1
|
Li J, Delecourt-Billet M, Fenneteau O, Neff JL, Roland L, Schell B, Gourhand V, Espeli M, Balabanian K, Taplin S, Defontis M, Nguyen CH, Mordhorst J, Johnson R, Taveras A, Geier CB, Schuetz C, Thiede C, Yilmaz M, Sakovich I, Sharapova S, Moschese V, Mauriello A, Walter JE, Cavieres M, Akahane D, Mousallem T, Li J, Newburger PE, Tarrant TK, Kelley ML, Bolyard AA, Dale DC, Donadieu J, Zmajkovicova K, Bledsoe JR. Clinicopathologic features and the spectrum of myelokathexis in WHIM syndrome. J Transl Med 2025:104174. [PMID: 40239948 DOI: 10.1016/j.labinv.2025.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
WHIM syndrome is a rare primary immunodeficiency disorder predominantly caused by germline CXCR4 variants. Bone marrow (BM) evaluation showing myelokathexis helps to establish the diagnosis of WHIM syndrome, but unfamiliarity with pertinent diagnostic features and variability in morphologic and clinical findings may result in disease under-recognition. We characterize the clinical, BM and peripheral blood (PB) features of 30 patients with germline CXCR4 variants, including genotype-phenotype analysis and correlation between morphologic features and functional CXCR4 receptor internalization defect. We also examine PB features of a mouse model of WHIM syndrome (Cxcr4+/1013), and examine WHIM syndrome and WHIM mouse PB morphologic changes after CXCR4 antagonist therapy. Carboxy-terminal nonsense/frameshift CXCR4 variants were associated with myelokathectic neutrophil morphology in 32-80% (median: 66%) and 4-14% (median: 9%) of total neutrophils in the BM and PB, respectively. In contrast, myelokathectic neutrophils were infrequent in five missense CXCR4 variants (three CXCR4D84H; two CXCR4S341Y). Compared to neutropenic controls, carboxy-terminal CXCR4 nonsense/frameshift variants were associated with >10% BM or >5% PB myelokathectic neutrophils (100% specific; 100% (BM) or 93% (PB) sensitive), as well as more frequent neutrophil apoptosis (BM p=0.0093; PB p<0.0001), dysmorphic/vacuolated eosinophils (BM p=0.012; PB p<0.0001), neutrophil vacuolization (BM p<0.0001), and non-paratrabecular neutrophil clusters in the BM (p=0.0059). BM myeloid hyperplasia occurred in 54% of carboxy-terminal CXCR4 nonsense/frameshift variants and no controls. BM myelokathectic neutrophil percentage correlated with the functional CXCR4 internalization defect (p≤0.0042). Like humans, WHIM mice (Cxcr4+/1013) demonstrated circulating myelokathectic-like neutrophils with nuclear hypersegmentation. CXCR4 antagonist therapy in patients with WHIM syndrome (n=5) and mice increased both morphologically normal and myelokathectic neutrophils in PB. We demonstrate notable genotype-phenotype heterogeneity between CXCR4 variants and myelokathexis, which correlates with functional CXCR4 internalization defect. The morphologic features of WHIM syndrome may be subtle, resulting in misdiagnosis. We describe key morphologic features that are useful to facilitate diagnosis.
Collapse
Affiliation(s)
- Jingwei Li
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Odile Fenneteau
- Service d'Hématologie Biologique, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Jadee L Neff
- Department of Pathology, Duke University, Durham, NC, USA
| | - Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marion Espeli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Sarah Taplin
- Henric-Petri Strasse 6, CH-4051 Basel, Switzerland
| | - Myriam Defontis
- Defontis Veterinary Clinical Pathology, Tox and Diag, Bully, France
| | | | | | | | | | - Christoph B Geier
- Institute of Medical Genetics, University Medicine Oldenburg, Oldenburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; AgenDix GmbH, Dresden, Germany
| | - Melis Yilmaz
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA; Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Svetlana Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Viviana Moschese
- Department of Pediatrics, Policlinico Tor Vergata, Tor Vergata University, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Jolan E Walter
- Division of Allergy and Immunology, Departments of Pediatrics and Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA; Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | - Mirta Cavieres
- Hematology Unit, Dr. Luis Calvo Mackenna Children's Hospital, Santiago, Chile
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Talal Mousallem
- Division of Allergy & Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Julie Li
- Department of Pathology & Laboratory Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Peter E Newburger
- Departments of Pediatrics and Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC, USA; Durham Veterans Administration Hospital, Durham, NC USA
| | | | | | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jean Donadieu
- Department of Pediatric Hematology-Oncology, Reference Center for Chronic Neutropenia, National Registry of Congenital Neutropenia, Paris, France; Sorbonne University, Armand Trousseau Hospital APHP, Paris, France
| | | | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Roland L, Nguyen CH, Zmajkovicova K, Khamyath M, Kalogeraki M, Schell B, Gourhand V, Rondeau V, Abou Nader Z, Monticelli H, Maierhofer B, Johnson R, Taveras A, Espéli M, Balabanian K. CXCR4 antagonism ameliorates leukocyte abnormalities in a preclinical model of WHIM syndrome. Front Immunol 2024; 15:1468823. [PMID: 39588369 PMCID: PMC11586337 DOI: 10.3389/fimmu.2024.1468823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Background WHIM (Warts, Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome is an ultra-rare, combined primary immunodeficiency and chronic neutropenic disorder characterized by a range of clinical presentations, including peripheral neutropenia, lymphopenia, and recurrent infections. WHIM syndrome is most often caused by gain-of-function mutations in the gene encoding C-X-C chemokine receptor 4 (CXCR4). As such, inhibition of CXCR4 with XOLREMDI® (mavorixafor), an orally bioavailable CXCR4 antagonist, demonstrated clinically meaningful increases in absolute neutrophil and lymphocyte counts and concomitant reduction in infections in patients with WHIM syndrome, resulting in its recent U.S. Food and Drug Administration approval. The impact of CXCR4 antagonism on other aspects of the pathobiology in WHIM syndrome, such as lymphopoiesis and leukocyte trafficking between primary and secondary lymphoid organs, is less understood. Methods In the current study, the effects of CXCR4 antagonism on leukocyte trafficking and distribution in primary and secondary lymphoid organs were investigated in a mouse model of WHIM syndrome carrying the heterozygous Cxcr41013 mutation. Cxcr4+/1013 and Cxcr4 wild-type mice received the orally bioavailable CXCR4 antagonist X4-185. Blood, spleen and bone marrow samples were collected for numeration, flow cytometry, and functional studies. Results Cxcr4+/1013 mice exhibited profound peripheral blood leukopenia as seen in patients with WHIM syndrome. CXCR4 antagonism corrected circulating leukopenia and mobilized functional neutrophils without disrupting granulopoiesis in the bone marrow of Cxcr4+/1013 mice. Furthermore, Cxcr4+/1013 displayed aberrant splenic T and B-cell counts and frequency. Treatment with X4-185 normalized splenic T-cell abnormalities, correcting the reduced CD8+ T-cell numbers, restoring the CD4/CD8 T-cell ratio, and ameliorating peripheral blood T-cell lymphopenia. In addition, CXCR4 antagonism was able to correct the abnormal frequencies and numbers of splenic marginal zone and follicular B cells in Cxcr4+/1013 mice, and ultimately normalize B-cell lymphopenia in the peripheral circulation. Conclusions Our study provides comprehensive evidence that oral dosing with a CXCR4 antagonist can effectively correct WHIM-associated neutrophil and lymphocyte abnormalities in a mouse model of WHIM syndrome. These findings extend our understanding of how targeting the dysregulated CXCR4 signaling pathway can ameliorate the pathogenesis of WHIM syndrome.
Collapse
Affiliation(s)
- Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | | | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
3
|
Rondeau V, Kalogeraki M, Roland L, Nader ZA, Gourhand V, Bonaud A, Lemos J, Khamyath M, Moulin C, Schell B, Delord M, Bidaut G, Lecourt S, Freitas C, Anginot A, Mazure N, McDermott DH, Parietti V, Setterblad N, Dulphy N, Bachelerie F, Aurrand-Lions M, Stockholm D, Lobry C, Murphy PM, Espéli M, Mancini SJ, Balabanian K. CXCR4 signaling determines the fate of hematopoietic multipotent progenitors by stimulating mTOR activity and mitochondrial metabolism. Sci Signal 2024; 17:eadl5100. [PMID: 39471249 PMCID: PMC11733996 DOI: 10.1126/scisignal.adl5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
Both cell-intrinsic and niche-derived, cell-extrinsic cues drive the specification of hematopoietic multipotent progenitors (MPPs) in the bone marrow, which comprise multipotent MPP1 cells and lineage-restricted MPP2, MPP3, and MPP4 subsets. Patients with WHIM syndrome, a rare congenital immunodeficiency caused by mutations that prevent desensitization of the chemokine receptor CXCR4, have an excess of myeloid cells in the bone marrow. Here, we investigated the effects of increased CXCR4 signaling on the localization and fate of MPPs. Knock-in mice bearing a WHIM syndrome-associated CXCR4 mutation (CXCR41013) phenocopied the myeloid skewing of bone marrow in patients. Whereas MPP4 cells in wild-type mice differentiated into lymphoid cells, MPP4s in CXCR41013 knock-in mice differentiated into myeloid cells. This myeloid rewiring of MPP4s in CXCR41013 knock-in mice was associated with enhanced signaling mediated by the kinase mTOR and increased oxidative phosphorylation (OXPHOS). MPP4s also localized further from arterioles in the bone marrow of knock-in mice compared with wild-type mice, suggesting that the loss of extrinsic cues from the perivascular niche may also contribute to their myeloid skewing. Chronic treatment with the CXCR4 antagonist AMD3100 or the mTOR inhibitor rapamycin restored the lymphoid potential of MPP4s in knock-in mice. Thus, CXCR4 desensitization drives the lymphoid potential of MPP4 cells by dampening the mTOR-dependent metabolic changes that promote myeloid differentiation.
Collapse
Affiliation(s)
- Vincent Rondeau
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Lilian Roland
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia Lemos
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Clémentine Moulin
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Direction à la recherche clinique et à
l’innovation, Centre hospitalier de Versailles, Le Chesnay, France
| | - Ghislain Bidaut
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes,
CRCM, Marseille, France
| | - Séverine Lecourt
- Inserm U1279, Gustave Roussy Cancer Center,
Université Paris Saclay, Villejuif, France
| | - Christelle Freitas
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Adrienne Anginot
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Nathalie Mazure
- Centre Méditerranéen de Médecine
Moléculaire, INSERM U1065, Nice, France
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular
Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda,
MD, United States
| | - Véronique Parietti
- Université Paris Cité, UMS Saint-Louis INSERM
U53/UAR2030, Paris, France
| | - Niclas Setterblad
- Université Paris Cité, UMS Saint-Louis INSERM
U53/UAR2030, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation,
Microbiome and Immunosurveillance, Orsay, France
| | - Michel Aurrand-Lions
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes,
CRCM, Marseille, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche
Saint-Antoine, CRSA, Paris, France
| | - Camille Lobry
- Université Paris Cité, Institut de
Recherche Saint-Louis, INSERM U944, Paris, France
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular
Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda,
MD, United States
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche
Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, The Organization for Partnerships
in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
4
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
5
|
Hou M, Deng Y, Lv N, Wu Y, Zhu Y, Zhang Y, Liu Y, Xia X, Yu C, Yu J, He F, Xu Y, Zhu X. Cyclic amplification of remodeling bone regeneration process via cerium-energized spinning hydrogel biomembrane for rescuing osteoporotic bone defects. CHEMICAL ENGINEERING JOURNAL 2024; 492:152262. [DOI: 10.1016/j.cej.2024.152262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Brenchley L, McDermott DH, Gardner PJ, Silva LM, Gao JL, Cho E, Velez D, Moutsopoulos NM, Murphy PM, Fraser D. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol 2024; 51:464-473. [PMID: 38185798 PMCID: PMC11000827 DOI: 10.1111/jcpe.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.
Collapse
Affiliation(s)
- Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Lakmali M. Silva
- Department of Oral Medicine, Immunity, and Infection. Harvard School of Dental Medicine, Boston, MA 02115
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Elena Cho
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David Fraser
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| |
Collapse
|