1
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Liao L, Xie M, Zheng X, Zhou Z, Deng Z, Gao J. Molecular insights fast-tracked: AI in biosynthetic pathway research. Nat Prod Rep 2025. [PMID: 40130306 DOI: 10.1039/d4np00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Covering: 2000 to 2025This review explores the potential of artificial intelligence (AI) in addressing challenges and accelerating molecular insights in biosynthetic pathway research, which is crucial for developing bioactive natural products with applications in pharmacology, agriculture, and biotechnology. It provides an overview of various AI techniques relevant to this research field, including machine learning (ML), deep learning (DL), natural language processing, network analysis, and data mining. AI-powered applications across three main areas, namely, pathway discovery and mining, pathway design, and pathway optimization, are discussed, and the benefits and challenges of integrating omics data and AI for enhanced pathway research are also elucidated. This review also addresses the current limitations, future directions, and the importance of synergy between AI and experimental approaches in unlocking rapid advancements in biosynthetic pathway research. The review concludes with an evaluation of AI's current capabilities and future outlook, emphasizing the transformative impact of AI on biosynthetic pathway research and the potential for new opportunities in the discovery and optimization of bioactive natural products.
Collapse
Affiliation(s)
- Lijuan Liao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Mengjun Xie
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoshan Zheng
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhao Zhou
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee, Biomedical and Pharmaceutical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Yuan Y, Huang C, Singh N, Xun G, Zhao H. Self-resistance-gene-guided, high-throughput automated genome mining of bioactive natural products from Streptomyces. Cell Syst 2025; 16:101237. [PMID: 40073866 PMCID: PMC11949414 DOI: 10.1016/j.cels.2025.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/17/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
Natural products (NPs) from bacteria, fungi, and plants are a vital source of drug leads, with Streptomyces species being particularly significant due to their capability of producing diverse bioactive compounds. Here, we present a fully automated, scalable, high-throughput platform for discovering bioactive NPs in Streptomyces (FAST-NPS). This platform integrates computational biosynthetic gene cluster (BGC) prediction and prioritization guided by self-resistance genes, automated cloning and heterologous expression, high-throughput fermentation, and product extraction. As a proof of concept, we cloned 105 BGCs (10-100 kb) from 11 Streptomyces strains with a 95% success rate. Heterologous expression in Streptomyces lividans TK24 led to the detection of 23 NPs, including 8 with antibacterial or antitumor bioactivities from 5 BGCs. This work highlights the potential of FAST-NPS to accelerate bioactive NP discovery for biomedical and biotechnological applications. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Yujie Yuan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chunshuai Huang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nilmani Singh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guanhua Xun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
4
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
5
|
Zhou Z, Yang J, Ma J, Shang Z, Fang R, Tian X, Li Q, Ju J. Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived Pseudonocardia antarctica. JACS AU 2025; 5:237-249. [PMID: 39886587 PMCID: PMC11775689 DOI: 10.1021/jacsau.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (1), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived Pseudonocardia antarctica SCSIO 07407. The biosynthetic gene cluster of 1 was identified on a giant plasmid featuring transferable elements. In-depth biosynthetic investigation enabled us to (i) identify a set of seven genes associated with the product of the vancosamine moiety; (ii) discover two glycosyltransferases dedicated to the transfer of pendant sugars; and (iii) isolate rhamnose-modified antarmycin B (2) and a deglucosylated derivative antarmycin C (3) from genetically engineered mutant strains. Antibacterial assays revealed that 1 displays superior antibacterial properties with potent in vitro activities against the critical priority pathogens, multidrug-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus, fast bacterial killing, insusceptibility to antimicrobial resistance, and high in vivo efficiency in infection models. Mechanistic investigations revealed that 1 disrupts the bacterial cell membrane through a mechanism involving interactions between the vancosamine moieties and membrane-embedded phosphatidylglycerol/phosphatidylethanolamine. The results provide insights into the biological generation of vancosamine in natural products and demonstrate the potential of 1 as an effective lead to address the growing antimicrobial resistance threats.
Collapse
Affiliation(s)
- Zhenbin Zhou
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, Qingdao 266400, China
| | - Jiafan Yang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College
of Oceanology, University of Chinese Academy
of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Zhuo Shang
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong Basic
Science Research Center (Pharmacy), School of Pharmaceutical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Runping Fang
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong Basic
Science Research Center (Pharmacy), School of Pharmaceutical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinpeng Tian
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qinglian Li
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong
Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Key
Laboratory of Chemical Biology (Ministry of Education), Shandong Basic
Science Research Center (Pharmacy), School of Pharmaceutical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Kumar N, Bhagwat P, Singh S, Pillai S. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction. Biochimie 2024; 227:99-115. [PMID: 38944107 DOI: 10.1016/j.biochi.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance has become one of the most serious threats to human health in recent years. In response to the increasing microbial resistance to the antibiotics currently available, it is imperative to develop new antibiotics or explore new approaches to combat antibiotic resistance. Antimicrobial peptides (AMPs) have shown considerable promise in this regard, as the microbes develop low or no resistance against them. The discovery and development of AMPs still confront numerous obstacles such as finding a target, developing assays, and identifying hits and leads, which are time-consuming processes, making it difficult to reach the market. However, with the advent of genome mining, new antibiotics could be discovered efficiently using tools such as BAGEL, antiSMASH, RODEO, etc., providing hope for better treatment of diseases in the future. Computational methods used in genome mining automatically detect and annotate biosynthetic gene clusters in genomic data, making it a useful tool in natural product discovery. This review aims to shed light on the history, diversity, and mechanisms of action of AMPs and the data on new AMPs identified by traditional as well as genome mining strategies. It further substantiates the various phases of clinical trials for some AMPs, as well as an overview of genome mining databases and tools built expressly for AMP discovery. In light of the recent advancements, it is evident that targeted genome mining stands as a beacon of hope, offering immense potential to expedite the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
7
|
Vinogradov AA, Bashiri G, Suga H. Illuminating Substrate Preferences of Promiscuous F 420H 2-Dependent Dehydroamino Acid Reductases with 4-Track mRNA Display. J Am Chem Soc 2024; 146:31124-31136. [PMID: 39474650 DOI: 10.1021/jacs.4c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Stereoselective reduction of dehydroamino acids is a common biosynthetic strategy to introduce d-amino acids into peptidic natural products. The reduction, often observed during the biosynthesis of lanthipeptides, is performed by dedicated dehydroamino acid reductases (dhAARs). Enzymes from the three known dhAAR families utilize nicotinamide, flavin, or F420H2 coenzymes as hydride donors, and little is known about the catalysis performed by the latter family proteins. Here, we perform a bioinformatics-guided identification and large-scale in vitro characterization of five F420H2-dependent dhAARs. We construct an mRNA display-based pipeline for ultrahigh throughput substrate specificity profiling of the enzymes. The pipeline relies on a 4-track selection strategy to deliver large quantities of clean data, which were leveraged to build accurate substrate fitness models. Our results identify a remarkably promiscuous enzyme, referred to as MaeJC, that is capable of installing d-Ala residues into arbitrary substrates with minimal recognition requirements. We integrate MaeJC into a thiopeptide biosynthetic pathway to produce d-amino acids-containing thiopeptides, demonstrating the utility of MaeJC for the programmable installation of d-amino acids in ribosomal peptides.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag, 92019 Auckland, New Zealand
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Nimbeshaho F, Nihorimbere G, Arias AA, Liénard C, Steels S, Nibasumba A, Nihorimbere V, Legrève A, Ongena M. Unravelling the secondary metabolome and biocontrol potential of the recently described species Bacillus nakamurai. Microbiol Res 2024; 288:127841. [PMID: 39153465 DOI: 10.1016/j.micres.2024.127841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/19/2024]
Abstract
In the prospect of novel potential biocontrol agents, a new strain BDI-IS1 belonging to the recently described Bacillus nakamurai was selected for its strong in vitro antimicrobial activities against a range of bacterial and fungal phytopathogens. Genome mining coupled with metabolomics revealed that BDI-IS1 produces multiple non-ribosomal secondary metabolites including surfactin, iturin A, bacillaene, bacillibactin and bacilysin, together with some some ribosomally-synthesized and post-translationally modified peptides (RiPPs) such as plantazolicin, and potentially amylocyclicin, bacinapeptin and LCI. Reverse genetics further showed the specific involvement of some of these compounds in the antagonistic activity of the strain. Comparative genomics between the five already sequenced B. nakamurai strains showed that non-ribosomal products constitute the core metabolome of the species while RiPPs are more strain-specific. Although the secondary metabolome lacks some key bioactive metabolites found in B. velezensis, greenhouse experiments show that B. nakamurai BDI-IS1 is able to protect tomato and maize plants against early blight and northern leaf blight caused by Alternaria solani and Exserohilum turcicum, respectively, at levels similar to or better than B. velezensis QST713. The reduction of these foliar diseases, following root or leaf application of the bacterial suspension demonstrates that BDI-IS1 can act by direct antibiosis and by inducing plant defence mechanisms. These findings indicate that B. nakamurai BDI-IS1 can be considered as a good candidate for biocontrol of plant diseases prevailing in tropical regions, and encourage further research into its spectrum of activity, its requirements and the conditions needed to ensure its efficacy.
Collapse
Affiliation(s)
- François Nimbeshaho
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium; Laboratoire de Nutrition-Phytochimie, d'Ecologie et d'Environnement Appliquée, Centre Universitaire de Recherche et de Pédagogie Appliquées aux Sciences, Institut de Pédagogie Appliquée, Université du Burundi, Avenue de l'Unesco 2, P.O Box 1550, Bujumbura, Burundi.
| | - Gaspard Nihorimbere
- Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium; Research department, Institut des Sciences Agronomiques du Burundi (ISABU), Boulevard du Japon, Rohero 1, P.O Box 795, Bujumbura, Burundi.
| | - Anthony Argüelles Arias
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium.
| | - Charlotte Liénard
- Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium.
| | - Sébastien Steels
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium.
| | - Anaclet Nibasumba
- Institut Supérieur de Formation Agricole, Université du Burundi, P.O Box 241, Gitega, Burundi.
| | - Venant Nihorimbere
- Laboratoire de Microbiologie, Faculté d'Agronomie et de BioIngéniérie (FABI), Université du Burundi, Avenue de l'Unesco 2, P.O Box 2940, Bujumbura, Burundi.
| | - Anne Legrève
- Earth and Life Institute-Applied Microbiology, Université Catholique de Louvain, Croix du Sud 2, Louvain-la-Neuve 1348, Belgium.
| | - Marc Ongena
- Microbial Processes and Interactions (MiPI), Teaching and Research Centre (TERRA), Gembloux Agro-BioTech, University of Liège, Avenue de la Faculté 2B, Gembloux 5030, Belgium.
| |
Collapse
|
9
|
Nguyen N, Forstater JH, McIntosh JA. Decarboxylation in Natural Products Biosynthesis. JACS AU 2024; 4:2715-2745. [PMID: 39211618 PMCID: PMC11350588 DOI: 10.1021/jacsau.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Decarboxylation reactions are frequently found in the biosynthesis of primary and secondary metabolites. Decarboxylase enzymes responsible for these transformations operate via diverse mechanisms and act on a large variety of substrates, making them appealing in terms of biotechnological applications. This Perspective focuses on the occurrence of decarboxylation reactions in natural product biosynthesis and provides a perspective on their applications in biocatalysis for fine chemicals and pharmaceuticals.
Collapse
|
10
|
Yi Y, Liang L, de Jong A, Kuipers OP. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems. Genomics 2024; 116:110880. [PMID: 38857812 DOI: 10.1016/j.ygeno.2024.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The implementation of several global microbiome studies has yielded extensive insights into the biosynthetic potential of natural microbial communities. However, studies on the distribution of several classes of ribosomally synthesized and post-translationally modified peptides (RiPPs), non-ribosomal peptides (NRPs) and polyketides (PKs) in different large microbial ecosystems have been very limited. Here, we collected a large set of metagenome-assembled bacterial genomes from marine, freshwater and terrestrial ecosystems to investigate the biosynthetic potential of these bacteria. We demonstrate the utility of public dataset collections for revealing the different secondary metabolite biosynthetic potentials among these different living environments. We show that there is a higher occurrence of RiPPs in terrestrial systems, while in marine systems, we found relatively more terpene-, NRP-, and PK encoding gene clusters. Among the many new biosynthetic gene clusters (BGCs) identified, we analyzed various Nif-11-like and nitrile hydratase leader peptide (NHLP) containing gene clusters that would merit further study, including promising products, such as mersacidin-, LAP- and proteusin analogs. This research highlights the significance of public datasets in elucidating the biosynthetic potential of microbes in different living environments and underscores the wide bioengineering opportunities within the RiPP family.
Collapse
Affiliation(s)
- Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands
| | | | - Anne de Jong
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen 9747AG, the Netherlands.
| |
Collapse
|
11
|
Purushothaman M, Chang L, Zhong RJ, Morinaka BI. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides. ACS Chem Biol 2024; 19:1229-1236. [PMID: 38742762 DOI: 10.1021/acschembio.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Triceptides are a class of ribosomally synthesized and post-translationally modified peptides defined by an aromatic C(sp2) to Cβ(sp3) bond. The Gly-rich repeat family of triceptide maturases (TIGR04261) are paired with precursor peptides (TIGR04260) containing a Gly-rich core peptide. These maturases are prevalent in cyanobacteria and catalyze cyclophane formation on multiple Ω1-X2-X3 motifs (Ω1 = Trp and Phe) of the Gly-rich precursor peptide. The topology of the individual rings has not been completely elucidated, and the promiscuity of these enzymes is not known. In this study, we characterized all the cyclophane rings formed by the triceptide maturase OscB and show the ring topology is uniform with respect to the substitution at Trp-C7 and the atropisomerism (planar chirality). Additionally, the enzyme OscB demonstrated substrate promiscuity on Gly-rich precursors and can accommodate a diverse array of engineered sequences. These findings highlight the versatility and implications for using OscB as a biocatalyst for producing polycyclophane-containing peptides for biotechnological applications.
Collapse
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Litao Chang
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Ryan Jian Zhong
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Brandon I Morinaka
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| |
Collapse
|
12
|
Richter D, Piel J. Novel types of RiPP-modifying enzymes. Curr Opin Chem Biol 2024; 80:102463. [PMID: 38729090 DOI: 10.1016/j.cbpa.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
Novel discoveries in natural product biosynthesis reveal hidden bioactive compounds and expand our knowledge in enzymology. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products featuring diverse non-canonical amino acids introduced by maturation enzymes as a class-defining characteristic. Underexplored RiPP sources, such as the human microbiome, the oceans, uncultured microorganisms, and plants are rich hunting grounds for novel enzymology. Unusual α- and β-amino acids, peptide cleavages, lipidations, diverse macrocyclizations, and other features expand the range of chemical groups that are installed in RiPPs by often promiscuous enzymes. This review highlights the search for novelty in RiPP enzymology in the past two years, with respect to the discovery of new biochemical modifications but also towards novel applications.
Collapse
Affiliation(s)
- Daniel Richter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
13
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of Macrocyclic Peptides with C-Terminal β-Amino-α-keto Acid Groups by Three Different Metalloenzymes. ACS CENTRAL SCIENCE 2024; 10:1022-1032. [PMID: 38799663 PMCID: PMC11117315 DOI: 10.1021/acscentsci.4c00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new compound class involving modifications installed by a cytochrome P450, a multinuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-l-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C cross-link between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid, while the methyltransferase acted on the β-carbon of this α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configuration of the atropisomer formed upon biaryl cross-linking. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to isolate new macrocyclic RiPPs biosynthesized via previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School
of Chemical Sciences NMR Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Danielle L. Gray
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Toby J. Woods
- School
of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials
Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chandrashekhar Padhi
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kristen M. Flatt
- Materials
Research Laboratory, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Han SW, Won HS. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs). Biomolecules 2024; 14:479. [PMID: 38672495 PMCID: PMC11048544 DOI: 10.3390/biom14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Sang-Woo Han
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
15
|
Nguyen DT, Mitchell DA, van der Donk WA. Genome Mining for New Enzyme Chemistry. ACS Catal 2024; 14:4536-4553. [PMID: 38601780 PMCID: PMC11002830 DOI: 10.1021/acscatal.3c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
A revolution in the field of biocatalysis has enabled scalable access to compounds of high societal values using enzymes. The construction of biocatalytic routes relies on the reservoir of available enzymatic transformations. A review of uncharacterized proteins predicted from genomic sequencing projects shows that a treasure trove of enzyme chemistry awaits to be uncovered. This Review highlights enzymatic transformations discovered through various genome mining methods and showcases their potential future applications in biocatalysis.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute at the University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
18
|
Nguyen DT, Zhu L, Gray DL, Woods TJ, Padhi C, Flatt KM, Mitchell DA, van der Donk WA. Biosynthesis of macrocyclic peptides with C-terminal β-amino-α-keto acid groups by three different metalloenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564719. [PMID: 37965205 PMCID: PMC10635010 DOI: 10.1101/2023.10.30.564719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Advances in genome sequencing and bioinformatics methods have identified a myriad of biosynthetic gene clusters (BGCs) encoding uncharacterized molecules. By mining genomes for BGCs containing a prevalent peptide-binding domain used for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), we uncovered a new class involving modifications installed by a cytochrome P450, a multi-nuclear iron-dependent non-heme oxidative enzyme (MNIO, formerly DUF692), a cobalamin- and radical S-adenosyl-L-methionine-dependent enzyme (B12-rSAM), and a methyltransferase. All enzymes encoded by the BGC were functionally expressed in Burkholderia sp. FERM BP-3421. Structural characterization with 2D-NMR and Marfey's method on the resulting RiPP demonstrated that the P450 enzyme catalyzed the formation of a biaryl C-C crosslink between two Tyr residues with the B12-rSAM generating β-methyltyrosine. The MNIO transformed a C-terminal Asp residue into aminopyruvic acid while the methyltransferase acted on the β-carbon of the α-keto acid. Exciton-coupled circular dichroism spectroscopy and microcrystal electron diffraction (MicroED) were used to elucidate the stereochemical configurations of the atropisomer that formed upon biaryl crosslinking. The conserved Cys residue in the precursor peptide was not modified as in all other characterized MNIO-containing BGCs; However, mutational analyses demonstrated that it was essential for the MNIO activity on the C-terminal Asp. To the best of our knowledge, the MNIO featured in this pathway is the first to modify a residue other than Cys. This study underscores the utility of genome mining to discover new macrocyclic RiPPs and that RiPPs remain a significant source of previously undiscovered enzyme chemistry.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Danielle L. Gray
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Toby J. Woods
- School of Chemical Sciences George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chandrashekhar Padhi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristen M. Flatt
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
19
|
Haft DH, Badretdin A, Coulouris G, DiCuccio M, Durkin A, Jovenitti E, Li W, Mersha M, O’Neill K, Virothaisakun J, Thibaud-Nissen F. RefSeq and the prokaryotic genome annotation pipeline in the age of metagenomes. Nucleic Acids Res 2024; 52:D762-D769. [PMID: 37962425 PMCID: PMC10767926 DOI: 10.1093/nar/gkad988] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
The Reference Sequence (RefSeq) project at the National Center for Biotechnology Information (NCBI) contains over 315 000 bacterial and archaeal genomes and 236 million proteins with up-to-date and consistent annotation. In the past 3 years, we have expanded the diversity of the RefSeq collection by including the best quality metagenome-assembled genomes (MAGs) submitted to INSDC (DDBJ, ENA and GenBank), while maintaining its quality by adding validation checks. Assemblies are now more stringently evaluated for contamination and for completeness of annotation prior to acceptance into RefSeq. MAGs now account for over 17000 assemblies in RefSeq, split over 165 orders and 362 families. Changes in the Prokaryotic Genome Annotation Pipeline (PGAP), which is used to annotate nearly all RefSeq assemblies include better detection of protein-coding genes. Nearly 83% of RefSeq proteins are now named by a curated Protein Family Model, a 4.7% increase in the past three years ago. In addition to literature citations, Enzyme Commission numbers, and gene symbols, Gene Ontology terms are now assigned to 48% of RefSeq proteins, allowing for easier multi-genome comparison. RefSeq is found at https://www.ncbi.nlm.nih.gov/refseq/. PGAP is available as a stand-alone tool able to produce GenBank-ready files at https://github.com/ncbi/pgap.
Collapse
Affiliation(s)
- Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Azat Badretdin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - George Coulouris
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael DiCuccio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - A Scott Durkin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eric Jovenitti
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Wenjun Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Megdelawit Mersha
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kathleen R O’Neill
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Joel Virothaisakun
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
20
|
Lee H, Park SH, Kim J, Lee J, Koh MS, Lee JH, Kim S. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305946. [PMID: 37987032 PMCID: PMC10787088 DOI: 10.1002/advs.202305946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural products with a distinct biosynthetic logic, the enzymatic modification of genetically encoded precursor peptides. Although their structural and biosynthetic diversity remains largely underexplored, the identification of novel subclasses with unique structural motifs and biosynthetic pathways is challenging. Here, it is reported that peptide/protein L-aspartyl O-methyltransferases (PAMTs) present in several RiPP subclasses are highly homologous. Importantly, it is discovered that the apparent evolutionary transmission of the PAMT gene to unrelated RiPP subclasses can serve as a basis to identify a novel RiPP subclass. Biochemical and structural analyses suggest that homologous PAMTs convert aspartate to isoaspartate via aspartyl-O-methyl ester and aspartimide intermediates, and often require cyclic or hairpin-like structures for modification. By conducting homology-based bioinformatic analysis of PAMTs, over 2,800 biosynthetic gene clusters (BGCs) are identified for known RiPP subclasses in which PAMTs install a secondary modification, and over 1,500 BGCs where PAMTs function as a primary modification enzyme, thereby defining a new RiPP subclass, named pamtides. The results suggest that the genome mining of proteins with secondary biosynthetic roles can be an effective strategy for discovering novel biosynthetic pathways of RiPPs through the principle of "guilt by association".
Collapse
Affiliation(s)
- Hyunbin Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sho Hee Park
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jiyoon Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jaehak Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Min Sun Koh
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jung Ho Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seokhee Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
21
|
Pei ZF, Zhu L, Nair SK. Core-dependent post-translational modifications guide the biosynthesis of a new class of hypermodified peptides. Nat Commun 2023; 14:7734. [PMID: 38007494 PMCID: PMC10676384 DOI: 10.1038/s41467-023-43604-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
The ribosomally synthesized and post-translationally modified peptide (RiPPs) class of natural products has undergone significant expansion due to the rapid growth in genome sequencing data. Using a bioinformatics approach, we identify the dehydrazoles, a novel class of hypermodified RiPPs that contain both side chain dehydration of Ser residues, and backbone heterocyclization at Ser, Thr, and Cys residues to the corresponding azol(in)es. Structure elucidation of the hypermodified peptide carnazolamide, a representative class member, shows that 18 post-translational modifications are installed by just five enzymes. Complete biosynthetic reconstitution demonstrates that dehydration is carried out by an unusual DUF4135 dehydration domain fused to a zinc-independent cyclase domain (CcaM). We demonstrate that CcaM only modifies Ser residues that precede an azole in the core peptide. As heterocyclization removes the carbonyl following the Ser residue, CcaM likely catalyzes dehydration without generating an enolate intermediate. Additionally, CcaM does not require the leader peptide, and this core-dependence effectively sets the order for the biosynthetic reactions. Biophysical studies demonstrate direct binding of azoles to CcaM consistent with this azole moiety-dependent dehydration. Bioinformatic analysis reveals more than 50 related biosynthetic gene clusters that contain additional catalysts that may produce structurally diverse scaffolds.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences, NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
He BB, Liu J, Cheng Z, Liu R, Zhong Z, Gao Y, Liu H, Song ZM, Tian Y, Li YX. Bacterial Cytochrome P450 Catalyzed Post-translational Macrocyclization of Ribosomal Peptides. Angew Chem Int Ed Engl 2023; 62:e202311533. [PMID: 37767859 DOI: 10.1002/anie.202311533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a fascinating group of natural products that exhibit diverse structural features and bioactivities. P450-catalyzed RiPPs stand out as a unique but underexplored family. Herein, we introduce a rule-based genome mining strategy that harnesses the intrinsic biosynthetic principles of RiPPs, including the co-occurrence and co-conservation of precursors and P450s and interactions between them, successfully facilitating the identification of diverse P450-catalyzed RiPPs. Intensive BGC characterization revealed four new P450s, KstB, ScnB, MciB, and SgrB, that can catalyze the formation of Trp-Trp-Tyr (one C-C and two C-N bonds), Tyr-Trp (C-C bond), Trp-Trp (C-N bond), and His-His (ether bond) crosslinks, respectively, within three or four residues. KstB, ScnB, and MciB could accept non-native precursors, suggesting they could be promising starting templates for bioengineering to construct macrocycles. Our study highlights the potential of P450s to expand the chemical diversity of strained macrocyclic peptides and the range of biocatalytic tools available for peptide macrocyclization.
Collapse
Affiliation(s)
- Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jing Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhi-Man Song
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yongqi Tian
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
23
|
Yuan Y, Huang C, Singh N, Xun G, Zhao H. Automated, self-resistance gene-guided, and high-throughput genome mining of bioactive natural products from Streptomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564101. [PMID: 37961497 PMCID: PMC10634842 DOI: 10.1101/2023.10.26.564101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Natural products (NPs) produced by bacteria, fungi and plants are a major source of drug leads. Streptomyces species are particularly important in this regard as they produce numerous natural products with prominent bioactivities. Here we report a fully a utomated, s calable and high-throughput platform for discovery of bioactive n atural p roducts in S treptomyces (FAST-NPS). This platform comprises computational prediction and prioritization of target biosynthetic gene clusters (BGCs) guided by self-resistance genes, highly efficient and automated direct cloning and heterologous expression of BGCs, followed by high-throughput fermentation and product extraction from Streptomyces strains. As a proof of concept, we applied this platform to clone 105 BGCs ranging from 10 to 100 kb that contain potential self-resistance genes from 11 Streptomyces strains with a success rate of 95%. Heterologous expression of all successfully cloned BGCs in Streptomyces lividans TK24 led to the discovery of 23 natural products from 12 BGCs. We selected 5 of these 12 BGCs for further characterization and found each of them could produce at least one natural product with antibacterial and/or anti-tumor activity, which resulted in a total of 8 bioactive natural products. Overall, this work would greatly accelerate the discovery of bioactive natural products for biomedical and biotechnological applications. Graphic Abstracts
Collapse
|
24
|
Zhong G. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:371-388. [PMID: 37876494 PMCID: PMC10591300 DOI: 10.1021/acsbiomedchemau.3c00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 10/26/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of exponentially increased natural products with characteristic chemical structures, topologies, and biosynthetic mechanisms as well as exceptional bioactivities including antibacteria, antitumors, and antiviruses. The biosynthesis of RiPP proceeds via a ribosomally assembled precursor peptide that undergoes varied post-translational modifications to generate a mature peptide. Cytochrome P450 (CYP or P450) monooxygenases are a superfamily of heme-containing enzymes that span a wide range of secondary metabolite biosynthetic pathways due to their broad substrate scopes and excellent catalytic versatility. In contrast to the enormous quantities of RiPPs and P450s, the P450 associated RiPP biosynthesis is comparatively limited, with most of their functions and timings remaining mysterious. Herein, this Review aims to provide an overview on the striking roles of P450s in RiPP biosyntheses uncovered to date and to illustrate their remarkable functions, mechanisms, as well as remaining challenges. This will shed light on novel P450 discovery and characterizations in RiPP biosyntheses.
Collapse
Affiliation(s)
- Guannan Zhong
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
25
|
Kadjo AE, Eustáquio AS. Bacterial natural product discovery by heterologous expression. J Ind Microbiol Biotechnol 2023; 50:kuad044. [PMID: 38052428 PMCID: PMC10727000 DOI: 10.1093/jimb/kuad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Natural products have found important applications in the pharmaceutical and agricultural sectors. In bacteria, the genes that encode the biosynthesis of natural products are often colocalized in the genome, forming biosynthetic gene clusters. It has been predicted that only 3% of natural products encoded in bacterial genomes have been discovered thus far, in part because gene clusters may be poorly expressed under laboratory conditions. Heterologous expression can help convert bioinformatics predictions into products. However, challenges remain, such as gene cluster prioritization, cloning of the complete gene cluster, high level expression, product identification, and isolation of products in practical yields. Here we reviewed the literature from the past 5 years (January 2018 to June 2023) to identify studies that discovered natural products by heterologous expression. From the 50 studies identified, we present analyses of the rationale for gene cluster prioritization, cloning methods, biosynthetic class, source taxa, and host choice. Combined, the 50 studies led to the discovery of 63 new families of natural products, supporting heterologous expression as a promising way to access novel chemistry. However, the success rate of natural product detection varied from 11% to 32% based on four large-scale studies that were part of the reviewed literature. The low success rate makes it apparent that much remains to be improved. The potential reasons for failure and points to be considered to improve the chances of success are discussed. ONE-SENTENCE SUMMARY At least 63 new families of bacterial natural products were discovered using heterologous expression in the last 5 years, supporting heterologous expression as a promising way to access novel chemistry; however, the success rate is low (11-32%) making it apparent that much remains to be improved-we discuss the potential reasons for failure and points to be considered to improve the chances of success. BioRender was used to generate the graphical abstract figure.
Collapse
Affiliation(s)
- Adjo E Kadjo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|