1
|
Illes P, Rubini P, Ulrich H, Yin H, Tang Y. Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy. MedComm (Beijing) 2025; 6:e70177. [PMID: 40255917 PMCID: PMC12006733 DOI: 10.1002/mco2.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
The gliotransmitter adenosine 5'-triphosphate (ATP) and its enzymatic degradation product adenosine play a major role in orchestrating in the hippocampus cognitive and affective functions via P2 purinoceptors (P2X, P2Y) and P1 adenosine receptors (A1, A2A). Although numerous reviews exist on purinoceptors that modulate these functions, there is an apparent gap relating to the involvement of astrocyte-derived extracellular ATP. Our review focuses on the following issues: An impeded release of ATP from hippocampal astrocytes through vesicular mechanisms or connexin hemichannels and pannexin channels interferes with spatial working memory in rodents. The pharmacological blockade of P2Y1 receptors (P2Y1Rs) reverses the deficits in learning/memory performance in mouse models of familial Alzheimer's disease (AD). Similarly, in mouse models of major depressive disorder (MDD), based on acute or chronic stress-induced development of depressive-like behavior, a reduced exocytotic/channel-mediated ATP release from hippocampal astrocytes results in the deterioration of these behavioral responses. However, on the opposite, the increased stimulation of the microglial/astrocytic P2X7R-channel by ATP causes neuroinflammation and in consequence depressive-like behavior. In conclusion, there is strong evidence for the assumption that gliotransmitter ATP is intimately involved in the pathophysiology of cognitive and affective neuron/astrocyte-based human illnesses opening new diagnostic and therapeutic vistas for AD and MDD.
Collapse
Affiliation(s)
- Peter Illes
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Rudolf Boehm Institute for Pharmacology and ToxicologyUniversity of Leipzig Germany
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Patrizia Rubini
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Henning Ulrich
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Department of BiochemistryInstitute of ChemistryUniversity of São PauloSão PauloBrazil
| | - Hai‐Yan Yin
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
| | - Yong Tang
- International Research Center on Purinergic SignalingSchool of Acupuncture and TuinaChengdu University of Traditional Chinese MedicineChengduChina
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceChengduChina
- School of Health and RehabilitationChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
2
|
Huang D, Lv J, Gong W, Tian J, Gao X, Qin X, Du G, Zhou Y. Combining Metabolomics and Quantitative Analysis to Investigate Purine Metabolism Disorders in Depression and the Therapeutic Effect of Chaigui Granules. ACS Chem Neurosci 2025. [PMID: 40209102 DOI: 10.1021/acschemneuro.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
Depression is a complex mental disorder. Studies have shown that purine metabolism disorders in depression and regulation of purine metabolites and related purinergic receptors may be an effective way to alleviate depression. Chaigui granules (CG) are a Chinese medicine prescription with antidepressant effects. Its antidepressant effect has been shown to be related to the improvement of purine metabolism disorders in depression. In this study, exogenous purine metabolite adenosine supplementation and adenosine A1 receptor antagonist (DPCPX) were employed to investigate the potential of Chaigui granules to exert an antidepressant effect by examining the behavioral indices of CUMS rats. The aim of this study was to determine whether the antidepressant effect of Chaigui granules is mediated by A1R receptors using DPCPX, an A1R receptor antagonist. Nontargeted metabolomic analysis was employed to compare and analyze the alterations in the metabolic profile of plasma and peripheral blood mononuclear cells (PBMCs) in each experimental group. Subsequently, combining the results from the metabolomics profile, targeted metabolomics was employed to identify key metabolites for purine metabolism. The objective was to investigate the effects of Chaigui granules, exogenous adenosine supplementation, and DPCPX on purine metabolism in depressed rats. Finally, the relevant signal pathways were validated by molecular biological means. The results of the depression-like behavior indicate that the antidepressant efficacy of Chaigui granules was associated with the modulation of adenosine and adenosine A1 receptor. Metabolomic analysis demonstrated that the Chaigui granule and adenosine exerted a pronounced regulatory effect on purine metabolism, and the regulatory effect on peripheral blood mononuclear cells (PBMCs) was markedly superior to that observed in plasma. In addition, targeted quantitative analysis showed that all eight purine metabolites were reversed after the administration of Chaigui granules and adenosine. Concurrently, the administration of an adenosine A1 receptor antagonist may serve to mitigate the regulatory impact of Chaigui granules on purine metabolites. Finally, the molecular biological results indicate that the antidepressant effect of Chaigui granules may be mediated by the A1R receptor, and it can play an antidepressant role by regulating the CAMP-PKA-CREB-BDNF pathway.
Collapse
Affiliation(s)
- Dehua Huang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Jiale Lv
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
3
|
Wang W, Zhao L, He Z, Zhao Y, Jiang G, Gong C, Zhang Y, Yu J, Liang T, Guo L. Decoding Multifaceted Roles of Sleep-Related Genes as Molecular Bridges in Chronic Disease Pathogenesis. Int J Mol Sci 2025; 26:2872. [PMID: 40243466 PMCID: PMC11988575 DOI: 10.3390/ijms26072872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Sleep is a fundamental process essential for all organisms. Sleep deprivation can lead to significant detrimental effects, contributing to various physiological disorders and elevating the risk of several diseases. Investigating the relationship between sleep and human diseases offers valuable insights into the molecular mechanisms governing sleep regulation, potentially guiding the development of more effective treatments for sleep disorders and associated diseases. This study explored the roles of sleep-related genes in biological processes and their associations with chronic diseases, mainly including neurological, metabolic, cardiovascular diseases, and cancer. Additionally, an analysis on the sleep-related genes was also performed to understand the potential role in tumorigenesis. This review aims to enhance the understanding of the link between sleep-related genes and chronic diseases, contributing to the development of novel therapeutic approaches targeting sleep and circadian rhythm-related chronic diseases.
Collapse
Affiliation(s)
- Wenyuan Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Linjie Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Zhiheng He
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Yang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Guijie Jiang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Chengjun Gong
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Yan Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Tingming Liang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China;
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.W.); (L.Z.); (Z.H.); (Y.Z.); (C.G.); (Y.Z.)
| |
Collapse
|
4
|
Kamate M, Teranishi H, Umeda R, Shikano K, Kitaoka S, Hanada T, Hikida T, Kawano K, Hanada R. Dietary texture-driven masticatory activity and its impact on stress tolerance. J Oral Biosci 2025; 67:100628. [PMID: 39923995 DOI: 10.1016/j.job.2025.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES Although previous studies suggest that dietary texture-driven masticatory activity is correlated with stress tolerance, the underlying mechanisms, including neurotransmitter dynamics, remain unclear. This study investigated the effects of dietary texture-driven masticatory activity on stress tolerance in mice. METHODS Behavioral responses to stress were assessed using the repeated social defeat stress (R-SDS) and social interaction test (SIT) model. Neurotransmitter levels in stress-related brain regions were analyzed in mice fed a solid diet (promoting masticatory activity) or a powdered diet (decreasing masticatory activity). RESULTS Mice fed the powdered diet exhibited reduced stress tolerance compared with those fed the solid diet. Following the R-SDS, the powdered diet group displayed elevated gamma-aminobutyric acid (GABA) and norepinephrine levels in the prefrontal cortex. Before stress treatment, glutamic acid levels increased and those of choline decreased in the amygdala, whereas dopamine levels decreased in the powdered diet group after the R-SDS. In the locus coeruleus, mice on the powdered diet showed decreased glutamic acid and adenosine levels, alongside increased GABA levels. Serotonin levels decreased in the powdered diet group after the R-SDS, with no changes observed after the SIT. In the ventral hippocampus, GABA levels increased in the powdered diet group but decreased after the SIT. CONCLUSIONS This study demonstrates a correlation between masticatory activity and stress tolerance, evidenced by both behavioral and neurotransmitter changes. These findings suggest that reduced masticatory activity due to dietary texture contributes to decreased stress resilience.
Collapse
Affiliation(s)
- Mie Kamate
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan; Department of Advanced Medical Science, Faculty of Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenji Kawano
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty of Medicine, Oita University, Oita, Japan.
| |
Collapse
|
5
|
Chen SH, Lan B, Zhang YY, Li GH, Qian YL, Hu MX, Tian YL, Zang WD, Cao J, Wang GH, Wang YG. Activation of zona incerta gamma-aminobutyric acid-ergic neurons alleviates depression-like and anxiety-like behaviors induced by chronic restraint stress. World J Psychiatry 2025; 15:101807. [PMID: 39974487 PMCID: PMC11758062 DOI: 10.5498/wjp.v15.i2.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Depression is a prevalent affective disorder, but its pathophysiology remains unclear. Dysfunction in the gamma-aminobutyric acid (GABA)-ergic system may contribute to its onset. Recently, antidepressants (e.g., brexanolone, zuranolone) targeting the GABA-A receptor were introduced. The zona incerta (ZI), an inhibitory subthalamic region mainly composed of GABAergic neurons, has been implicated in emotional regulation. Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms, while activation of ZI neurons in mice can either worsen or alleviate anxiety. Currently, there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents. AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice. METHODS A chronic restraint stress (CRS) model was utilized to induce depression in mice. Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI. Additionally, chemogenetic techniques were employed to modulate ZI GABAergic neurons. The performance of the mice in behavioral tests for depression and anxiety was observed. RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice. Twenty-eight days after the CRS model was established, depression-like and anxiety-like behaviors were observed in the mice. The excitability of GABAergic neurons in the ZI was reduced. Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors. Conversely, inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice. CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice, suggesting that these neurons could be a potential therapeutic target for treating depression.
Collapse
Affiliation(s)
- Si-Hai Chen
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bo Lan
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Ying-Ying Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guo-Hui Li
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yu-Long Qian
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Ming-Xing Hu
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yin-Lin Tian
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Wei-Dong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Jing Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan Province, China
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Guang-Hai Wang
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| | - Yi-Gang Wang
- Department of Psychiatry, Xiaogan Rehabilitation Hospital, Xiaogan 432000, Hubei Province, China
| |
Collapse
|
6
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Unsal S, Sanlier N. Longitudinal Effects of Lifetime Caffeine Consumption on Levels of Depression, Anxiety, and Stress: A Comprehensive Review. Curr Nutr Rep 2025; 14:26. [PMID: 39890748 PMCID: PMC11785678 DOI: 10.1007/s13668-025-00616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE OF REVIEW Caffeine has high bioavailability and a purine-like alkaloid structure. It exerts wide-ranging physiological effects by binding to adenosine receptors throughout the human body. Through the activation of those receptors, it can regulate many physiological events in the body. The impact of caffeine consumption on depression, anxiety, stress, and human health remains unclear, constituting an important knowledge gap. This review was conducted to examine the effects of caffeine consumption on depression, anxiety, and stress levels and to offer some recommendations for its future use. RECENT FINDINGS We performed a comprehensive literature search using PubMed, Web of Science and Google Scholar databases for original articles published in recent years on "caffeine metabolism", "caffeine mechanism", "anxiety", "depression", "stress". Caffeine, which has an antagonistic effect on adenosine, can reduce the risk and symptoms of depression and improve general mental health by modulating the central nervous system and neurotransmitter systems. However, increases in anxiety and stress levels, which are often seen together with depression, are observed due to high-dose caffeine consumption. Caffeine's effects on depression, anxiety, and stress may vary depending on different factors, but the level of consumption is particularly important and attention should be paid to upper limits and reference values while evaluating consumption amounts.
Collapse
Affiliation(s)
- Sena Unsal
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Altındağ, Ankara, 06050, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Altındağ, Ankara, 06050, Turkey.
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Altındağ, Ankara, 06050, Turkey.
| |
Collapse
|
8
|
Khan I, Ullah S, Ullah S, Ali N, Huma Z, Yaşar S, Khan S, Haq RU, Khan A, Khan I. Antidepressant effects of SY-2476: A caffeine derivative's role in A1/A2 A gene expression modulation in corticosterone-induced depressed rats. Neurosci Lett 2025; 845:138059. [PMID: 39581341 DOI: 10.1016/j.neulet.2024.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Depression is a pervasive mood disorder that continues to challenge researchers and clinicians worldwide. Caffeine and its derivatives have been studied for their neuroprotective and antidepressant effect. Current study aimed to explore the potential antidepressant effect of a caffeine derivative, Sy-2476 [4-(1, 3, 7-trimethyl-2, 6-dioxo-2, 3, 6, 7-tetrahydro-1H-purin-8-yl) benzo nitrile], in corticosterone-induced rat model of depression. Depression-like behaviour in rats was induced by administering 20 mg/kg hydrocortisone s.c for 21 days. Behavioural studies evaluated the potential antidepressant effect of caffeine derivative Sy-2476, its effect on cortisol levels, modulation of A1/A2A receptors mRNA expression and antioxidant assays. Treatment of rats with Sy-2476 exhibited robust antidepressant-like effects in corticosterone-exposed rats by increasing sucrose preference (p = 0.0002) while reducing immobility time (p = 0.0118) in the forced swim test. Sy-2476 also reduced lipid peroxidation and increased the level of antioxidant enzymes, including glutathione, catalase, and superoxide dismutase. Moreover, Sy-2476 significantly lowered cortisol levels (p = 0.0019) and up-regulated mRNA expression of A1 (p = 0.0001) and A2A receptors (p = 0.0016) compared to the corticosterone-only treated group. In conclusion, Sy-2476 showed an antidepressant effect primarily by suppressing serum cortisol levels, modulating the expression of adenosine receptors, and exhibiting antioxidant properties.
Collapse
Affiliation(s)
- Irfan Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Saif Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Shakir Ullah
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan; Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Niaz Ali
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Zilli Huma
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya 44210, Turkey.
| | - Siraj Khan
- Department of Pharmacy, Quaid e Azam University, Islamabad, Pakistan
| | - Rizwan Ul Haq
- Abbottabad University Science and Technology, Pakistan
| | - Amjad Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan
| | - Imran Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University, Pakistan.
| |
Collapse
|
9
|
Xue KY, Yan MX, Zhu Z, Cui J. Adenosine signaling: a potential therapeutic target for psychogenic erectile dysfunction. Am J Transl Res 2024; 16:7248-7261. [PMID: 39822506 PMCID: PMC11733318 DOI: 10.62347/yzdz1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 01/19/2025]
Abstract
Therapeutic modalities for psychogenic erectile dysfunction (PED) are poorly targeted because of the lack of specific pathological features. The common symptoms of PED include psychological stress-related negative emotions and erectile dysfunction. Exploring their common therapeutic targets is helpful in the development of effective PED treatment strategies. Adenosine locally acts as a vasodilator or neuromodulator in the penis and promotes erection. Recent studies have demonstrated that adenosine (ADO) signaling is also involved in psychological stress. Herein, we review the pathogenesis of PED and the interaction between ADO and the erection regulator nitric oxide (NO) in brain and penile tissues. In addition, we summarize the regulatory role of ADO signal transduction in penile erection, psychological stress and negative emotions. Through our study, we found that ADO is involved in psychological stress and erectile events by combining adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR). The application of A1R selective agonists may promote erection and improve psychological state.
Collapse
Affiliation(s)
- Kai-Yang Xue
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
| | - Ming-Xi Yan
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
| | - Zhou Zhu
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
| | - Jin Cui
- Department of Acupuncture and Tuina, Guizhou University of Traditional Chinese MedicineGuiyang 550025, Guizhou, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyang 550001, Guizhou, China
| |
Collapse
|
10
|
Zhao J, Sun Y, Feng Y, Rong J. Brain Specific RagA Overexpression Triggers Depressive-Like Behaviors in Mice via Activating ADORA2A Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404188. [PMID: 39373701 PMCID: PMC11615787 DOI: 10.1002/advs.202404188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation hallmarks the pathology of depression although the etiological complexity has not yet been resolved. Previous studies demonstrate that bacterial lipopolysaccharide induces depressive-like behaviors by activating RagA-mTOR-p70S6K signaling pathway. The current project aims to investigate whether and how brain-specific RagA overexpression triggers depressive-like behaviors in mice. Full-length RagA cDNA is cloned into the mammalian expression vector under the control of brain specific promoter, and subsequently overexpressed in the brain of mouse embryos. Indeed, RagA transgenic mice exhibit depressive-like behaviors and memory impairments. RNA-seq profiling of the prefrontal cortex (PFC) transcriptome highlights adenosine A2a receptor (ADORA2A) as a key differentially expressed gene (DEG). Western blotting confirms that ADORA2A and phospho-p70S6K are markedly elevated in RagA transgenic mice. Behavioral assessments demonstrate that ADORA2A inhibitor istradefylline markedly attenuates depressive-like behaviors. Further metabolomics reveals that N-acetylserotonin and several depression-related metabolites are downregulated while proteomic profiling showed that OLIG1 and other proteins are significantly regulated in RagA transgenic mice. Collectively, RagA overexpression alters the expression patterns of signaling proteins and the metabolism of depression-associated metabolites. RagA may cause depressive-like behaviors in mice via activating p70S6K/ADORA2A signaling pathway. Thus, RagA-p70S6K-ADORA2A signaling pathway may be a target for the development of new antidepressant therapies.
Collapse
Affiliation(s)
- Jia Zhao
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yilu Sun
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
- Department of Chinese MedicineThe University of Hong Kong Shenzhen HospitalShenzhen518053P. R. China
| | - Yibin Feng
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| | - Jianhui Rong
- School of Chinese MedicineLi Ka Shing Faculty of MedicineThe University of Hong Kong3 Sassoon Road, PokfulamHong Kong999077P. R. China
| |
Collapse
|
11
|
Li J, Wang S, He Y, Song Y. Orexin improves chronic restraint stress induced depressive-like behavior via modulating the lateral septum in mice. Biochem Biophys Res Commun 2024; 735:150679. [PMID: 39265365 DOI: 10.1016/j.bbrc.2024.150679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The orexin system participates in the regulation of depression; however, its effects show significant heterogeneity, indicating the involvement of complex downstream neural circuit mechanisms. The lateral septum (LS), located downstream of the orexin system, contributes to depression. However, the effects and mechanisms underlying the orexin-mediated modulation of the LS in patients with depression remain unclear. Herein, we applied fiber photometry, chemogenetics, neuropharmacology, and in vitro electrophysiology to show that LS orexinergic afferents are sensitive to acute restraint and that chronic restraint stress (CRS) inhibits LS-projecting orexin neurons. Chemogenetic activation of LS orexinergic afferents or injection of orexin-A into the LS improved CRS-induced depression-like behavior. In vitro perfusion of orexin-A increased the action potential of somatostatin neurons in the LS. Overall, this study provides evidence that orexin improves depressive-like behavior by modulating the LS, and that this effect is probably mediated by the upregulation of LS somatostatin neurons.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Yuting He
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China
| | - Yunyun Song
- Department of Medical Psychology, Airforce Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Seo K, Won S, Lee HY, Sin Y, Lee S, Park H, Kim YG, Yang SY, Kim DJ, Suk K, Koo JW, Baek M, Choi SY, Lee H. Astrocytic inhibition of lateral septal neurons promotes diverse stress responses. Nat Commun 2024; 15:10091. [PMID: 39572547 PMCID: PMC11582824 DOI: 10.1038/s41467-024-54376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Inhibitory neuronal circuits within the lateral septum (LS) play a key role in regulating mood and stress responses. Even though glial cells can modulate these circuits, the impact of astrocytes on LS neural circuits and their functional interactions remains largely unexplored. Here, we demonstrate that astrocytes exhibit increased intracellular Ca²⁺ levels in response to aversive sensory and social stimuli in both male and female mice. This astrocytic Ca²⁺ elevation inhibits neighboring LS neurons by reducing excitatory synaptic transmissions through A1R-mediated signaling in both the dorsal (LSd) and intermediate LS (LSi) and enhancing inhibitory synaptic transmission via A2AR-mediated signaling in the LSi. At the same time, astrocytes reduce inhibitory tone on distant LS neurons. In the LSd, astrocytes promote social avoidance and anxiety, as well as increased heart rate in socially stressed male mice. In contrast, astrocytes in the LSi contribute to elevated heart rate and heightened blood corticosterone levels in unstressed male mice. These results suggest that the dynamic interactions between astrocytes and neurons within the LS modulate physiological and behavioral responses to stressful experiences.
Collapse
Affiliation(s)
- Kain Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Sanghyun Won
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Hee-Yoon Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yeonju Sin
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Sangho Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Hyejin Park
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Yong Geon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Myungin Baek
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Hyosang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea.
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| |
Collapse
|
13
|
Sun Q, Jiang N, Yao R, Song Y, Li Z, Wang W, Chen J, Guo W. An agonist of the adenosine A 2A receptor, CGS21680, promotes corneal epithelial wound healing via the YAP signalling pathway. Br J Pharmacol 2024; 181:3779-3795. [PMID: 38877785 DOI: 10.1111/bph.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A2A receptor (A2AR) is involved in various physiological and pathological processes in the eye; however, the role of the A2AR signalling in corneal epithelial wound healing is not known. Here, the expression, therapeutic effects and signalling mechanism of A2AR in corneal epithelial wound healing were investigated using the A2AR agonist CGS21680. EXPERIMENTAL APPROACH A2AR localization and expression during wound healing in the murine cornea were determined by immunofluorescence staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The effect of CGS21680 on corneal epithelial wound healing in the lesioned corneal and cultured human corneal epithelial cells (hCECs) by modulating cellular proliferation and migration was critically evaluated. The role of Hippo-YAP signalling in mediating the CGS21680 effect on wound healing by pharmacological inhibition of YAP signalling was explored. KEY RESULTS A2AR expression was up-regulated after corneal epithelial injury. Topical administration of CGS21680 dose-dependently promoted corneal epithelial wound healing in the injured corneal epithelium by promoting cellular proliferation. Furthermore, CGS21680 accelerated the cellular proliferation and migration of hCECs in vitro. A2AR activation promoted early up-regulation and later down-regulation of YAP signalling molecules, and pharmacological inhibition of YAP signalling reverted CGS21680-mediated wound healing effect in vivo and in vitro. CONCLUSION AND IMPLICATIONS A2AR activation promotes wound healing by enhancing cellular proliferation and migration through the YAP signalling pathway. A2ARs play an important role in the maintenance of corneal epithelium integrity and may represent a novel therapeutic target for facilitating corneal epithelial wound healing.
Collapse
Affiliation(s)
- Qiuqin Sun
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Nan Jiang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rui Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Song
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zewen Li
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Zhang Y, Shen J, Xie F, Liu Z, Yin F, Cheng M, Wang L, Cai M, Herzog H, Wu P, Zhang Z, Zhan C, Liu T. Feedforward inhibition of stress by brainstem neuropeptide Y neurons. Nat Commun 2024; 15:7603. [PMID: 39217143 PMCID: PMC11365948 DOI: 10.1038/s41467-024-51956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPYDRN/vlPAG neurons are rapidly activated by various stressful stimuli. Inhibiting these neurons exacerbated hypophagic and anxiety responses during stress, while activation significantly ameliorates acute stress-induced hypophagia and anxiety levels and transmits positive valence. Furthermore, NPYDRN/vlPAG neurons exert differential but synergic anxiolytic effects via inhibitory projections to the paraventricular thalamic nucleus (PVT) and the lateral hypothalamic area (LH). Together, our findings reveal a feedforward inhibition neural mechanism underlying stress resistance and suggest NPYDRN/vlPAG neurons as a potential therapeutic target for stress-related disorders.
Collapse
Grants
- the National Key R&D Program of China (2019YFA0801900, 2018YFA0800300), the National Natural Science Foundation of China (9235730017, 92249302, 32150610475, 31971074), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202001), Faculty Resources Project of College of Life Sciences, Inner Mongolia University (2022-102)
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, the National Natural Science Foundation of China (32171144) and Shanghai Pujiang Program (22PJD007).
- the STI2030-Major Projects (2021ZD0203900),the National Natural Science Foundation of China (32271063, 31822026, 31500860), Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYPY20220018)
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Jiayi Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiwei Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Mingxiu Cheng
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Liang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meiting Cai
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ping Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Cheng Zhan
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
15
|
Machado NJ, Ardais AP, Nunes A, Szabó EC, Silveirinha V, Silva HB, Kaster MP, Cunha RA. Impact of Coffee Intake on Measures of Wellbeing in Mice. Nutrients 2024; 16:2920. [PMID: 39275237 PMCID: PMC11396897 DOI: 10.3390/nu16172920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Coffee intake is increasingly recognized as a life-style factor associated with the preservation of health, but there is still a debate on the relative effects of caffeinated and decaffeinated coffee. We now tested how the regular drinking of caffeinated and decaffeinated coffee for 3 weeks impacted on the behavior of male and female adult mice. Males drinking caffeinated coffee displayed statistically significant lower weight gain, increased sensorimotor coordination, greater motivation in the splash test, more struggling in the forced swimming test, faster onset of nest building, more marble burying and greater sociability. Females drinking caffeinated coffee displayed statistically significant increased hierarchy fighting, greater self-care and motivation in the splash test and faster onset of nest building. A post-hoc two-way ANOVA revealed sex-differences in the effects of caffeinated coffee (p values for interaction between the effect of caffeinated coffee and sex) on the hierarchy in the tube test (p = 0.044; dominance), in the time socializing (p = 0.044) and in the latency to grooming (p = 0.048; selfcare), but not in the marble burying test (p = 0.089). Intake of decaffeinated coffee was devoid of effects in males and females. Since caffeine targets adenosine receptors, we verified that caffeinated but not decaffeinated coffee intake increased the density of adenosine A1 receptors (A1R) and increased A1R-mediated tonic inhibition of synaptic transmission in the dorsolateral striatum and ventral but not dorsal hippocampus, the effects being more evident in the ventral hippocampus of females and striatum of males. In contrast, caffeinated and decaffeinated coffee both ameliorated the antioxidant status in the frontal cortex. It is concluded that caffeinated coffee increases A1R-mediated inhibition in mood-related areas bolstering wellbeing of both males and females, with increased sociability in males and hierarchy struggling and self-care in females.
Collapse
Affiliation(s)
- Nuno J Machado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Paula Ardais
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Nunes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eszter C Szabó
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Vasco Silveirinha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Henrique B Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Manuella P Kaster
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
16
|
Guo SS, Gong Y, Zhang TT, Su XY, Wu YJ, Yan YX, Cao Y, Song XL, Xie JC, Wu D, Jiang Q, Li Y, Zhao X, Zhu MX, Xu TL, Liu MG. A thalamic nucleus reuniens-lateral septum-lateral hypothalamus circuit for comorbid anxiety-like behaviors in chronic itch. SCIENCE ADVANCES 2024; 10:eadn6272. [PMID: 39150998 PMCID: PMC11328909 DOI: 10.1126/sciadv.adn6272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/10/2024] [Indexed: 08/18/2024]
Abstract
Chronic itch often clinically coexists with anxiety symptoms, creating a vicious cycle of itch-anxiety comorbidities that are difficult to treat. However, the neuronal circuit mechanisms underlying the comorbidity of anxiety in chronic itch remain elusive. Here, we report anxiety-like behaviors in mouse models of chronic itch and identify γ-aminobutyric acid-releasing (GABAergic) neurons in the lateral septum (LS) as the key player in chronic itch-induced anxiety. In addition, chronic itch is accompanied with enhanced activity and synaptic plasticity of excitatory projections from the thalamic nucleus reuniens (Re) onto LS GABAergic neurons. Selective chemogenetic inhibition of the Re → LS circuit notably alleviated chronic itch-induced anxiety, with no impact on anxiety induced by restraint stress. Last, GABAergic neurons in lateral hypothalamus (LH) receive monosynaptic inhibition from LS GABAergic neurons to mediate chronic itch-induced anxiety. These findings underscore the potential significance of the Re → LS → LH pathway in regulating anxiety-like comorbid symptoms associated with chronic itch.
Collapse
Affiliation(s)
- Su-Shan Guo
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Gong
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting-Ting Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Xin-Yu Su
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan-Jiao Wu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Xiao Yan
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Cao
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing-Lei Song
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian-Cheng Xie
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Dehua Wu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Qin Jiang
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Li
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tian-Le Xu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Ming-Gang Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
17
|
Kubota H, Zhou X, Zhang X, Watanabe H, Nagai T. Pramipexole Hyperactivates the External Globus Pallidus and Impairs Decision-Making in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2024; 25:8849. [PMID: 39201535 PMCID: PMC11354263 DOI: 10.3390/ijms25168849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
In patients with Parkinson's disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients.
Collapse
Affiliation(s)
- Hisayoshi Kubota
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| | - Xinzhu Zhou
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| | - Xinjian Zhang
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Aichi, Japan; (H.K.)
| |
Collapse
|
18
|
Lu Y, Wang L, Luo F, Savani R, Rossi MA, Pang ZP. Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections. Mol Metab 2024; 85:101960. [PMID: 38763494 PMCID: PMC11153235 DOI: 10.1016/j.molmet.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLSGLP-1R) that project to the lateral hypothalamic area (LHA) on food intake and determine the relationship with feeding regulation. METHODS Using chemogenetic manipulations, we assessed how activation or inhibition of dLSGLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLSGLP-1R →LHA projections in regulating food intake. RESULTS Chemogenetic inhibition of dLSGLP-1R neurons increases food intake. LHA is a major downstream target of dLSGLP-1R neurons. The dLSGLP-1R→LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLSGLP-1R→LHA projections modestly decreases food intake, optogenetic stimulation of the dLSGLP-1R→LHA projection terminals in the LHA rapidly suppresses feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLSGLP-1R →LHA GABA release. CONCLUSIONS Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity.
Collapse
Affiliation(s)
- Yi Lu
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Fang Luo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Rohan Savani
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Mark A Rossi
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Brain Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
19
|
Meng L, Zheng X, Xie K, Li Y, Liu D, Xu Y, Zhang J, Wu F, Guo G. Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice. Neurobiol Stress 2024; 31:100654. [PMID: 38948390 PMCID: PMC11214532 DOI: 10.1016/j.ynstr.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.
Collapse
Affiliation(s)
| | | | - Keman Xie
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yifei Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yuanyuan Xu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
20
|
Huang L, Sun Y, Luo C, Wang W, Shi S, Sun G, Ju P, Chen J. Characterizing defective lipid metabolism in the lateral septum of mice treated with olanzapine: implications for its side effects. Front Pharmacol 2024; 15:1419098. [PMID: 38948475 PMCID: PMC11211371 DOI: 10.3389/fphar.2024.1419098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia significantly impacts cognitive and behavioral functions and is primarily treated with second-generation antipsychotics (SGAs) such as olanzapine. Despite their efficacy, these drugs are linked to serious metabolic side effects which can diminish patient compliance, worsen psychiatric symptoms and increase cardiovascular disease risk. This study explores the hypothesis that SGAs affect the molecular determinants of synaptic plasticity and brain activity, particularly focusing on the lateral septum (LS) and its interactions within hypothalamic circuits that regulate feeding and energy expenditure. Utilizing functional ultrasound imaging, RNA sequencing, and weighted gene co-expression network analysis, we identified significant alterations in the functional connection between the hypothalamus and LS, along with changes in gene expression in the LS of mice following prolonged olanzapine exposure. Our analysis revealed a module closely linked to increases in body weight and adiposity, featuring genes primarily involved in lipid metabolism pathways, notably Apoa1, Apoc3, and Apoh. These findings suggest that olanzapine may influence body weight and adiposity through its impact on lipid metabolism-related genes in the LS. Therefore, the neural circuits connecting the LS and LH, along with the accompanying alterations in lipid metabolism, are likely crucial factors contributing to the weight gain and metabolic side effects associated with olanzapine treatment.
Collapse
Affiliation(s)
- Lixuan Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Chao Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
| | - Si Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genmin Sun
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ju
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai, China
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Cheung H, Yu TZ, Yi X, Wu YJ, Wang Q, Gu X, Xu M, Cai M, Wen W, Li XN, Liu YX, Sun Y, Zheng J, Xu TL, Luo Y, Zhang MZ, Li WG. An ultra-short-acting benzodiazepine in thalamic nucleus reuniens undermines fear extinction via intermediation of hippocamposeptal circuits. Commun Biol 2024; 7:728. [PMID: 38877285 PMCID: PMC11178775 DOI: 10.1038/s42003-024-06417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Benzodiazepines, commonly used for anxiolytics, hinder conditioned fear extinction, and the underlying circuit mechanisms are unclear. Utilizing remimazolam, an ultra-short-acting benzodiazepine, here we reveal its impact on the thalamic nucleus reuniens (RE) and interconnected hippocamposeptal circuits during fear extinction. Systemic or RE-specific administration of remimazolam impedes fear extinction by reducing RE activation through A type GABA receptors. Remimazolam enhances long-range GABAergic inhibition from lateral septum (LS) to RE, underlying the compromised fear extinction. RE projects to ventral hippocampus (vHPC), which in turn sends projections characterized by feed-forward inhibition to the GABAergic neurons of the LS. This is coupled with long-range GABAergic projections from the LS to RE, collectively constituting an overall positive feedback circuit construct that promotes fear extinction. RE-specific remimazolam negates the facilitation of fear extinction by disrupting this circuit. Thus, remimazolam in RE disrupts fear extinction caused by hippocamposeptal intermediation, offering mechanistic insights for the dilemma of combining anxiolytics with extinction-based exposure therapy.
Collapse
Affiliation(s)
- Hoiyin Cheung
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tong-Zhou Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin Yi
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yan-Jiao Wu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Wang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xue Gu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Meihua Cai
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wen Wen
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying-Xiao Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Ying Sun
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jijian Zheng
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian-Le Xu
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ma-Zhong Zhang
- Center for Brain Science, Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei-Guang Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
22
|
Zhou J, Wu JW, Song BL, Jiang Y, Niu QH, Li LF, Liu YJ. 5-HT1A receptors within the intermediate lateral septum modulate stress vulnerability in male mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110966. [PMID: 38354893 DOI: 10.1016/j.pnpbp.2024.110966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders. However, certain individuals may be at higher risk due to greater stress susceptibility. Elucidating the neurobiology of stress resilience and susceptibility may facilitate the development of novel strategies to prevent and treat stress-related disorders such as depression. Mounting evidence suggests that the serotonin (5-HT) system is a major regulator of stress sensitivity. In this study, we assessed the functions of 5-HT1A and 5-HT2A receptors within the lateral septum (LS) in regulating stress vulnerability. Among a group of male mice exposed to chronic social defeat stress (CSDS), 47.2% were classified as stress-susceptible, and these mice employed more passive coping strategies during the defeat and exhibited more severe anxiety- and depression-like behaviors during the following behavioral tests. These stress-susceptible mice also exhibited elevated neuronal activity in the LS as evidenced by greater c-Fos expression, greater activity of 5-HT neurons in both the dorsal and median raphe nucleus, and downregulated expression of the 5-HT1A receptor in the intermediate LS (LSi). Finally, we found the stress-induced social withdrawal symptoms could be rapidly relieved by LSi administration of 8-OH-DPAT, a 5-HT1A receptor agonist. These results indicate that 5-HT1A receptors within the LSi play an important role in stress vulnerability in mice. Therefore, modulation of stress vulnerable via 5-HT1A receptor activation in the LSi is a potential strategy to treat stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Jiao-Wen Wu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Qiu-Hong Niu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| |
Collapse
|
23
|
Puska G, Szendi V, Dobolyi A. Lateral septum as a possible regulatory center of maternal behaviors. Neurosci Biobehav Rev 2024; 161:105683. [PMID: 38649125 DOI: 10.1016/j.neubiorev.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.
Collapse
Affiliation(s)
- Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
24
|
Zhao YF, Illes P. Adenosine A2A receptor-bearing GABAergic neurons in the lateral septum of the brain: novel mediators of depressive-like behavior. Purinergic Signal 2024; 20:209-211. [PMID: 37254004 PMCID: PMC11189371 DOI: 10.1007/s11302-023-09946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Affiliation(s)
- Ya-Fei Zhao
- International Joint Research Centre on Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|
25
|
Chang L, Niu F, Li B. Ghrelin/GHSR signaling in the lateral septum ameliorates chronic stress-induced depressive-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110953. [PMID: 38278286 DOI: 10.1016/j.pnpbp.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Leilei Chang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Huang T, Guo X, Huang X, Yi C, Cui Y, Dong Y. Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics. J Zhejiang Univ Sci B 2024; 25:1-11. [PMID: 38616136 DOI: 10.1631/jzus.b2300933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 04/16/2024]
Abstract
Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides, the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review, we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably, a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner, which causally encodes chronic stress experience and drives depression onset. Collectively, the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.
Collapse
Affiliation(s)
- Taida Huang
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaonan Guo
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Huang
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chenju Yi
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Yihui Cui
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China. ,
| | - Yiyan Dong
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China. ,
| |
Collapse
|
27
|
Lu Y, Wang L, Luo F, Savani R, Rossi MA, Pang ZP. Dorsolateral septum GLP-1R neurons regulate feeding via lateral hypothalamic projections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586855. [PMID: 38585874 PMCID: PMC10996601 DOI: 10.1101/2024.03.26.586855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLS GLP-1R ) and their downstream projections on food intake and determine the relationship with feeding regulation. Methods Using chemogenetic manipulations, we assessed how activation or inhibition of dLS GLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLS GLP-1R neurons to the lateral hypothalamic area (LHA) in regulating food intake. Results Chemogenetic inhibition of dLS GLP-1R neurons increases food intake. LHA is a major downstream target of dLS GLP-1R neurons. The dLS GLP-1R →LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLS GLP-1R →LHA projections modestly decreases food intake, optogenetic stimulation of the dLS GLP-1R →LHA projection terminals in the LHA rapidly suppressed feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLS GLP-1R →LHA GABA release. Conclusions Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity. Highlights Chemogenetic inhibition of dLS GLP-1R neurons boosts food intake in mice dLS GLP-1R neuron activation does not alter feeding, likely by collateral inhibition dLS GLP-1R neurons project to LHA and release GABA Activation of dLS GLP-1R →LHA axonal terminals suppresses food intake GLP-1R agonism enhances dLS GLP-1R →LHA GABA release via a presynaptic mechanism.
Collapse
|
28
|
Liu YJ, Wang Y, Wu JW, Zhou J, Song BL, Jiang Y, Li LF. GABAergic synapses from the ventral lateral septum to the paraventricular nucleus of hypothalamus modulate anxiety. Front Neurosci 2024; 18:1337207. [PMID: 38567287 PMCID: PMC10985145 DOI: 10.3389/fnins.2024.1337207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Emotional disorders, such as anxiety and depression, represent a major societal problem; however, the underlying neurological mechanism remains unknown. The ventral lateral septum (LSv) is implicated in regulating processes related to mood and motivation. In this study, we found that LSv GABAergic neurons were significantly activated in mice experiencing chronic social defeat stress (CSDS) after exposure to a social stressor. We then controlled LSv GABAergic neuron activity using a chemogenetic approach. The results showed that although manipulation of LSv GABAergic neurons had little effect on anxiety-like behavioral performances, the activation of LSv GABAergic neurons during CSDS worsened social anxiety during a social interaction (SI) test. Moreover, LSv GABAergic neurons showed strong projections to the paraventricular nucleus (PVN) of the hypothalamus, which is a central hub for stress reactions. Remarkably, while activation of GABAergic LSv-PVN projections induced social anxiety under basal conditions, activation of this pathway during CSDS alleviated social anxiety during the SI test. On the other hand, the chemogenetic manipulation of LSv GABAergic neurons or LSvGABA-PVN projections had no significant effect on despair-like behavioral performance in the tail suspension test. Overall, LS GABAergic neurons, particularly the LSv GABAergic-PVN circuit, has a regulatory role in pathological anxiety and is thus a potential therapeutic target for the treatment of emotional disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, China
| |
Collapse
|
29
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
30
|
Wang K, Huang S, Fu D, Yang X, Ma L, Zhang T, Zhao W, Deng D, Ding Y, Zhang Y, Huang L, Chen X. The neurobiological mechanisms and therapeutic prospect of extracellular ATP in depression. CNS Neurosci Ther 2024; 30:e14536. [PMID: 38375982 PMCID: PMC10877668 DOI: 10.1111/cns.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xinxin Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Lulin Ma
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Wenjing Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Yanyan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Li Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of EducationWuhanChina
| |
Collapse
|
31
|
Piper JA, Musumeci G, Castorina A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. J Funct Morphol Kinesiol 2024; 9:14. [PMID: 38249091 PMCID: PMC10801627 DOI: 10.3390/jfmk9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The habenular complex is a diencephalic structure divided into the medial and lateral divisions that lie within the epithalamus of most vertebrates. This brain structure, whose activities are mainly regulated via inputs/outputs from and to the stria medullaris and the fasciculus retroflexus, plays a significant role in the modulation of anti-reward behaviors in both the rodent and human brain. Such anti-reward circuits are regulated by dopaminergic and serotonergic projections with several other subcortical and cortical regions; therefore, it is plausible that impairment to this key subcortical structure or its connections contributes to the pathogenesis of affective disorders. Current literature reveals the existence of structural changes in the habenula complex in individuals afflicted by such disorders; however, there is a need for more comprehensive investigations to elucidate the underlying neuroanatomical connections that underpin disease development. In this review article, we aim to provide a comprehensive view of the neuroanatomical differences between the rodent and human habenular complex, the main circuitries, and provide an update on the emerging roles of this understudied subcortical structure in the control of affective behaviors, with special emphasis to morbid conditions of the affective sphere.
Collapse
Affiliation(s)
- Jordan Allan Piper
- School of Health Sciences, College of Health and Medicine, University of Tasmania (Sydney), Sydney, NSW 2040, Australia;
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical & Biotechnological Sciences, Anatomy, Histology & Movement Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandro Castorina
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| |
Collapse
|
32
|
Chen JY, Wu K, Guo MM, Song W, Huang ST, Zhang YM. The PrL Glu→avBNST GABA circuit rapidly modulates depression-like behaviors in male mice. iScience 2023; 26:107878. [PMID: 37810240 PMCID: PMC10551841 DOI: 10.1016/j.isci.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Depression is a global disease with a high prevalence. Here, we examine the role of the circuit from prelimbic mPFC (PrL) to the anterior ventral bed nucleus of the stria terminalis (avBNST) in depression-like mice through behavioral tests, immunofluorescence, chemogenetics, optogenetics, pharmacology, and fiber photometry. Mice exposed to chronic restraint stress with individual housing displayed depression-like behaviors. Optogenetic or chemogenetic activation of the avBNST-projecting glutamatergic neurons in the PrL had an antidepressant effect. Moreover, we found that α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptors (AMPARs) play a dominant role in this circuit. Systemic administration of ketamine profoundly alleviated depression-like behaviors in the mice and rapidly rescued the decreased activity in the PrLGlu→avBNSTGABA circuit. Furthermore, the fast-acting effect of ketamine on depressive behaviors was diminished when the circuit was inhibited. To summarize, activating the PrLGlu→avBNSTGABA circuit quickly ameliorated depression-like behaviors. Thus, we propose the PrLGlu→avBNSTGABA circuit as a target for fast regulation of depression.
Collapse
Affiliation(s)
- Jie-ying Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Ke Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Miao-miao Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Si-ting Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| | - Yong-mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
33
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
34
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|