sites to explore the intrinsic mechanism over single‑atom catalysts in electrocatalysis. J Colloid Interface Sci 2025; 693:137595. [PMID: 40233691 DOI: 10.1016/j.jcis.2025.137595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
The development of efficient and sustainable energy sources is a crucial strategy for addressing energy and environmental crises, with a particular focus on high-performance catalysts. Single-atom catalysts (SACs) have attracted significant attention because of their exceptionally high atom utilization efficiency and outstanding selectivity, offering broad application prospects in energy development and chemical production. This review systematically summarizes the latest research progress on SACs in five key electrochemical reactions: hydrogen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and oxygen evolution reaction. Initially, a brief overview of the current understanding of electrocatalytic active sites in SACs is provided. Subsequently, the electrocatalytic mechanisms of these reactions are discussed. Emphasis is placed on various modification strategies for SAC surface-active sites, including coordination environment regulation, electronic structure modulation, support structure regulation, the introduction of structural defects, and multifunctional site design, all aimed at enhancing electrocatalytic performance. This review comprehensively examines SAC deactivation and poisoning mechanisms, highlighting the importance of stability enhancement for practical applications. It also explores the integration of density functional theory calculations and machine learning to elucidate the fundamental principles of catalyst design and performance optimization. Furthermore, various synthesis strategies for industrial-scale production are summarized, providing insights into commercialization. Finally, perspectives on future research directions for SACs are highlighted, including synthesis strategies, deeper insights into active sites, the application of artificial intelligence tools, and standardized testing and performance requirements.
Collapse
Affiliation(s)
- Wen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiang Xiao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People's Republic of China.
| |
Collapse
|
4
|
Liao Y, Chang Y, Wang Y, Li Q. General aggregation-induced deposition approach for creating asymmetric single-atom catalysts. Chem Commun (Camb) 2025; 61:5523-5526. [PMID: 40100742 DOI: 10.1039/d4cc06650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
We introduce a general aggregation-induced deposition approach for synthesizing high-density Co single atom sites with precise atomic configuration on an N,O co-doped hollow carbon matrix (Co-SAs/NHC). Moreover, this strategy can also be applied to fabricate ten different metal single-atom catalysts. This design leverages the interactions between Co sites across adjacent carbon layers, enhancing the structural and chemical durability and the catalytic performance of the Co-SAs/NHC-based zinc-air battery.
Collapse
Affiliation(s)
- Yutong Liao
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
| | - Yingjie Chang
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
| | - Yanqing Wang
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
| | - Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
| |
Collapse
|
5
|
Xu J, Che H, Tang C, Yang H, Yang H, Liu B, Ao Y. Efficient H 2O 2 Production through a Dual-Channel Pathway on a Novel Organic-Inorganic Hybrid Piezocatalyst. NANO LETTERS 2025; 25:5398-5405. [PMID: 40100984 DOI: 10.1021/acs.nanolett.5c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Piezocatalysis is a promising and ecofriendly technology for hydrogen peroxide (H2O2) synthesis, yet its efficiency is hindered by limited active sites and poor electron-hole utilization. Herein, guided by theoretical calculations, a novel organic-inorganic hybrid piezocatalyst with abundant active sites and full utilization of electron-holes was rationally designed for the overall synthesis of H2O2. Results illustrated that the organic component (cobalt phthalocyanine, CoPc) switched the H2O2 synthesis of the inorganic component (BiOIO3, BIO) from a single-channel two-electron water oxidation reaction (2e- WOR) to an efficient dual-channel pathway. Specifically, Co metal centers boosted the O2 adsorption and activation by coupling with O 2p orbitals, enabling 2e- oxygen reduction reaction. Additionally, CoPc hybridization increased the piezoresponse, further facilitating 2e- WOR on BIO. The optimal sample achieved an exceptional H2O2 yield of 751.2 μmol g-1 h-1 in pure water/air and exhibited excellent degradation of refractory micropollutants. Our work introduces a novel strategy for efficient H2O2 synthesis and facilitates the advancement of sustainable water purification technologies.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Chunmei Tang
- College of Science, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Hanpei Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| | - Hongbin Yang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing 210098, China
| |
Collapse
|
6
|
Liu Y, Liu S, Jiang J, Wei X, Zhao K, Shen R, Wang X, Wei M, Wang Y, Pang H, Li B. Monomolecule Coupled to Oxygen-Doped Carbon for Efficient Electrocatalytic Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502197. [PMID: 39995369 DOI: 10.1002/adma.202502197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/17/2025] [Indexed: 02/26/2025]
Abstract
The electrocatalytic production of hydrogen peroxide (H2O2) is an ideal alternative for the industrial anthraquinone process because of environmental friendliness and energy efficiency, depending on the activity and selectivity of catalysts. Carbon-based materials possess prospects as candidate catalysts for the production of H2O2. Herein, cedar-derived monolithic carbon catalysts modified with coupling oxygen doping and phthalocyanine molecules are synthesized. Cobalt phthalocyanine (CoPc) molecules are introduced onto the carbon surface to construct monomolecular active sites via π-π stacking. The electronic structure of CoPc is modulated by oxygen doping on carbon substrates, mediated by monomolecular π-π stacking. A synergistic effect optimally modulated the interaction between CoPc and key intermediate to H2O2. The energy barrier for oxygen reduction is reduced to optimize the selectivity to H2O2. CoPc@OCW provided up to 99% selectivity to H2O2 at 0.7 V versus RHE. In a three-phase flow cell, CoPc@OCW achieved an H2O2 yield up to 10.4 mol·g-1·h-1 at 0.2 V versus RHE with stable running for 24 h. The advantages of carbon-based catalysts including the adjustable chemical structure depending on π-π stacking and electronic structure of carbon atoms through oxygen doping improved the catalytic performances in the production of H2O2. This proof-to-concept research demonstrates the potential application of carbon-based molecular catalysts for electrochemical synthesis.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Chemistry Industry of Forest Productsversity, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
- Institute of Chemistry Industry of Forest Productsversity, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Xinao Wei
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Keke Zhao
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaopeng Wang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Min Wei
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing, 100871, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Xie W, Cui B, Liu D, Huang H, Yang C. Rational Design of Covalent Organic Frameworks-Based Single Atom Catalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Molecules 2025; 30:1505. [PMID: 40286117 PMCID: PMC11990586 DOI: 10.3390/molecules30071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
The rational design of high-performance catalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is essential for the development of clean and renewable energy technologies, particularly in fuel cells and metal-air batteries. Two-dimensional (2D) covalent organic frameworks (COFs) possess numerous hollow sites, which contribute to the stable anchoring of transition metal (TM) atoms and become promising supports for single atom catalysts (SACs). Herein, the OER and ORR catalytic performance of a series of SACs based on TQBQ-COFs were systematically investigated through density functional theory (DFT) calculations, with particular emphasis on the role of the coordination environment in modulating catalytic activity. The results reveal that Rh/TQBQ exhibits the most effective OER catalytic performance, with an overpotential of 0.34 V, while Au/TQBQ demonstrates superior ORR catalytic performance with an overpotential of 0.50 V. A critical mechanistic insight lies in the distinct role of boundary oxygen atoms in TQBQ, which perturb the adsorption energetics of reaction intermediates, thereby circumventing conventional scaling relationships governing OER and ORR pathways. Furthermore, we established the adsorption energy of TM atoms (Ead) as a robust descriptor for predicting catalytic activity, enabling a streamlined screening strategy for SAC design. This study emphasizes the significance of the coordination environment in determining the performance of catalysts and offers a new perspective on the design of novel and effective OER/ORR COFs-based SACs.
Collapse
Affiliation(s)
- Wenli Xie
- School of Materials Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China;
| | - Bin Cui
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China; (B.C.); (D.L.)
| | - Desheng Liu
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China; (B.C.); (D.L.)
| | - Haicai Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chuanlu Yang
- School of Physics and Optocelectronic Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
8
|
Li Q, Chang Y, Liao Y, Wang Y. Electron-Coupling Effect Modulating the d-Band Center of Asymmetric Cobalt Single-Atom Sites for Electrocatalytic Oxygen Reduction. J Phys Chem Lett 2025; 16:2752-2758. [PMID: 40052881 DOI: 10.1021/acs.jpclett.4c03638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
We introduce an aggregation-induced deposition approach for rapidly synthesizing asymmetric Co-N3O single-atom sites (SAs) with a precise atomic configuration on a hollow carbon matrix (Co-SAs/NHC). This design leverages the electron-coupling effect between Co SAs across adjacent carbon layers, enhancing the intrinsic activity and durability of the catalyst. In the ORR, the Co-SAs/NHC catalyst displayed a half-wave potential improvement of 51 mV, achieving a mass activity 5-fold that of commercial Pt/C. Remarkably, after 30 000 potential cycles, there was a negligible half-wave potential loss of just 17 mV. Density functional theory calculations revealed that the adjacent Co-N3O sites optimized the electronic structure and d-band center of the Co atom, thereby reducing the adsorption energy of the OH* intermediates. This work offers a pathway for developing industrial-grade single-atom catalysts (SACs) with satisfactory catalytic activity and durability.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yingjie Chang
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yutong Liao
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| | - Yanqing Wang
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, People's Republic of China
| |
Collapse
|
9
|
Jiang X, Wu X, Lv M, Pan X, Wang H, Li C, Chen M, Chen W, Zhang B, Yu G, Wu ZS, Qiao B, Liu B, Kühn FE, Zhang T. "Suspended" Single Rhenium Atoms on Nickel Oxide for Efficient Electrochemical Oxidation of Glucose. J Am Chem Soc 2025; 147:4886-4895. [PMID: 39808748 DOI: 10.1021/jacs.4c13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re1-phen/NiO). Multiple experimental characterizations together with theoretical calculations unravel the idea that the isolated Re atoms are suspended on the NiO surface, connected by phenanthroline ligands standing perpendicular to the surface. This unique structure provides the Re1-phen/NiO SAC with a strong capability to activate glucose molecules, enabling fully exposed Re=O double bonds in an open-ended reaction environment to simultaneously react with hydroxyl and aldehyde groups at both ends of the glucose molecule, rapidly forming glucaric acid.
Collapse
Affiliation(s)
- Xunzhu Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Mingyue Lv
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenyang Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Meixin Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University, Fuzhou 350007, China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guangtao Yu
- Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University, Fuzhou 350007, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Binhai Laboratory, Dalian 116023, China
| | - Botao Qiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR999077, China
| | - Fritz E Kühn
- Molecular Catalysis, Department of Chemistry and Catalysis Research Center, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, Garching 85748, Germany
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, Garching D-85748, Germany
| |
Collapse
|
10
|
Cheng S, Wang B, Chen H, Zhao Z, Xing Y, Xia Y, Long X. Modulating Oxygen Reduction Activity in Chalcogenophene-Incorporated Organic Electrocatalysts through Main-Group Element Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410982. [PMID: 39711308 DOI: 10.1002/smll.202410982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Organic small molecules (OSMs) with well-defined structures are crucial integral components of cathode catalysts for fuel cells. Despite the acknowledged potential of heteroatom doping to enhance the catalytic performance of metal-free carbon-based catalysts, there exists a notable gap in conducting molecular structure and catalytic activity, particularly under the premise of maintaining a constant molecular skeleton and with a clear molecular structure. Herein, the charge distribution is modulated by introducing different chalcogens into the same molecular skeleton through main-group engineering. Among these OSMs, the Se-containing small molecule OSM-Se combined with carbonized calcium alginate exhibits a notable quasi-four-electron-transfer oxygen reduction reaction pathway, displaying a superior half-wave potential (E1/2) of 0.73 V, accompanied by outstanding electrochemical stability. Density functional theory calculations demonstrate that Se-containing small molecules can enhance the capabilities of catalysts in adsorbing and dissociating oxygen molecules, and contribute to reducing the reaction barrier of the oxygen reduction reaction. This study presents a straightforward yet highly effective approach for metal-free carbon-based OSM electrocatalysts.
Collapse
Affiliation(s)
- Shuqi Cheng
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Binbin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongni Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zijie Zhao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yali Xing
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
11
|
Saha S, Mitra S, Kharwar YP, Annadata HV, Roy S, Dutta A. A Molecular Catalyst-Driven Sustainable Zinc-Air Battery Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411021. [PMID: 39639183 DOI: 10.1002/smll.202411021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Bidirectional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are key for molecular oxygen-centric renewable energy transduction via metal-air batteries. Here, a molecular cobalt complex is covalently tethered on a strategically functionalized silica surface that displayed both ORR and OER in alkaline media. The detailed X-ray absorbance spectroscopy (XAS) studies indicate that this catalyst retains its intrinsic molecular features while playing a central role during bidirectional electrocatalysis and demonstrating a relatively lower energy gap between O2/H2O interconversions. This robust molecular catalyst-silica composite (deposited on a porous carbon paper) is assembled along with a zinc foil and polymeric gel membrane to devise an active single-stack quasi-solid zinc-air battery (ZAB) setup. This quasi-solid ZAB assembly displayed impressive power density (60 mW cm-2@100 mA cm-2), specific capacity (818 mAh g-1@ 5mA cm-2), energy density (757 Whkg-1 @5mA cm-2), and elongated charging/discharging life (28 h). An appropriate assembly of these ZAB units is able to power practical electronic appliances, requiring ≈1.6-6.0V potential requirements.
Collapse
Affiliation(s)
- Sukanta Saha
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Sampurna Mitra
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Yashwant Pratap Kharwar
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Harshini V Annadata
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX, 77005, USA
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- Interdisciplinary Program Climate Studies, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- National Centre of Excellence in Carbon Capture and Utilization, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
12
|
Wu H, Zhang J. Dynamic restructuring of electrocatalysts in the activation of small molecules: challenges and opportunities. Chem Commun (Camb) 2025; 61:2190-2202. [PMID: 39801457 DOI: 10.1039/d4cc05165c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Electrochemical activation of small molecules plays an essential role in sustainable electrosynthesis, environmental technologies, energy storage and conversion. The dynamic structural changes of catalysts during the course of electrochemical reactions pose challenges in the study of reaction kinetics and the design of potent catalysts. This short review aims to provide a balanced view of in situ restructuring of electrocatalysts, including its fundamental thermodynamic origins and how these compare to those in thermal and photocatalysis, and highlighting both the positive and negative impacts of in situ restructuring on the electrocatalyst performance. To this end, examples of in situ electrocatalyst restructuring within a focused scope of reactions (i.e. electrochemical CO2 reduction, hydrogen evolution, oxygen reduction and evolution, and dinitrogen and nitrate reduction) are used to demonstrate how restructuring can benefit or adversely affect the desired process outcome. Prospects of manipulating in situ restructuring towards an energy-efficient and durable electrocatalytic process are discussed. The practicality of pulse electrolysis on an industrial scale is questioned, and the need for genius schemes, such as self-healing catalysis, is emphasized.
Collapse
Affiliation(s)
- Hsiwen Wu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Research Hub for Carbon Utilisation and Recycling, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
13
|
Zeng Y, Tan X, Zhuang Z, Chen C, Peng Q. Nature-Inspired N, O Co-Coordinated Manganese Single-Atom Catalyst for Efficient Hydrogen Peroxide Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202416715. [PMID: 39448377 DOI: 10.1002/anie.202416715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The two-electron oxygen reduction reaction (2e- ORR) is a pivotal pathway for the distributed production of hydrogen peroxide (H2O2). In nature, enzymes containing manganese (Mn) centers can convert reactive oxygen species into H2O2. However, Mn-based heterogeneous catalysts for 2e- ORR are scarcely reported. Herein, we developed a nature-inspired single-atom electrocatalyst comprising N, O co-coordinated Mn sites, utilizing carbon dots as the modulation platform (Mn CD/C). As-synthesized Mn CD/C exhibited exceptional 2e- ORR activity with an onset potential of 0.786 V and a maximum H2O2 selectivity of 95.8 %. Impressively, Mn CD/C continuously produced 0.1 M H2O2 solution at 200 mA/cm2 for 50 h in the flow cell, with negligible loss in activity and H2O2 faradaic efficiency, demonstrating practical application potential. The enhanced activity was attributed to the incorporation of Mn atomic sites into the carbon dots. Theoretical calculations revealed that the N, O co-coordinated structure, combined with abundant oxygen-containing functional groups on the carbon dots, optimized the binding strength of intermediate *OOH at the Mn sites to the apex of the catalytic activity volcano. This work illustrates that carbon dots can serve as a versatile platform for modulating the microenvironment of single-atom catalysts and for the rational design of nature-inspired catalysts.
Collapse
Affiliation(s)
- Yuan Zeng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qing Peng
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Luo Z, He L, Wu J, Tian Y, Yang M, Liu X, Zheng R, Zhang D. Fe Single Atoms Anchored on N-doped Mesoporous Carbon Microspheres for Promoted Oxygen Reduction Reaction. CHEMSUSCHEM 2025; 18:e202401552. [PMID: 39135510 DOI: 10.1002/cssc.202401552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Indexed: 10/25/2024]
Abstract
Fe single atoms (Fe SAs) based catalysts have received much attention in electrocatalytic oxygen reduction reaction (ORR) due to its low-cost and high activity. Yet, the facile synthesis of efficient and stable Fe SAs catalysts is still challenging. Here, we reported a Fe SAs anchored on N-doped mesoporous carbon microspheres (NC) catalyst via spraying drying and pyrolysis processes. The highly active Fe SAs are uniformly distributed on the NC matrix, which prevented the aggregation benefiting from the enhanced Fe-N bonds. Also, the mesoporous carbon structure is favorable for fast electron and mass transfer. The optimized Fe@NC-2-900 catalyst shows positive half wave potential (E1/2=0.86 V vs reversible hydrogen electrodes (RHE)) and starting potential (Eonset=0.98 V vs RHE) in ORR, which is comparable to the commercial Pt/C catalyst (E1/2=0.87 V, Eonset=1.08 V vs RHE). Outstanding stability with a current retention rate of 92.5 % for 9 hours and good methanol tolerance are achieved. The assembled zinc-air batteries showed good stability up to 500 hours at a current density of 5 mA cm-2. This work shows potentials of Fe SAs based catalysts for the practical application in ORR and pave a new avenue for promoting their catalytic performances.
Collapse
Affiliation(s)
- Zhuyu Luo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Linfeng He
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jinfeng Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yue Tian
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Menghua Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyan Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ru Zheng
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
15
|
Xiao X, Zhuang Z, Yin S, Zhu J, Gan T, Yu R, Wu J, Tian X, Jiang Y, Wang D, Zhao F. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat Commun 2024; 15:10758. [PMID: 39737987 DOI: 10.1038/s41467-024-55041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeN5-xOx (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis. A comparative analysis involving catalysts derived from eleven representative microbes reveals that the presence of 0.05 wt% Fe single-atom sites leads to a significant 26% increase in hydrogen peroxide selectivity. Remarkably, the optimal catalyst featuring FeN3O2 sites demonstrates a selectivity of up to 93.7% and generates hydrogen peroxide in a flow cell at an impressive rate of 29.6 mol g-1 h-1 at 200 mA cm-2. This work achieves structural fine-tuning of metal single-atom sites at the trace level and provides topological insights into single-atom catalyst design to achieve cost-efficient hydrogen peroxide production.
Collapse
Affiliation(s)
- Xiaofeng Xiao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Shuhu Yin
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ruohan Yu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Jinsong Wu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Xiaochun Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yanxia Jiang
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| |
Collapse
|
16
|
Li Y, Luan D, Lou XWD. Engineering of Single-Atomic Sites for Electro- and Photo-Catalytic H 2O 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412386. [PMID: 39460391 DOI: 10.1002/adma.202412386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Direct electro- and photo-synthesis of H2O2 through the 2e- O2 reduction reaction (ORR) and H2O oxidation reaction (WOR) offer promising alternatives for on-demand and on-site production of this chemical. Exploring robust and selective active sites is crucial for enhancing H2O2 production through these pathways. Single-atom catalysts (SACs), featuring isolated active sites on supports, possess attractive properties for promoting catalysis and unraveling catalytic mechanisms. This review first systematically summarizes significant advancements in atomic engineering of both metal and nonmetal single-atom sites for electro- and photo-catalytic 2e- ORR to H2O2, as well as the dynamic behaviors of active sites during catalytic processes. Next, the progress of single-atom sites in H2O2 production through 2e- WOR is overviewed. The effects of the local physicochemical environments on the electronic structures and catalytic behaviors of isolated sites, along with the atomic catalytic mechanism involved in these H2O2 production pathways, are discussed in detail. This work also discusses the recent applications of H2O2 in advanced chemical transformations. Finally, a perspective on the development of single-atom catalysis is highlighted, aiming to provide insights into future research on SACs for electro- and photo-synthesis of H2O2 and other advanced catalytic applications.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
17
|
Shen Y, Pan Y, Zhu C, Zhang H, Wang J, Liu R, Fang Q, Song S, Chen B. Synergistic Coordination in Cu Single-Atom Catalysts Enhances High-Valent Copper-Oxo Species for Efficient PMS Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406319. [PMID: 39221550 DOI: 10.1002/smll.202406319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
In the domain of heterogeneous catalytic activation of peroxymonosulfate (PMS), high-valent metal-oxo (HVMO) species are widely recognized as potent oxidants for the abatement of organic pollutants. However, the generation selectivity and efficiency of HVMO are often constrained by stringent requirements for catalyst adsorption sites and electron transfer efficiency. In this study, a single-atom catalyst, CuSA/CNP&S, is synthesized featuring multiple types (planar/axial) of heteroatom coordination via an H-bond-assisted self-assembly strategy. It is confirmed that CuN3 active centers with axial S coordination are uniformly distributed in a carbon matrix modified by planar P atoms. CuSA/CNP&S activated PMS to selectively generate Cu(III)═OH species as the primary reactive oxygen species (ROS). The pseudo-first-order kinetic rate for bisphenol A degradation reached 1.51 min-1, a 17.57-fold increase compared to the unmodified CuSA/CN catalyst. Additionally, the CuSA/CNP&S catalyst demonstrates high efficiency and durability in removing contaminants from various aqueous matrices. Theoretical calculations and experimental results indicate that the intrinsic electric field generated by distal planar P atoms enhances electron transfer efficiency within the carbon matrix. Meanwhile, axial S coordination elevates the d-band center and tunes the eg * band broadening of Cu, thereby enhancing the adsorption selectivity for the terminal oxygen of PMS. This multitype coordination synergistically mitigates the issues of low selectivity and yield of HVMO species.
Collapse
Affiliation(s)
- Yi Shen
- Key LaboraStory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
- Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, P. R. China
| | - Yongliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Haizhong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Jun Wang
- Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
18
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
19
|
Yang Q, Zhang Y, Xiao P, Liu R, Liu H, Qu J, Kim JH, Sun M. Selective O 2-to-H 2O 2 Electrosynthesis by a High-Performance, Single-Pass Electrofiltration System Using Ibuprofen-Laden CNT Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19058-19069. [PMID: 39230246 DOI: 10.1021/acs.est.4c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Producing H2O2 through a selective, two-electron (2e) oxygen reduction reaction (ORR) is challenging, especially when it serves as an advanced oxidation process (AOP) for cost-effective water decontamination. Herein, we attain a 2e-selectivity H2O2 production using a carbon nanotube electrified membrane with ibuprofen (IBU) molecules laden (IBU@CNT-EM) in an ultrafast, single-pass electrofiltration process. The IBU@CNT-EM can generate H2O2 at a rate of 25.62 mol gCNT-1 h-1 L-1 in the permeate with a residence time of 1.81 s. We demonstrated that an interwoven, hydrophilic-hydrophobic membrane nanostructure offers an excellent air-to-water transport platform for ORR acceleration. The electron transfer number of the ORR for IBU@CNT at neutral pH was confirmed as 2.71, elucidating a near-2e selectivity to H2O2. Density functional theory (DFT) studies validated an exceptional charge distribution of the IBU@CNT for the O2 adsorption. The adsorption energies of the O2 and *OOH intermediates are proportional to the H2O2 selectivity (64.39%), higher than that of the CNT (37.81%). With the simple and durable production of H2O2 by IBU@CNT-EM electrofiltration, the permeate can actuate Fenton oxidation to efficiently decompose emerging pollutants and inactivate bacteria. Our study introduces a new paradigm for developing high-performance H2O2-production membranes for water treatment by reusing environmental functional materials.
Collapse
Affiliation(s)
- Qing Yang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Pengyu Xiao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Cheng S, Sheng D, Mukherjee S, Dong W, Huang Y, Cao R, Xie A, Fischer RA, Li W. Carbon nanolayer-mounted single metal sites enable dipole polarization loss under electromagnetic field. Nat Commun 2024; 15:9077. [PMID: 39433804 PMCID: PMC11494010 DOI: 10.1038/s41467-024-53465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Surface modulation strategies have spurred great interest with regard to regulating the morphology, dispersion and flexible processability of materials. Unsurprisingly, customized modulation of surfaces is primed to offer a route to control their electronic functions. To regulate electromagnetic wave (EMW) absorption applications by surface engineering is an unmet challenge. Thanks to pyrolyzing surface-anchored metal-porphyrin, here we report on the surface modulation of four-nitrogen atoms-confined single metal site on a nitrogen-doped carbon layer (sM(N4)@NC, M = Ni, Co, Cu, Ni/Cu) (sM=single metal; NC= nitrogen-doped carbon layer) that registers electromagnetic wave absorption. Surface-anchored metal-porphyrins are afforded by attaching them onto the polypyrrole surface via a prototypical click reaction. Further, sM(N4)@NC is experimentally found to elicit an identical dipole polarization loss mechanism, overcoming the handicaps of conductivity loss, defects, and interfacial polarization loss among the current EMW absorber models. Importantly, sM(N4)@NC is found to exhibit an effective absorption bandwidth of 6.44 and reflection loss of -51.7 dB, preceding state-of-the-art carbon-based EMW absorbers. This study introduces a surface modulation strategy to design EMW absorbers based on single metal sites that enable fine-tunable and controlled absorption mechanism with atomistic precision.
Collapse
Affiliation(s)
- Siyao Cheng
- School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, PR China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Daohu Sheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Yuanbiao Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, PR China
| | - Aming Xie
- School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry & School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching, Germany
| | - Weijin Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, PR China.
| |
Collapse
|
21
|
Xu S, Yu Y, Zhang X, Xue D, Wei Y, Xia H, Zhang F, Zhang JN. Enhanced Electron Delocalization Induced by Ferromagnetic Sulfur doped C 3N 4 Triggers Selective H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202407578. [PMID: 38771454 DOI: 10.1002/anie.202407578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
For the 2D metal-free carbon catalysts, the atomic coplanar architecture enables a large number of pz orbitals to overlap laterally, thus forming π-electron delocalization, and the delocalization degree of the central atom dominates the catalytic activity. Herein, designing sulfur-doped defect-rich graphitic carbon nitride (S-Nv-C3N4) materials as a model, we propose a strategy to promote localized electron polarization by enhancing the ferromagnetism of ultra-thin 2D carbon nitride nanosheets. The introduction of sulfur (S) further promotes localized ferromagnetic coupling, thereby inducing long-range ferromagnetic ordering and accelerating the electron interface transport. Meanwhile, the hybridization of sulfur atoms breaks the symmetry and integrity of the unit structure, promotes electron enrichment and stimulating electron delocalization at the active site. This optimization enhances the *OOH desorption, providing a favorable kinetic pathway for the production of hydrogen peroxide (H2O2). Consequently, S-Nv-C3N4 exhibits high selectivity (>95 %) and achieves a superb H2O2 production rate, approaching 4374.8 ppm during continuous electrolysis over 300 hour. According to theoretical calculation and in situ spectroscopy, the ortho-S configuration can provide ferromagnetic perturbation in carbon active centers, leading to the electron delocalization, which optimizes the OOH* adsorption during the catalytic process.
Collapse
Affiliation(s)
- Siran Xu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yue Yu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyu Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Dongping Xue
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifan Wei
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huicong Xia
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jia-Nan Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
22
|
Deng D, Wang Y, Jiang J, Bai Y, Chen Y, Zheng H, Ou H, Lei Y. Indium oxide with oxygen vacancies boosts O 2 adsorption and activation for electrocatalytic H 2O 2 production. Chem Commun (Camb) 2024; 60:9364-9367. [PMID: 39129473 DOI: 10.1039/d4cc03361b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Oxygen reduction reaction via the two-electron pathway (2e- ORR) offers a sustainable opportunity for hydrogen peroxide (H2O2) production, but suffers from low selectivity. In this work, indium oxide with oxygen vacancies (In2O3-x) exhibits a H2O2 selectivity close to 98% at 0.6 V vs. RHE. Further, a Faradaic efficiency (FE) of around 95% at 0.4-0.6 V vs. RHE and a H2O2 productivity of 3.7 mol gcatalyst-1 h-1 are reached in a flow cell. In situ Raman spectra indicate that In2O3-x promotes the adsorption and activation of O2 and stabilizes oxygen intermediates. This work provides an insight into improving H2O2 selectivity for 2e- ORR catalysts.
Collapse
Affiliation(s)
- Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Haitao Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Houzheng Ou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
23
|
Zhang H, Xu H, Yao C, Chen S, Li F, Zhao D. Metal Atom-Support Interaction in Single Atom Catalysts toward Hydrogen Peroxide Electrosynthesis. ACS NANO 2024; 18:21836-21854. [PMID: 39108203 DOI: 10.1021/acsnano.4c07916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Single metal atom catalysts (SACs) have garnered considerable attention as promising agents for catalyzing important industrial reactions, particularly the electrochemical synthesis of hydrogen peroxide (H2O2) through the two-electron oxygen reduction reaction (ORR). Within this field, the metal atom-support interaction (MASI) assumes a decisive role, profoundly influencing the catalytic activity and selectivity exhibited by SACs, and triggers a decade-long surge dedicated to unraveling the modulation of MASI as a means to enhance the catalytic performance of SACs. In this comprehensive review, we present a systematic summary and categorization of recent advancements pertaining to MASI modulation for achieving efficient electrochemical H2O2 synthesis. We start by introducing the fundamental concept of the MASI, followed by a detailed and comprehensive analysis of the correlation between the MASI and catalytic performance. We describe how this knowledge can be harnessed to design SACs with optimized MASI to increase the efficiency of H2O2 electrosynthesis. Finally, we distill the challenges that lay ahead in this field and provide a forward-looking perspective on the future research directions that can be pursued.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Haitao Xu
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Canglang Yao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shanshan Chen
- MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
24
|
Chen Y, Zhen C, Chen Y, Zhao H, Wang Y, Yue Z, Wang Q, Li J, Gu MD, Cheng Q, Yang H. Oxygen Functional Groups Regulate Cobalt-Porphyrin Molecular Electrocatalyst for Acidic H 2O 2 Electrosynthesis at Industrial-Level Current. Angew Chem Int Ed Engl 2024; 63:e202407163. [PMID: 38864252 DOI: 10.1002/anie.202407163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92 % in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In situ X-ray adsorption spectroscopy, in situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt % pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Yihe Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hao Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yuda Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Qiansen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
25
|
Qu J, Long G, Luo L, Yang Y, Fan W, Zhang F. Electrosynthesis of H 2O 2 Promoted by π-π Interaction on a Metal-Free Carbon Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400695. [PMID: 38456779 DOI: 10.1002/smll.202400695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
The synthesis of hydrogen peroxide (H2O2) through electrocatalytic oxygen reduction reaction is an ideal alternative to the current energy-intensive anthraquinone process, but developing cost-effective and high-efficiency electrocatalysts is still challenging. Herein, a metal-free graphitic carbon nitride/carbon nanotube (g-C3N4/CNT) hybrid catalyst can enhance H2O2 production via π-π interaction is reported, achieving almost unity (97%) H2O2 production at 0.57 V with high selectivity of over 92% across the wide potential range from 0.6 to 0 V. Other carbon materials with weak interaction with g-C3N4, such as acetylene black and super P, show markedly weakened H2O2 production, indicating the importance of π-π interaction. Electron transfer kinetic analysis combined with density functional theory calculations indicates that the synergistic effect between g-C3N4 and CNT enhances electron transfer and O2 activation between g-C3N4 and CNT, leading to enhanced H2O2 production performance. This work provides a complementary approach for H2O2 production from oxygen reduction besides introducing oxygenated groups or heteroatom doping into carbon materials.
Collapse
Affiliation(s)
- Jiating Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guifa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530008, China
| | - Lin Luo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Wenjun Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
26
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
27
|
Saglam Ertunga N, Saka ET, Taskin-Tok T, Inan Bektas K, Yildirim Akatin M. Synthesis, characterization, DNA interaction, molecular docking, and α-amylase and α-glucosidase inhibition studies of a water soluble Zn(II) phthalocyanine. Dalton Trans 2024; 53:11354-11367. [PMID: 38919040 DOI: 10.1039/d4dt01138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In this study, 2(3),9(10),16(17),23(24)-tetrakis-[(N-methyl-(1-benzylpiperidin-4-yl)oxy)phthalocyaninato]zinc(II) iodide (ZnPc-2) was synthesized and characterized using spectral methods (FT-IR, 1H-NMR, UV-Vis and mass spectroscopy). The interaction of ZnPc-2 with DNA was investigated by using the UV/Vis titrimetric method, thermal denaturation profile, agarose gel electrophoresis and molecular docking studies. Additionally, the antidiabetic activity of ZnPc-2 was revealed spectroscopically by studying α-amylase and α-glucosidase inhibition activities. The spectroscopic results indicated that ZnPc-2 effectively binds to calf thymus-DNA (CT-DNA) with a Kb value of 7.5 × 104 M-1 and interacts with CT-DNA via noncovalent binding mode. Gel electrophoresis results also show that ZnPc-2 binds strongly to DNA molecules and exhibits effective nuclease activity even at low concentrations. Furthermore, docking studies suggest that ZnPc-2 exhibits a stronger binding tendency with DNA than the control compounds ethidium bromide and cisplatin. Consequently, due to its strong DNA binding and nuclease activity, ZnPc-2 may be suitable for antimicrobial and anticancer applications after further toxicological tests. Additionally, antidiabetic studies showed that ZnPc-2 had both α-amylase and α-glucosidase inhibition activity. Moreover, the α-glucosidase inhibitory effect of ZnPc-2 was approximately 3500 times higher than that of the standard inhibitor, acarbose. Considering these results, it can be said that ZnPc-2 is a moderate α-amylase and a highly effective α-glucosidase inhibitor. This suggests that ZnPc-2 may have the potential to be used as a therapeutic agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nagihan Saglam Ertunga
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Türkiye.
| | - Ece Tugba Saka
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Türkiye.
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, 27310-Gaziantep, Türkiye
- Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Türkiye
| | - Kadriye Inan Bektas
- Karadeniz Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Trabzon, Türkiye
| | | |
Collapse
|
28
|
Tkachenko N, Golovanov V, Penni A, Vesamäki S, Ajayakumar MR, Muranaka A, Kobayashi N, Efimov A. The windmill, the dragon, and the frog: geometry control over the spectral, magnetic, and electrochemical properties of cobalt phthalocyanine regioisomers. Phys Chem Chem Phys 2024; 26:18113-18128. [PMID: 38895861 DOI: 10.1039/d4cp01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For the first time, we have prepared non-aggregating phthalocyanine cobalt complexes as a set of resolved positional isomers. These compounds comprise a unique test bed for the structure-properties studies, as their optical and electrochemical properties are influenced by the planarity of the phthalocyanine macrocycle, which can be controlled by the positional isomerism of the bulky aromatic substituents at the α-phthalo sites. We support our conclusions with molecular modelling studies, which show a perfect match between the calculated and experimentally determined spectral/electrochemical values. We challenge a common perception that the NMR spectra of cobalt phthalocyanines cannot be measured due to the paramagnetic nature of Co(II). We suggest instead that the key factors affecting the NMR spectral resolution are molecular aggregation and π-π stacking. These interactions are suppressed by the bulky peripheral substituents on the cobalt phthalocyanines prepared, making these isomeric compounds an excellent tool for paramagnetic NMR studies.
Collapse
Affiliation(s)
| | - Viacheslav Golovanov
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
- South-Ukrainian National University, Staroportofrankovskaya str. 26, 65020, Odessa, Ukraine
| | - Aleksandr Penni
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - Sami Vesamäki
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - M R Ajayakumar
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Alexander Efimov
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| |
Collapse
|
29
|
Ye J, Lu J, Yuan H, Wan Z, Wan X, Tang Y, Li L, Wen D. Monodispersed Molecular Phthalocyanine with Sulfur-Driven Electron Delocalization for Enhanced Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308285. [PMID: 38353330 DOI: 10.1002/smll.202308285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Indexed: 07/05/2024]
Abstract
Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.
Collapse
Affiliation(s)
- Jianqi Ye
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziqi Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarui Tang
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lanqing Li
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
30
|
Li Y, Cheng H, Wang M, Xu J, Guan L. Highly coordinative molecular cobalt-phthalocyanine electrocatalyst on an oxidized single-walled carbon nanotube for efficient hydrogen peroxide production. MATERIALS HORIZONS 2024; 11:2517-2527. [PMID: 38497122 DOI: 10.1039/d3mh02142d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
H2O2 production via the two-electron oxygen reduction reaction (2e- ORR) offers a potential alternative to the current anthraquinone method owing to its efficiency and environmental friendliness. However, it is necessary to determine the structures of electrocatalysts with cost-effectiveness and high efficiency for future industrialization demand. Herein, a supramolecular catalyst composed of cobalt-phthalocyanine on a near-monodispersed and oxidized single-walled carbon nanotube (CoPc/o-SWCNT) was synthesized via a solution self-assembly method for catalyzing the 2e- ORR for H2O2 electrosynthesis. Benefiting from the enhanced intermolecular interaction by introducing oxygen functional groups on o-SWCNTs, the oxidation states of single-atom Co sites were tuned via the formation of two extra Co-O bonds. Coupled with structural characterizations, density-functional theory (DFT) calculations reveal that the depressed d-band center of the Co site regulated by two axially-bridged O atoms gives rise to a suitable binding strength of oxygen intermediates (*OOH) to favor the 2e- ORR. Thus, the CoPc-6wt%/o-SWCNT-2 catalyst with optimized synthetic parameters delivers competitive 2e- ORR performance for H2O2 electrosynthesis in a neutral electrolyte (pH = 7), including enhanced H2O2 generation, satisfactory molar selectivity of ∼83-95% and long-period stability (75 h) in H-cell measurement. Moreover, it could also be boosted to show a high current of 45 mA cm-2, recorded turnover frequency of 25.3 ± 0.5 s-1 and maximum H2O2 production rate of 5.85 mol g-1 h-1 with a continuous H2O2 accumulation of 1.2 wt% in a flow-cell device, which outperformed most of the reported neutral-selective nonprecious metal single-atom catalysts.
Collapse
Affiliation(s)
- Yaoxin Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Haoying Cheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Meilin Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jiaoxing Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| | - Lunhui Guan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China
| |
Collapse
|
31
|
Jia S, Yu H, Na J, Liu Z, Lv K, Ren Z, Sun S, Shao Z. Efficient Electrosynthesis of Hydrogen Peroxide Using Oxygen-Doped Porous Carbon Catalysts at Industrial Current Densities. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659341 DOI: 10.1021/acsami.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metal-free carbon catalysts (MFCCs) are one of the commonly used catalysts for electrocatalytic two-electron oxygen reduction (2e- ORR) synthesis of hydrogen peroxide (H2O2). Oxygen doping is an effective means to improve the performance of MFCCs, but the performance of oxygen-doped carbon catalysts is still not high enough, and the contribution of different oxygen functional groups (OFGs) to the catalytic performance is still inconclusive. In this paper, carbon-based catalysts with different oxygen contents and ratios of OFGs were prepared, and the high 2e- ORR activity of COOH + C-OH was demonstrated by combining the results of experiments and theoretical calculations. The prepared oxygen-doped carbon-based catalyst C-0.1M80 achieved an onset potential of 0.795 V (vs RHE), a selectivity of up to 98.2% (0.6 V vs RHE), and a H2O2 oxidation current of 1.33 mA cm-2 (0.5 V vs RHE) in a rotating ring-disk electrode test (0.1 M KOH solution), which was an outstanding performance in MFCCs. In a solid electrolyte flow cell, C-0.1M80 achieved a Faraday efficiency of 97.5% at 200 mA cm-2 with a corresponding H2O2 production rate of 123.7 mg cm-2 h-1. In addition, a flow cell stability test was performed at an industrial current density (100 mA cm-2) with an astounding 200 h of uninterrupted operation, also achieving an outstanding average Faradaic efficiency (95.8%).
Collapse
Affiliation(s)
- Senyuan Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jingchen Na
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiqiu Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Ren
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shucheng Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Shao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
32
|
Wang Z, Sun Z, Li K, Fan K, Tian T, Jiang H, Jin H, Li A, Tang Y, Sun Y, Wan P, Chen Y. Enhanced electrocatalytic performance for H 2O 2 generation by boron-doped porous carbon hollow spheres. iScience 2024; 27:109553. [PMID: 38623338 PMCID: PMC11016794 DOI: 10.1016/j.isci.2024.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Electrocatalytic generation of H2O2 via the 2-electron pathway of oxygen reduction reaction (2e-ORR) is an attractive technology compared to the anthraquinone process due to convenience and environmental friendliness. However, catalysts with excellent selectivity and high activity for 2e-ORR are necessary for practical applications. Reported here is a catalyst comprising boron-doped porous carbon hollow spheres (B-PCHSs) prepared using the hard template method coupled with borate transesterification. In an alkali electrolyte, the selectivity of B-PCHS for 2e-ORR above 90% in range of 0.4-0.7 VRHE and an onset potential of 0.833 V was obtained. Meanwhile, the generation rate of H2O2 reached 902.48 mmol h-1 gcat-1 at 0.4 VRHE under 59.13 mA cm-2 in batch electrolysis. The excellent catalytic selectivity of B-PCHS for 2e-ORR originates from the boron element, and the catalytic activity of B-PCHS for H2O2 generation is contributed to the morphology of porous hollow spheres, which facilitates mass transfer processes.
Collapse
Affiliation(s)
- Zhaohui Wang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zehan Sun
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Kun Li
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Keyi Fan
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tian Tian
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haomin Jiang
- Center for Advanced Materials Research, College of Chemistry, Beijing Normal University, Zhuhai 519087, P.R. China
| | - Honglei Jin
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ang Li
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Tang
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yanzhi Sun
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Pingyu Wan
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yongmei Chen
- Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
33
|
Sun L, Jin X, Su T, Fisher AC, Wang X. Conjugated Nickel Phthalocyanine Derivatives for Heterogeneous Electrocatalytic H 2O 2 Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306336. [PMID: 37560974 DOI: 10.1002/adma.202306336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Electrocatalytic hydrogen peroxide (H2O2) production has emerged as a promising alternative to the chemical method currently used in industry, due to its environmentally friendly conditions and potential for higher activity and selectivity. Heterogeneous molecular catalysts are promising in this regard, as their active site configurations can be judiciously designed, modified, and tailored with diverse functional groups, thereby tuning the activity and selectivity of the active sites. In this work, nickel phthalocyanine derivatives with various conjugation degrees are synthesized and identified as effective pH-universal electrocatalysts for H2O2 production after heterogenized on nitrogen-decorated carbon, with increased conjugation degrees leading to boosted selectivity. This is explained by the regulated d-band center, which optimized the binding energy of the reaction intermediate, reducing the energy barrier for oxygen reduction and leading to optimized H2O2 selectivity. The best catalyst, NiPyCN/CN, exhibits a high H2O2 electrosynthesis activity with ≈95% of H2O2 faradic efficiency in an alkaline medium, demonstrating its potential for H2O2 production.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Cambridge CARES, CREATE Tower, Singapore, 138602, Singapore
| | - Xindie Jin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Tan Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Adrian C Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB2 3RA, UK
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
34
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
35
|
Li AZ, Yuan BJ, Xu M, Wang Y, Zhang C, Wang X, Wang X, Li J, Zheng L, Li BJ, Duan H. One-Step Electrochemical Ethylene-to-Ethylene Glycol Conversion over a Multitasking Molecular Catalyst. J Am Chem Soc 2024; 146:5622-5633. [PMID: 38373280 DOI: 10.1021/jacs.3c14381] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ethylene glycol is an essential commodity chemical with high demand, which is conventionally produced via thermocatalytic oxidation of ethylene with huge fossil fuel consumption and CO2 emission. The one-step electrochemical approach offers a sustainable route but suffers from reliance on noble metal catalysts, low activity, and mediocre selectivity. Herein, we report a one-step electrochemical oxidation of ethylene to ethylene glycol over an earth-abundant metal-based molecular catalyst, a cobalt phthalocyanine supported on a carbon nanotube (CoPc/CNT). The catalyst delivers ethylene glycol with 100% selectivity and 1.78 min-1 turnover frequency at room temperature and ambient pressure, more competitive than those obtained over palladium catalysts. Experimental data demonstrate that the catalyst orchestrates multiple tasks in sequence, involving electrochemical water activation to generate high-valence Co-oxo species, ethylene epoxidation to afford an ethylene oxide intermediate via oxygen transfer, and eventually ring-opening of ethylene oxide to ethylene glycol facilitated by in situ formed Lewis acid site. This work offers a great opportunity for commodity chemicals synthesis based on a one-step, earth-abundant metal-catalyzed, and renewable electricity-driven route.
Collapse
Affiliation(s)
- An-Zhen Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo-Jun Yuan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chunyu Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiongbo Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jing Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Jie Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Yang J, Zhu C, Li WH, Zheng X, Wang D. Organocatalyst Supported by a Single-Atom Support Accelerates both Electrodes used in the Chlor-Alkali Industry via Modification of Non-Covalent Interactions. Angew Chem Int Ed Engl 2024; 63:e202314382. [PMID: 38182547 DOI: 10.1002/anie.202314382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Consuming one of the largest amount of electricity, the chlor-alkali industry supplies basic chemicals for society, which mainly consists of two reactions, hydrogen evolution (HER) and chlorine evolution reaction (CER). Till now, the state-of-the-art catalyst applied in this field is still the dimensional stable anode (DSA), which consumes a large amount of noble metal of Ru and Ir. It is thus necessary to develop new types of catalysts. In this study, an organocatalyst anchored on the single-atom support (SAS) is put forward. It exhibits high catalytic efficiency towards both HER and CER with an overpotential of 21 mV and 20 mV at 10 mA cm-2 . With this catalyst on both electrodes, the energy consumption is cut down by 1.2 % compared with the commercial system under industrial conditions. Based on this novel catalyst and the high activity, the mechanism of modifying non-covalent interaction is demonstrated to be reliable for the catalyst's design. This work not only provides efficient catalysts for the chlor-alkali industry but also points out that the SACs can also act as support, providing new twists for the development of SACs and organic molecules in the next step.
Collapse
Affiliation(s)
- Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenxi Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
37
|
Sun Y, Fan W, Li Y, Sui NLD, Zhu Z, Zhou Y, Lee JM. Tuning Coordination Structures of Zn Sites Through Symmetry-Breaking Accelerates Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306687. [PMID: 37649133 DOI: 10.1002/adma.202306687] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Manipulating the coordination environment of individual active sites in a precise manner remains an important challenge in electrocatalytic reactions. Herein, inspired by theoretical predictions, a facile procedure to synthesize a series of symmetry-breaking zinc metal-organic framework (Zn-MOF) catalysts with well-defined structures is presented. Benefiting from the optimized coordination microenvironment regulated by symmetry-breaking, Zn-N2 S2 -MOF exhibits the best performance of nitrogen (N2 ) reduction reaction (NRR) with NH3 yield rate of 25.07 ± 1.57 µg h-1 cm-2 and Faradaic efficiency of 44.57 ± 2.79% compared with reported Zn-based NRR catalysts. X-ray absorption near-edge structure shows that the symmetry-breaking distorts the coordination environment and modulates the delocalized electrons around the Zn sites, which favors the formation of unpaired low-valence Znδ+ , thereby facilitating the adsorption/activation of N2 . Theoretical calculations elucidate that low-valence Znδ+ in Zn-N2 S2 -MOF can effectively lower the energy barrier of potential determining step, promoting the kinetics and boosting the NRR activity. This work highlights the relationship between the precise coordination environment of metal sites and the catalytic activity, which offers insightful guidance for rationally designing high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Zhouhao Zhu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
38
|
Sahu J, Mansingh S, Mishra BP, Prusty D, Parida K. Compositionally engineered Cd-Mo-Se alloyed QDs toward photocatalytic H 2O 2 production and Cr(VI) reduction with a detailed mechanism and influencing parameters. Dalton Trans 2023; 52:16525-16537. [PMID: 37878009 DOI: 10.1039/d3dt02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
With the exceptional advantages of safety, greenness, and low cost, photocatalytic H2O2 generation has kindled a wonderful spark, although being severely hampered by the terrible photoinduced exciton recombination, migration, and surface decomposition. Here, employing reflux method, the Cd-Mo-Se quantum dots of varying molar ratios of Cd and Mo were synthesized using thioglycolic acid as the capping ligand to regulate their growth. This type of metal alloying promotes rapid charge migration, improves light harvesting, and reduces the rate of charge recombination. The improved optoelectronic properties and boosted activity of Cd-rich ternary CMSe-1 QDs led to the observed exceptional photocatalytic H2O2 yield of 1403.5 μmol g-1 h-1 (solar to chemical conversion efficiency, 0.27%) under visible light, outperforming the other ternary and Se-based QD photocatalysts. Additionally, CMSe-1 shows 93.6% (2 h) hazardous Cr(VI) photoreduction. The enhanced catalytic performance of CMSe-1 corresponds to effective charge carrier separation and transfer efficiency, well supported by PL, TRPL, and electrochemical measurements. Photocatalytic H2O2 production was also studied under varying experimental conditions and the scavenger test suggests a superoxide radical intermediate 2-step single electron reduction pathway. The catalyst-assisted Cr(VI) reduction is substantiated by the zero-order kinetics as well as the determination of the pHPZC value. The catalyst can be employed for a maximum of four times while retaining its activity, according to the photostability and reusability test outcomes. This research presents interesting approaches for producing ternary QDs and modified systems for efficient photocatalytic H2O2 production and Cr(VI) reduction.
Collapse
Affiliation(s)
- Jyotirmayee Sahu
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Sriram Mansingh
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | | | - Deeptimayee Prusty
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| | - Kulamani Parida
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751030, Odisha, India.
| |
Collapse
|
39
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
40
|
Zhang F, Tang Z, Zhang T, Xiao H, Zhuang H, Liang X, Zheng L, Gao Q. Enhancing Sulfur Redox Conversion of Active Iron Sites by Modulation of Electronic Density for Advanced Lithium-Sulfur Battery. SMALL METHODS 2023; 7:e2300519. [PMID: 37344352 DOI: 10.1002/smtd.202300519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 06/23/2023]
Abstract
Despite lithium-sulfur (Li-S) batteries possessing ultrahigh energy density as great promising energy storage devices, the suppressing shuttle effect and improving sulfur redox reaction (SROR) are vital for their practical application. Developing high-activity electrocatalysts for enhancing the SROR kinetics is a major challenge for the application of Li-S batteries. Herein, single-molecule iron phthalocyanine species are anchored on the N and P dual-doped porous carbon nanosheets (Fe-NPPC) via axial Fe-N coordination to optimize the electronic structure of active centers. The Fe-NPPC can promote the catalytic conversion of polysulfides by modulation of the electronic density in active moieties, endowing the Li-S battery with a high reversible capacity of 1023 mAh g-1 at 1 C as well as an ultralow capacity decay of 0.035% per cycle over 1500 cycles. Even with a high sulfur loading of 7.1 mg cm-2 , the Li-S battery delivers a high areal capacity of 4.8 mAh cm-2 after 150 cycles at 0.2 C. With further increasing the sulfur loading to 9.2 mg cm-2 , an excellent areal capacity of up to 9.3 mAh cm-2 is obtained at 0.1 C.
Collapse
Affiliation(s)
- Fanchao Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zihuan Tang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Tengfei Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hong Xiao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Huifeng Zhuang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiao Liang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiuming Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
41
|
Machín A, Cotto M, Ducongé J, Márquez F. Artificial Photosynthesis: Current Advancements and Future Prospects. Biomimetics (Basel) 2023; 8:298. [PMID: 37504186 PMCID: PMC10807655 DOI: 10.3390/biomimetics8030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Artificial photosynthesis is a technology with immense potential that aims to emulate the natural photosynthetic process. The process of natural photosynthesis involves the conversion of solar energy into chemical energy, which is stored in organic compounds. Catalysis is an essential aspect of artificial photosynthesis, as it facilitates the reactions that convert solar energy into chemical energy. In this review, we aim to provide an extensive overview of recent developments in the field of artificial photosynthesis by catalysis. We will discuss the various catalyst types used in artificial photosynthesis, including homogeneous catalysts, heterogeneous catalysts, and biocatalysts. Additionally, we will explore the different strategies employed to enhance the efficiency and selectivity of catalytic reactions, such as the utilization of nanomaterials, photoelectrochemical cells, and molecular engineering. Lastly, we will examine the challenges and opportunities of this technology as well as its potential applications in areas such as renewable energy, carbon capture and utilization, and sustainable agriculture. This review aims to provide a comprehensive and critical analysis of state-of-the-art methods in artificial photosynthesis by catalysis, as well as to identify key research directions for future advancements in this field.
Collapse
Affiliation(s)
- Abniel Machín
- Divisionof Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA
| | - María Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - José Ducongé
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA; (M.C.); (J.D.)
| |
Collapse
|