1
|
Hernández-Barranco A, Joyce JA. CNS gatekeepers: IFNγ-activated dendritic cells control leptomeningeal metastasis. Cell Res 2025:10.1038/s41422-025-01144-1. [PMID: 40562806 DOI: 10.1038/s41422-025-01144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025] Open
Affiliation(s)
- Alberto Hernández-Barranco
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland.
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
2
|
Chen L, Chow A, Ma W, Coker C, Gu Y, Canoll P, Kandpal M, Hibshoosh H, Biswas AK, Acharyya S. A new, immunocompetent brain-metastatic mouse model of HER2-positive breast cancer. Clin Exp Metastasis 2025; 42:25. [PMID: 40220135 DOI: 10.1007/s10585-025-10343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Brain metastasis is a common and devastating complication of cancer that affects over 50% of HER2-positive (HER2+) breast cancer patients. The lack of effective long-term treatment options for brain metastasis significantly increases morbidity and mortality among these patients. Therefore, understanding the underlying mechanisms that drive brain metastasis is critically important for developing new strategies to treat it effectively. Genetically engineered mouse models (GEMMs) of HER2+ breast cancer have been instrumental in understanding the development and progression of HER2+ breast cancer. However, the GEMM models for HER2+ breast cancer do not develop brain metastasis and are not suitable for the study of brain metastasis. We therefore developed a fully immunocompetent mouse model of experimental brain metastasis in HER2+ breast cancer by injecting a murine HER2/neu-expressing mammary-tumor-cell line into the arterial circulation of syngeneic FVB/N mice followed by isolation of brain-metastatic derivatives through in-vivo selection. By this in-vivo serial passaging process, we selected highly brain-metastatic (BrM) derivatives known as neu-BrM. Notably, after intracardiac injection, neu-BrM cells generated brain metastasis in 100% of the mice, allowing us to study the later stages of metastatic progression, including cancer-cell extravasation and outgrowth in the brain. Analogous to human brain metastasis, we observed reactive gliosis and significant immune infiltration in the brain tissue of mice injected with neu-BrM cells. We further confirmed that brain-metastatic lesions in the neu-BrM model express HER2. Consistently, we found that the brain-metastatic burden in these mice can be significantly reduced but not eliminated with tucatinib, an FDA-approved, blood-brain-barrier-penetrant HER2 inhibitor. Therefore, the neu-BrM HER2+ breast cancer model can be used to investigate the roles of innate and adaptive immune-system components during brain-metastatic progression and the mechanisms of HER2-therapy response and resistance.
Collapse
Affiliation(s)
- Leran Chen
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA
| | - Angela Chow
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA
| | - Wanchao Ma
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA
| | - Courtney Coker
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA
| | - Yifan Gu
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA
- , 111 Biological Science Building, 484 W, 12th Avenue, Columbus, OH, 43210, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th St, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 St. Nicholas Ave, New York, NY, 10032, USA
| | - Manoj Kandpal
- Center for Clinical and Translational Science, Rockefeller University Hospital, 1230 York Ave, New York, NY, 10065, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th St, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 St. Nicholas Ave, New York, NY, 10032, USA
| | - Anup K Biswas
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University Irving Medical Center, 1130 St Nicholas Avenue, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th St, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 St. Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Hirao H, Honda M, Tomita M, Li L, Adawy A, Xue W, Hibi T. Intravital Imaging of Immune Responses in the Cancer Microenvironment. Cancer Med 2025; 14:e70899. [PMID: 40257446 PMCID: PMC12010765 DOI: 10.1002/cam4.70899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/18/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND To date, many types of immune cells have been identified, but their precise role in cancer immunity remains unclear. Understanding the immune responses involved in cancer and the cancer microenvironment is becoming increasingly important for elucidating disease mechanisms. In recent years, the application of intravital imaging in cancer research has provided new insights into the mechanisms of cancer-specific immune events, including innate and adaptive immunity. RESULTS In this review, we focus on the emerging role of intravital imaging in cancer research and describe how cancer and immune cells can be observed using intravital imaging in vivo. We also discuss new insights gained by this state-of-the-art technique. CONCLUSIONS Intravital imaging is a relatively new field of research that offers significant advantages, including the ability to directly capture cell-cell interactions, pathophysiology, and immune cell dynamics in the cancer microenvironment in vivo.
Collapse
Affiliation(s)
- Hiroki Hirao
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masaki Honda
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Masahiro Tomita
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Lianbo Li
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Ahmad Adawy
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Weijie Xue
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Taizo Hibi
- Department of Pediatric Surgery and TransplantationKumamoto University Graduate School of Medical SciencesKumamotoJapan
| |
Collapse
|
4
|
Wischnewski V, Guerrero Aruffo P, Massara M, Maas RR, Soukup K, Joyce JA. The local microenvironment suppresses the synergy between irradiation and anti-PD1 therapy in breast-to-brain metastasis. Cell Rep 2025; 44:115427. [PMID: 40106433 DOI: 10.1016/j.celrep.2025.115427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The brain environment is uniquely specialized to protect its neuronal tissue from excessive inflammation by tightly regulating adaptive immunity. However, in the context of brain cancer progression, this regulation can lead to a conflict between T cell activation and suppression. Here, we show that, while CD8+ T cells can infiltrate breast cancer-brain metastases, their anti-tumor cytotoxicity is locally suppressed in the brain. Conversely, CD8+ T cells exhibited tumoricidal activity in extracranial mammary lesions originating from the same cancer cells. Consequently, combined high-dose irradiation and anti-programmed cell death protein 1 (PD1) therapy was effective in extracranial tumors but not intracranial lesions. Transcriptional analyses and functional studies identified neutrophils and Trem2-expressing macrophages as key sources for local T cell suppression within the brain, providing rational targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Vladimir Wischnewski
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, CH 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, CH 1011 Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, CH 1011 Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland.
| |
Collapse
|
5
|
Golomb SM, Guldner IH, Aleksandrovic E, Fross SR, Liu X, Diao L, Liang K, Wu J, Wang Q, Lopez JA, Zhang S. Temporal dynamics of immune cell transcriptomics in brain metastasis progression influenced by gut microbiome dysbiosis. Cell Rep 2025; 44:115356. [PMID: 40023843 PMCID: PMC12028778 DOI: 10.1016/j.celrep.2025.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Interactions between metastatic cancer cells and the brain microenvironment regulate brain metastasis (BrMet) progression. Central nervous system (CNS)-native and peripheral immune cells influence the BrMet immune landscape, but the dynamics and factors modulating this microenvironment remain unclear. As the gut microbiome impacts CNS and peripheral immune activity, we investigated its role in regulating immune response dynamics throughout BrMet stages. Antibiotic-induced (ABX) gut dysbiosis significantly increased BrMet burden versus controls but was equalized with fecal matter transplantation, highlighting microbiome diversity as a regulator of BrMet. Single-cell sequencing revealed a highly dynamic immune landscape during BrMet progression in both conditions. However, the timing of the monocyte inflammatory response was altered. Microglia displayed an elevated activation signature in late-stage metastasis in ABX-treated mice. T cell and microglia perturbation revealed involvement of these cell types in modulating BrMet under gut dysbiosis. These data indicate profound effects on immune response dynamics imposed by gut dysbiosis across BrMet progression.
Collapse
Affiliation(s)
- Samantha M Golomb
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Emilija Aleksandrovic
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Shaneann R Fross
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Xiyu Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Lu Diao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Karena Liang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinxuan Wu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Jacqueline A Lopez
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
6
|
Zeng C, Xu C, Liu S, Wang Y, Wei Y, Qi Y, Wang Y, Wang J, Ma F. Integrated bulk and single-cell transcriptomic analysis unveiled a novel cuproptosis-related lipid metabolism gene molecular pattern and a risk index for predicting prognosis and antitumor drug sensitivity in breast cancer. Discov Oncol 2025; 16:318. [PMID: 40085377 PMCID: PMC11909392 DOI: 10.1007/s12672-025-02044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Breast cancer is the second most prevalent malignant tumor worldwide and is highly heterogeneous. Cuproptosis, a newly identified form of cell death, is intimately connected to lipid metabolism. This study investigated breast cancer heterogeneity through the lens of cuproptosis-related lipid metabolism genes (CLMGs), with the goal of predicting patient prognosis, immunotherapy efficacy, and sensitivity to anticancer drugs. By utilizing transcriptomic data from The Cancer Genome Atlas (TCGA) for breast cancer, we identified 682 CLMGs and applied the nonnegative matrix factorization (NMF) method to categorize breast cancer patients into four distinct clusters: cluster 1, ''immune-cold and stroma-poor''; cluster 2, ''immune-infiltrated''; cluster 3, ''stroma-rich''; and cluster 4, ''moderate infiltration''. We subsequently developed a risk model based on CLMGs that incorporates ACSL1, ATP2B4, ATP7B, ENPP6, HSPH1, PIP4K2C, SRD5A3, and ULBP1. This model demonstrated excellent prognostic predictive performance in both the internal (testing and entire sets) and external (GSE20685 and Kaplan-Meier Plotter sets) validation sets. High-risk patients presented lower expression levels of immune checkpoint-related genes and lower immunophenoscores (IPSs), whereas low-risk patients presented higher CD8+ T-cell infiltration levels and IPSs. Furthermore, the risk index was positively correlated with tumor cell stemness and could predict sensitivity to anticancer drugs. We also confirmed that SRD5A3 was highly expressed in breast cancer and participated in promoting the proliferation and migration of breast cancer cells. In conclusion, the results of this study provide new insights and strategies for assessing prognosis and implementing precision treatment for breast cancer through the lens of CLMGs.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chang Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuning Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuanyi Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yalong Qi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wang
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213000, Jiangsu Province, China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Rodriguez-Baena FJ, Marquez-Galera A, Ballesteros-Martinez P, Castillo A, Diaz E, Moreno-Bueno G, Lopez-Atalaya JP, Sanchez-Laorden B. Microglial reprogramming enhances antitumor immunity and immunotherapy response in melanoma brain metastases. Cancer Cell 2025; 43:413-427.e9. [PMID: 39919736 DOI: 10.1016/j.ccell.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Melanoma is one of the tumor types with the highest risk of brain metastasis. However, the biology of melanoma brain metastasis and the role of the brain immune microenvironment in treatment responses are not yet fully understood. Using preclinical models and single-cell transcriptomics, we have identified a mechanism that enhances antitumor immunity in melanoma brain metastasis. We show that activation of the Rela/Nuclear Factor κB (NF-κB) pathway in microglia promotes melanoma brain metastasis. Targeting this pathway elicits microglia reprogramming toward a proinflammatory phenotype, which enhances antitumor immunity and reduces brain metastatic burden. Furthermore, we found that proinflammatory microglial markers in melanoma brain metastasis are associated with improved responses to immune checkpoint inhibitors in patients and targeting Rela/NF-κB pathway in mice improves responses to these therapies in the brain, suggesting a strategy to enhance antitumor immunity and responses to immune checkpoint inhibitors in patients with melanoma brain metastasis.
Collapse
Affiliation(s)
| | | | | | - Alba Castillo
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | - Eva Diaz
- MD Anderson Cancer Center International Foundation, Madrid, Spain
| | - Gema Moreno-Bueno
- MD Anderson Cancer Center International Foundation, Madrid, Spain; Instituto de Investigaciones Biomédicas "Sols-Morreale" CSIC-UAM, Madrid, Spain; CIBERONC Centro de Investigación Biomédica en Red de Cancer, ISCIII, Madrid, Spain; Translational Cancer Research Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | |
Collapse
|
8
|
Gildea HK, Liddelow SA. Mechanisms of astrocyte aging in reactivity and disease. Mol Neurodegener 2025; 20:21. [PMID: 39979986 PMCID: PMC11844071 DOI: 10.1186/s13024-025-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Normal aging alters brain functions and phenotypes. However, it is not well understood how astrocytes are impacted by aging, nor how they contribute to neuronal dysfunction and disease risk as organisms age. Here, we examine the transcriptional, cell biology, and functional differences in astrocytes across normal aging. Astrocytes at baseline are heterogenous, responsive to their environments, and critical regulators of brain microenvironments and neuronal function. With increasing age, astrocytes adopt different immune-related and senescence-associated states, which relate to organelle dysfunction and loss of homeostasis maintenance, both cell autonomously and non-cell autonomously. These perturbed states are increasingly associated with age-related dysfunction and the onset of neurodegeneration, suggesting that astrocyte aging is a compelling target for future manipulation in the prevention of disease.
Collapse
Affiliation(s)
- Holly K Gildea
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, USA.
- Optimal Aging Institute, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
9
|
Peters JJ, Teng C, Peng K, Li X. Deciphering the Blood-Brain Barrier Paradox in Brain Metastasis Development and Therapy. Cancers (Basel) 2025; 17:298. [PMID: 39858080 PMCID: PMC11764143 DOI: 10.3390/cancers17020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Gatekeeper or accomplice? That is the paradoxical role of the blood-brain barrier (BBB) in developing brain metastasis (BM). BM occurs when cancerous cells from primary cancer elsewhere in the body gain the ability to metastasize and invade the brain parenchyma despite the formidable defense of the BBB. These metastatic cells manipulate the BBB's components, changing them from gatekeepers of the brain to accomplices that aid in their progression into the brain tissue. This dual role of the BBB-as both a protective system and a potential facilitator of metastatic cells-highlights its complexity. Even with metastasis therapy such as chemotherapy, BM usually recurs due to the BBB limiting the crossing of drugs via the efflux transporters; therefore, treatment efficacy is limited. The pathophysiology is also complex, and our understanding of the paradoxical interplay between the BBB components and metastatic cells still needs to be improved. However, advancements in clinical research are helping to bridge the knowledge gap, which is essential for developing effective metastasis therapy. By targeting the BBB neurovascular unit components such as the polarization of microglia, astrocytes, and pericytes, or by utilizing technological tools like focused ultrasound to transiently disrupt the BBB and therapeutic nanoparticles to improve drug delivery efficiency to BM tissue, we can better address this pathology. This narrative review delves into the latest literature to analyze the paradoxical role of the BBB components in the manifestation of BM and explores potential therapeutic avenues targeting the BBB-tumor cell interaction.
Collapse
Affiliation(s)
- Jens Jeshu Peters
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China; (J.J.P.); (C.T.); (K.P.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Medicine, Central South University, Changsha 410008, China
| |
Collapse
|
10
|
Lorger M, James F. Taking a Swing at TIMP1-Armed Immunosuppressive Astrocytes Unleashes T cell Immunity against Brain Metastases. Cancer Discov 2025; 15:11-13. [PMID: 39801238 DOI: 10.1158/2159-8290.cd-24-1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 05/02/2025]
Abstract
Priego and colleagues identify a secreted glycoprotein TIMP1, expressed downstream of the transcription factor STAT3, in a subpopulation of STAT3+ reactive astrocytes as a mediator of immunosuppression in late-stage brain metastases. The STAT3 inhibitor silibinin enhances the preclinical efficacy of the combined PD-1/CTLA4 immune checkpoint blockade, providing a rationale to translate the combination therapy into clinical use for this underserved patient group with poor prognosis. See related article by Priego et al., p. 179.
Collapse
Affiliation(s)
- Mihaela Lorger
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona James
- School of Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Priego N, de Pablos-Aragoneses A, Perea-García M, Pieri V, Hernández-Oliver C, Álvaro-Espinosa L, Rojas A, Sánchez O, Steindl A, Caleiras E, García F, García-Martín S, Graña-Castro O, García-Mulero S, Serrano D, Velasco-Beltrán P, Jiménez-Lasheras B, Egia-Mendikute L, Rupp L, Stammberger A, Meinhardt M, Chaachou-Charradi A, Martínez-Saez E, Bertero L, Cassoni P, Mangherini L, Pellerino A, Rudà R, Soffietti R, Al-Shahrour F, Saftig P, Sanz-Pamplona R, Schmitz M, Crocker SJ, Calvo A, Palazón A, RENACER, Valiente M. TIMP1 Mediates Astrocyte-Dependent Local Immunosuppression in Brain Metastasis Acting on Infiltrating CD8+ T Cells. Cancer Discov 2025; 15:179-201. [PMID: 39354883 PMCID: PMC11726018 DOI: 10.1158/2159-8290.cd-24-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/24/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Immunotherapies against brain metastases have shown clinical benefits when applied to asymptomatic patients, but they are largely ineffective in symptomatic cases for unknown reasons. Here, we dissect the heterogeneity in metastasis-associated astrocytes using single-cell RNA sequencing and report a population that blocks the antitumoral activity of infiltrating T cells. This protumoral activity is mediated by the secretion of tissue inhibitor of metalloproteinase-1 (TIMP1) from a cluster of pSTAT3+ astrocytes that acts on CD63+ CD8+ T cells to modulate their function. Using genetic and pharmacologic approaches in mouse and human brain metastasis models, we demonstrate that combining immune checkpoint blockade antibodies with the inhibition of astrocyte-mediated local immunosuppression may benefit patients with symptomatic brain metastases. We further reveal that the presence of tissue inhibitor of metalloproteinase-1 in liquid biopsies provides a biomarker to select patients for this combined immunotherapy. Overall, our findings demonstrate an unexpected immunomodulatory role for astrocytes in brain metastases with clinical implications. Significance: This study presents a significant advancement in understanding immune modulation in brain tumors and offers new insights into the potential therapeutic interventions for brain metastases. See related commentary by Lorger and James, p. 11.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - María Perea-García
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Valentina Pieri
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Laura Álvaro-Espinosa
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Andrea Rojas
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oliva Sánchez
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ariane Steindl
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Caleiras
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fernando García
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Osvaldo Graña-Castro
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sandra García-Mulero
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Diego Serrano
- Department of Pathology, Anatomy and Physiology, Faculty of Medicine, Center for Applied Clinical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- CIBERONC, Madrid, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Borja Jiménez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Luise Rupp
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | - Antonia Stammberger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | | | - Luca Bertero
- Department of Medical Sciences, University of Turin, Turin, Italy
- Pathology Unit, Department of Laboratory Medicine, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Turin, Turin, Italy
- Pathology Unit, Department of Laboratory Medicine, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Luca Mangherini
- Department of Medical Sciences, University of Turin, Turin, Italy
- Pathology Unit, Department of Laboratory Medicine, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience, “Rita Levi Montalcini”, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, “Rita Levi Montalcini”, University and City of Health and Science Hospital, Turin, Italy
| | | | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Rebeca Sanz-Pamplona
- Biomarkers and Susceptibility Unit, Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- University Hospital Lozano Blesa, Aragon Health Research Institute (IISA), ARAID Foundation, Aragon Government, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marc Schmitz
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Alfonso Calvo
- Department of Pathology, Anatomy and Physiology, Faculty of Medicine, Center for Applied Clinical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Asís Palazón
- CIBERONC, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bizkaia, Spain
| | - RENACER
- Biobank, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
12
|
Kabak EC, Foo SL, Rafaeva M, Martin I, Bentires-Alj M. Microenvironmental Regulation of Dormancy in Breast Cancer Metastasis: "An Ally that Changes Allegiances". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:373-395. [PMID: 39821034 DOI: 10.1007/978-3-031-70875-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer remission after treatment is sometimes long-lasting, but in about 30% of cases, there is a relapse after a so-called dormant state. Cellular cancer dormancy, the propensity of disseminated tumor cells (DTCs) to remain in a nonproliferative state for an extended period, presents an opportunity for therapeutic intervention that may prevent reawakening and the lethal consequences of metastatic outgrowth. Therefore, identification of dormant DTCs and detailed characterization of cancer cell-intrinsic and niche-specific [i.e., tumor microenvironment (TME) mediated] mechanisms influencing dormancy in different metastatic organs are of great importance in breast cancer. Several microenvironmental drivers of DTC dormancy in metastatic organs, such as the lung, bone, liver, and brain, have been identified using in vivo models and/or in vitro three-dimensional culture systems. TME induction and persistence of dormancy in these organs are mainly mediated by signals from immune cells, stromal cells, and extracellular matrix components of the TME. Alterations of the TME have been shown to reawaken dormant DTCs. Efforts to capitalize on these findings often face translational challenges due to limited availability of representative patient samples and difficulty in designing dormancy-targeting clinical trials. In this chapter, we discuss current approaches to identify dormant DTCs and provide insights into cell-extrinsic (i.e., TME) mechanisms driving breast cancer cell dormancy in distant organs.
Collapse
Affiliation(s)
- Evrim Ceren Kabak
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sok Lin Foo
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Maria Rafaeva
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Qian BZ, Ma RY. Immune Microenvironment in Breast Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:413-432. [PMID: 39821036 DOI: 10.1007/978-3-031-70875-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Metastatic disease is the final stage of breast cancer that accounts for vast majority of patient death. Mounting data over recent years strongly support the critical roles of the immune microenvironment in determining breast cancer metastasis. The latest single-cell studies provide further molecular evidence illustrating the heterogeneity of this immune microenvironment. This chapter summarizes major discoveries on the role of various immune cells in metastasis progression and discusses future research opportunities. Studies investigating immune heterogeneity within primary breast cancer and across different metastasis target organs can potentially lead to more precise treatment strategies with improved efficacy.
Collapse
Affiliation(s)
- Bin-Zhi Qian
- Department of Oncology, Fudan University Shanghai Cancer Center, Zhangjiang-Fudan International Innovation Center, Shanghai Medical College, The Human Phenome Institute, Fudan University, Shanghai, China.
| | - Ruo-Yu Ma
- Department of Oncology, Fudan University Shanghai Cancer Center, Zhangjiang-Fudan International Innovation Center, Shanghai Medical College, The Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Dong W, Sheng J, Cui JZM, Zhao H, Wong STC. Systems immunology insights into brain metastasis. Trends Immunol 2024; 45:903-916. [PMID: 39443266 PMCID: PMC12049182 DOI: 10.1016/j.it.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Brain metastasis poses formidable clinical challenges due to its intricate interactions with the brain's unique immune environment, often resulting in poor prognoses. This review delves into systems immunology's role in uncovering the dynamic interplay between metastatic cancer cells and brain immunity. Leveraging spatial and single-cell technologies, along with advanced computational modeling, systems immunology offers unprecedented insights into mechanisms of immune evasion and tumor proliferation. Recent studies highlight potential immunotherapeutic targets, suggesting strategies to boost antitumor immunity and counteract cancer cell evasion in the brain. Despite substantial progress, challenges persist, particularly in accurately simulating human conditions. This review underscores the need for interdisciplinary collaboration to harness systems immunology's full potential, aiming to dramatically improve outcomes for patients with brain metastasis.
Collapse
Affiliation(s)
- Wenjuan Dong
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Johnny Z M Cui
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering and T. T. and W. F. Chao Center for BRAIN, Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Guo Y, Zhang R, Gan X, Wang E, Lu S, Jiang H, Duan H, Yuan Z, Li W, Liu Y. Systemic Inflammation Predict Neurological Functional Outcome in Patients with Tuberculous Meningitis: A Multicenter Retrospective Cohort Study in China. J Inflamm Res 2024; 17:7561-7571. [PMID: 39464341 PMCID: PMC11512555 DOI: 10.2147/jir.s489495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background The predictors associated with clinical outcomes in patients with tuberculous meningitis (TBM) remain unclear. We aimed to analyse the relationship between systemic inflammation and clinical outcomes, as well as to explore whether systemic inflammation level influences the effectiveness of dexamethasone on treatment. Methods Between January 2011 and December 2021, TBM patients admitted to five hospitals were observed consecutively. Baseline and post-treatment systemic inflammation levels were calculated using the neutrophil-lymphocyte-ratio (NLR). Generalized linear mixed models were employed to identify predictors of clinical outcomes. Propensity score matching and subgroup analyses were conducted to evaluate the effect of dexamethasone on treatment outcomes across different NLR levels. Results A total of 1203 TBM patients were included in the study. During the follow-up, 144 (13.6%) participants experienced early neurological deterioration within 7 days after admission, and 345 (28.67%) exhibited poor functional outcome at the 12-month follow-up. Multivariate analysis revealed that post-treatment NLR was significantly associated with early neurological deterioration (OR=1.25; 95% CI, 1.14-1.33; P<0.001), and poor outcome (OR=1.34; 95% CI, 1.26-1.45; P<0.001). After propensity score matching, dexamethasone treatment was not associated with early neurological deterioration (OR=0.83; 95% CI, 0.42-1.66; P=0.610) or poor outcome (OR=1.22; 95% CI, 0.49-2.11; P=0.490) in the highest quartile of post-treatment NLR. The effect of dexamethasone on treatment outcomes did not significantly vary with disease severity stratification. Conclusion Elevated systemic inflammation is an independent risk factor for neurological outcome in TBM patients. Further studies are required to investigate systemic inflammation in more severely affected population to better predict the outcomes following anti-inflammatory therapies.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Neurology, Chengdu Medical College, The First Affiliated Hospital, Chengdu, People’s Republic of China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ruyun Zhang
- Department of Emergency, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xinling Gan
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Erli Wang
- Department of Radiology, The First People’s Hospital of Longquanyi District, Chengdu, People’s Republic of China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Hui Jiang
- Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongfei Duan
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Zhengzhou Yuan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Weimin Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, People’s Republic of China
- Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
- National Tuberculosis Clinical Laboratory of China, Beijing Key Laboratory in Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yong Liu
- Department of Neurology, Chengdu Medical College, The First Affiliated Hospital, Chengdu, People’s Republic of China
| |
Collapse
|
16
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Ishibashi K, Hirata E. Multifaceted interactions between cancer cells and glial cells in brain metastasis. Cancer Sci 2024; 115:2871-2878. [PMID: 38992968 PMCID: PMC11462981 DOI: 10.1111/cas.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
18
|
Joshi R, Brezani V, Mey GM, Guixé-Muntet S, Ortega-Ribera M, Zhuang Y, Zivny A, Werneburg S, Gracia-Sancho J, Szabo G. IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer's disease. J Neuroinflammation 2024; 21:212. [PMID: 39215356 PMCID: PMC11363437 DOI: 10.1186/s12974-024-03203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The pathological role of interferon signaling is emerging in neuroinflammatory disorders, yet, the specific role of Interferon Regulatory Factor 3 (IRF3) in neuroinflammation remains poorly understood. Here, we show that global IRF3 deficiency delays TLR4-mediated signaling in microglia and attenuates the hallmark features of LPS-induced inflammation such as cytokine release, microglial reactivity, astrocyte activation, myeloid cell infiltration, and inflammasome activation. Moreover, expression of a constitutively active IRF3 (S388D/S390D: IRF3-2D) in microglia induces a transcriptional program reminiscent of the Activated Response Microglia and the expression of genes associated with Alzheimer's disease, notably apolipoprotein-e. Using bulk-RNAseq of IRF3-2D brain myeloid cells, we identified Z-DNA binding protein-1 (ZBP1) as a target of IRF3 that is relevant across various neuroinflammatory disorders. Lastly, we show IRF3 phosphorylation and IRF3-dependent ZBP1 induction in response to Aβ in primary microglia cultures. Together, our results identify IRF3 as an important regulator of LPS and Aβ -mediated neuroinflammatory responses and highlight IRF3 as a central regulator of disease-specific gene activation in different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Veronika Brezani
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Gabrielle M Mey
- Department of Opthalmology and Visual Sciences, Kellogg Eye Center Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sergi Guixé-Muntet
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute-CIBEREHD, Barcelona, Spain
| | - Marti Ortega-Ribera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Adam Zivny
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Sebastian Werneburg
- Department of Opthalmology and Visual Sciences, Kellogg Eye Center Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jordi Gracia-Sancho
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute-CIBEREHD, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| |
Collapse
|
19
|
Wang C, Nagayach A, Patel H, Dao L, Zhu H, Wasylishen AR, Fan Y, Kendler A, Guo Z. Utilizing human cerebral organoids to model breast cancer brain metastasis in culture. Breast Cancer Res 2024; 26:108. [PMID: 38951862 PMCID: PMC11218086 DOI: 10.1186/s13058-024-01865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Metastasis, the spread, and growth of malignant cells at secondary sites within a patient's body, accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and the leading cause of cancer lethality in women in the United States. It is estimated that 10-16% breast cancer patients will have brain metastasis. Current therapies to treat patients with breast cancer brain metastasis (BCBM) remain palliative. This is largely due to our limited understanding of the fundamental molecular and cellular mechanisms through which BCBM progresses, which represents a critical barrier for the development of efficient therapies for affected breast cancer patients. METHODS Previous research in BCBM relied on co-culture assays of tumor cells with rodent neural cells or rodent brain slice ex vivo. Given the need to overcome the obstacle for human-relevant host to study cell-cell communication in BCBM, we generated human embryonic stem cell-derived cerebral organoids to co-culture with human breast cancer cell lines. We used MDA-MB-231 and its brain metastatic derivate MDA-MB-231 Br-EGFP, other cell lines of MCF-7, HCC-1806, and SUM159PT. We leveraged this novel 3D co-culture platform to investigate the crosstalk of human breast cancer cells with neural cells in cerebral organoid. RESULTS We found that MDA-MB-231 and SUM159PT breast cancer cells formed tumor colonies in human cerebral organoids. Moreover, MDA-MB-231 Br-EGFP cells showed increased capacity to invade and expand in human cerebral organoids. CONCLUSIONS Our co-culture model has demonstrated a remarkable capacity to discern the brain metastatic ability of human breast cancer cells in cerebral organoids. The generation of BCBM-like structures in organoid will facilitate the study of human tumor microenvironment in culture.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Aarti Nagayach
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Harsh Patel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Lan Dao
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hui Zhu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Amanda R Wasylishen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Ziyuan Guo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
20
|
Aleksandrovic E, Zhang S, Yu D. From pre-clinical to translational brain metastasis research: current challenges and emerging opportunities. Clin Exp Metastasis 2024; 41:187-198. [PMID: 38430319 PMCID: PMC11456321 DOI: 10.1007/s10585-024-10271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Brain metastasis, characterized by poor clinical outcomes, is a devastating disease. Despite significant mechanistic and therapeutic advances in recent years, pivotal improvements in clinical interventions have remained elusive. The heterogeneous nature of the primary tumor of origin, complications in drug delivery across the blood-brain barrier, and the distinct microenvironment collectively pose formidable clinical challenges in developing new treatments for patients with brain metastasis. Although current preclinical models have deepened our basic understanding of the disease, much of the existing research on brain metastasis has employed a reductionist approach. This approach, which often relies on either in vitro systems or in vivo injection models in young and treatment-naive mouse models, does not give sufficient consideration to the clinical context. Given the translational importance of brain metastasis research, we advocate for the design of preclinical experimental models that take into account these unique clinical challenges and align more closely with current clinical practices. We anticipate that aligning and simulating real-world patient conditions will facilitate the development of more translatable treatment regimens. This brief review outlines the most pressing clinical challenges, the current state of research in addressing them, and offers perspectives on innovative metastasis models and tools aimed at identifying novel strategies for more effective management of clinical brain metastasis.
Collapse
Affiliation(s)
- Emilija Aleksandrovic
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX, 75235, USA
| | - Siyuan Zhang
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX, 75235, USA.
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Joshi R, Brezani V, Mey GM, Guixé-Muntet S, Ortega-Ribera M, Zhuang Y, Zivny A, Werneburg S, Gracia-Sancho J, Szabo G. IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.582968. [PMID: 38654824 PMCID: PMC11037866 DOI: 10.1101/2024.03.08.582968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The pathological role of interferon signaling is emerging in neuroinflammatory disorders, yet, the specific role of Interferon Regulatory Factor 3 (IRF3) in neuroinflammation remains poorly understood. Here, we show that global IRF3 deficiency delays TLR4-mediated signaling in microglia and attenuates the hallmark features of LPS-induced inflammation such as cytokine release, microglial reactivity, astrocyte activation, myeloid cell infiltration, and inflammasome activation. Moreover, expression of a constitutively active IRF3 (S388D/S390D:IRF3-2D) in microglia induces a transcriptional program reminiscent of the Activated Response Microglia and the expression of genes associated with Alzheimer's Disease, notably apolipoprotein-e. Lastly, using bulk-RNAseq of IRF3-2D brain myeloid cells, we identified Z-DNA binding protein-1 as a target of IRF3 that is relevant across various neuroinflammatory disorders. Together, our results identify IRF3 as an important regulator of LPS-mediated neuroinflammatory responses and highlight IRF3 as a central regulator of disease-specific gene activation in different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Radhika Joshi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | - Veronika Brezani
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | - Gabrielle M Mey
- Department of Opthalmology and Visual Sciences, Kellogg Eye Center Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sergi Guixé-Muntet
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute- CIBEREHD, Barcelona, Spain
| | - Marti Ortega-Ribera
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | - Adam Zivny
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | - Sebastian Werneburg
- Department of Opthalmology and Visual Sciences, Kellogg Eye Center Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jordi Gracia-Sancho
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute- CIBEREHD, Barcelona, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| |
Collapse
|
22
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
23
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Wen J, Yu JZ, Liu C, Ould Ismail AAO, Ma W. Exploring the Molecular Tumor Microenvironment and Translational Biomarkers in Brain Metastases of Non-Small-Cell Lung Cancer. Int J Mol Sci 2024; 25:2044. [PMID: 38396722 PMCID: PMC10889194 DOI: 10.3390/ijms25042044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Brain metastases represent a significant clinical challenge in the treatment of non-small-cell lung cancer (NSCLC), often leading to a severe decline in patient prognosis and survival. Recent advances in imaging and systemic treatments have increased the detection rates of brain metastases, yet clinical outcomes remain dismal due to the complexity of the metastatic tumor microenvironment (TME) and the lack of specific biomarkers for early detection and targeted therapy. The intricate interplay between NSCLC tumor cells and the surrounding TME in brain metastases is pivotal, influencing tumor progression, immune evasion, and response to therapy. This underscores the necessity for a deeper understanding of the molecular underpinnings of brain metastases, tumor microenvironment, and the identification of actionable biomarkers that can inform multimodal treatment approaches. The goal of this review is to synthesize current insights into the TME and elucidate molecular mechanisms in NSCLC brain metastases. Furthermore, we will explore the promising horizon of emerging biomarkers, both tissue- and liquid-based, that hold the potential to radically transform the treatment strategies and the enhancement of patient outcomes.
Collapse
Affiliation(s)
- Jiexi Wen
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jie-Zeng Yu
- Division of Hematology/Oncology, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Catherine Liu
- School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - A. Aziz O. Ould Ismail
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Weijie Ma
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
25
|
Ma W, Oswald J, Rios Angulo A, Chen Q. Tmem119 expression is downregulated in a subset of brain metastasis-associated microglia. BMC Neurosci 2024; 25:6. [PMID: 38308250 PMCID: PMC10837931 DOI: 10.1186/s12868-024-00846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Under pathological conditions, the immune-specialized brain microenvironment contains both resident microglia and bone marrow-derived myeloid cells recruited from peripheral circulation. Due to largely overlapping phenotypic similarities between these ontogenically distinct myeloid populations, studying their individual functions in central nervous system diseases has been challenging. Recently, transmembrane protein 119 (Tmem119) has been reported as a marker for resident microglia which is not expressed by bone marrow-derived myeloid cells. However, several studies have reported the loss or reduction of Tmem119 expression in pathologically activated microglia. Here, we examined whether Tmem119 could be used as a robust marker to identify brain metastasis-associated microglia. In addition, we also compared Tmem119 expression of primary microglia to the immortalized microglia-like BV2 cell line and characterized expression changes after LPS treatment. Lastly, we used a commercially available transgenic mouse line (Tmem119-eGFP) to compare Tmem119 expression patterns to the traditional antibody-based detection methods. Our results indicate that brain metastasis-associated microglia have reduced Tmem119 gene and protein expression.
Collapse
Affiliation(s)
- Weili Ma
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA.
| | - Jack Oswald
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA
| | - Angela Rios Angulo
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA
| | - Qing Chen
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|