1
|
Deshpande A, Zhang LQ, Balu R, Yahyavi-Firouz-Abadi N, Badjatia N, Laksari K, Tahsili-Fahadan P. Cerebrovascular morphology: Insights into normal variations, aging effects, and disease implications. J Cereb Blood Flow Metab 2025:271678X251328537. [PMID: 40314210 DOI: 10.1177/0271678x251328537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Cerebrovascular morphology plays a critical role in brain health, influencing cerebral blood flow (CBF) and contributing to the pathogenesis of various neurological diseases. This review examines the anatomical structure of the cerebrovascular network and its variations in healthy and diseased populations and highlights age-related changes and their implications in various neurological conditions. Normal variations, including the completeness and anatomical anomalies of the Circle of Willis and collateral circulation, are discussed in relation to their impact on CBF and susceptibility to ischemic events. Age-related changes in the cerebrovascular system, such as alterations in vessel geometry and density, are explored for their contributions to age-related neurological disorders, including Alzheimer's disease and vascular dementia. Advances in medical imaging and computational methods have enabled automatic quantitative assessment of cerebrovascular structures, facilitating the identification of pathological changes in both acute and chronic cerebrovascular disorders. Emerging technologies, including machine learning and computational fluid dynamics, offer new tools for predicting disease risk and patient outcomes based on vascular morphology. This review underscores the importance of understanding cerebrovascular remodeling for early diagnosis and the development of novel therapeutic approaches in brain diseases.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Mechanical Engineering, University of California, Riverside, USA
| | - Lucy Q Zhang
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Ramani Balu
- Vascular Neurology and Neurocritical Care, Inova Neuroscience and Spine Institute, Inova Fairfax Medical Campus, Falls Church, VA, USA
- Department of Medical Education, University of Virginia, Inova Campus, Falls Church, VA, USA
| | - Noushin Yahyavi-Firouz-Abadi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaveh Laksari
- Department of Mechanical Engineering, University of California, Riverside, USA
| | - Pouya Tahsili-Fahadan
- Vascular Neurology and Neurocritical Care, Inova Neuroscience and Spine Institute, Inova Fairfax Medical Campus, Falls Church, VA, USA
- Department of Medical Education, University of Virginia, Inova Campus, Falls Church, VA, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Gaudreault F, Desjardins M. Microvascular structure variability explains variance in fMRI functional connectivity. Brain Struct Funct 2025; 230:39. [PMID: 39921726 DOI: 10.1007/s00429-025-02899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
The influence of regional brain vasculature on resting-state fMRI BOLD signals is well documented. However, the role of brain vasculature is often overlooked in functional connectivity research. In the present report, utilizing publicly available whole-brain vasculature data in the mouse, we investigate the relationship between functional connectivity and brain vasculature. This is done by assessing interregional variations in vasculature through a novel metric termed vascular similarity. First, we identify features to describe the regional vasculature. Then, we employ multiple linear regression models to predict functional connectivity, incorporating vascular similarity alongside metrics from structural connectivity and spatial topology. Our findings reveal a significant correlation between functional connectivity strength and regional vasculature similarity, especially in anesthetized mice. We also show that multiple linear regression models of functional connectivity using standard predictors are improved by including vascular similarity. We perform this analysis at the cerebrum and whole-brain levels using data from both male and female mice. Our findings regarding the relation between functional connectivity and the underlying vascular anatomy may enhance our understanding of functional connectivity based on fMRI and provide insights into its disruption in neurological disorders.
Collapse
Affiliation(s)
- François Gaudreault
- Département de physique, de génie physique et d'optique, Université Laval, 2325 Rue de l'Université, Quebec, QC, G1V 0A6, Canada
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 2705 Bd Laurier, Quebec, QC, G1V 4G2, Canada
| | - Michèle Desjardins
- Département de physique, de génie physique et d'optique, Université Laval, 2325 Rue de l'Université, Quebec, QC, G1V 0A6, Canada.
- Axe Oncologie, Centre de recherche du CHU de Québec-Université Laval, 2705 Bd Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Yang L, Chen P, Wen X, Zhao Q. Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science. Theranostics 2025; 15:122-140. [PMID: 39744229 PMCID: PMC11667229 DOI: 10.7150/thno.97192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025] Open
Abstract
Brain diseases are a leading cause of disability and death worldwide. Early detection can lead to earlier intervention and better outcomes for patients. In recent years, optical coherence tomography (OCT) and OCT angiography (OCTA) imaging have been widely used in stroke, traumatic brain injury (TBI), and brain cancer due to their advantages of in vivo, unlabeled, and high-resolution 3D microvessel imaging at the capillary resolution level. This review summarizes recent advances and challenges in living brain imaging using OCT/OCTA, including technique modality, types of diseases, and theoretical approach. Although there may still be many limitations, with the development of lasers and the advances in artificial intelligence are expected to enable accurate detection of deep cerebral hemodynamics and guide intraoperative tumor resection in vivo in the future.
Collapse
Affiliation(s)
| | | | - Xiaofei Wen
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingliang Zhao
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Glandorf L, Wittmann B, Droux J, Glück C, Weber B, Wegener S, El Amki M, Leitgeb R, Menze B, Razansky D. Bessel beam optical coherence microscopy enables multiscale assessment of cerebrovascular network morphology and function. LIGHT, SCIENCE & APPLICATIONS 2024; 13:307. [PMID: 39523430 PMCID: PMC11551179 DOI: 10.1038/s41377-024-01649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
Understanding the morphology and function of large-scale cerebrovascular networks is crucial for studying brain health and disease. However, reconciling the demands for imaging on a broad scale with the precision of high-resolution volumetric microscopy has been a persistent challenge. In this study, we introduce Bessel beam optical coherence microscopy with an extended focus to capture the full cortical vascular hierarchy in mice over 1000 × 1000 × 360 μm3 field-of-view at capillary level resolution. The post-processing pipeline leverages a supervised deep learning approach for precise 3D segmentation of high-resolution angiograms, hence permitting reliable examination of microvascular structures at multiple spatial scales. Coupled with high-sensitivity Doppler optical coherence tomography, our method enables the computation of both axial and transverse blood velocity components as well as vessel-specific blood flow direction, facilitating a detailed assessment of morpho-functional characteristics across all vessel dimensions. Through graph-based analysis, we deliver insights into vascular connectivity, all the way from individual capillaries to broader network interactions, a task traditionally challenging for in vivo studies. The new imaging and analysis framework extends the frontiers of research into cerebrovascular function and neurovascular pathologies.
Collapse
Affiliation(s)
- Lukas Glandorf
- Institute of Pharmacology and Toxicology & Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Bastian Wittmann
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jeanne Droux
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology & Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology & Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology & Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Ghigo N, Ramos-Palacios G, Bourquin C, Xing P, Wu A, Cortés N, Ladret H, Ikan L, Casanova C, Porée J, Sadikot A, Provost J. Dynamic Ultrasound Localization Microscopy Without ECG-Gating. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1436-1448. [PMID: 38969526 DOI: 10.1016/j.ultrasmedbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Dynamic Ultrasound Localization Microscopy (DULM) has first been developed for non-invasive Pulsatility measurements in the rodent brain. DULM relies on the localization and tracking of microbubbles (MBs) injected into the bloodstream, to obtain highly resolved velocity and density cine-loops. Previous DULM techniques required ECG-gating, limiting its application to specific datasets, and increasing acquisition time. The objective of this study is to eliminate the need for ECG-gating in DULM experiments by introducing a motion-matching method for time registration. METHODS We developed a motion-matching algorithm based on tissue Doppler that leverages the cyclic tissue motion within the brain. Tissue Doppler was estimated for each group of frames in the acquisitions, at multiple locations identified as local maxima in the skin above the skull. Subsequently, each group of frames was time-registered to a reference group by delaying it based on the maximum correlation value between their respective tissue Doppler signals. This synchronization ensured that each group of frames aligned with the brain tissue motion of the reference group, and consequently, with its cardiac cycle. As a result, velocities of MBs could be averaged to retrieve flow velocity variations over time. RESULTS Initially validated in ECG-gated acquisitions in a rat model (n = 1), the proposed method was successfully applied in a mice model in 2D (n = 3) and in a feline model in 3D (n = 1). Performing time-registration with the proposed motion-matching method or by using ECG-gating leads to similar results. For the first time, dynamic velocity and density cine-loops were extracted without the need for any information on the animal ECG, and complex dynamic markers such as the Pulsatility index were estimated. CONCLUSION Results suggest that DULM can be performed without external gating, enabling the use of DULM on any ULM dataset where enough MBs are detectable. Time registration by motion-matching represents a significant advancement in DULM techniques, making DULM more accessible by simplifying its experimental complexity.
Collapse
Affiliation(s)
- Nin Ghigo
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada.
| | | | - Chloé Bourquin
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Paul Xing
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Alice Wu
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Nelson Cortés
- School of Optometry, University of Montreal, Montréal, Quebec, Canada
| | - Hugo Ladret
- School of Optometry, University of Montreal, Montréal, Quebec, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | - Lamyae Ikan
- School of Optometry, University of Montreal, Montréal, Quebec, Canada
| | | | - Jonathan Porée
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Abbas Sadikot
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Jean Provost
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada; Montreal Heart Institute, Montréal, Quebec, Canada
| |
Collapse
|
6
|
Zhang C, Jamshidi M, Delafontaine-Martel P, Linninger AA, Lesage F. Evaluation of cerebral microcirculation in a mouse model of systemic inflammation. NEUROPHOTONICS 2024; 11:035003. [PMID: 39011517 PMCID: PMC11249390 DOI: 10.1117/1.nph.11.3.035003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024]
Abstract
Significance Perturbations in the microcirculatory system have been observed in neurological conditions, such as Alzheimer's disease or systemic inflammation. However, changes occurring at the level of the capillary are difficult to translate to biomarkers that could be measured macroscopically. Aim We aim to evaluate whether transit time changes reflect capillary stalling and to what degree. Approach We employ a combined spectral optical coherence tomography (OCT) and fluorescence optical imaging (FOI) system to investigate the relation between capillary stalling and transit time in a mouse model of systemic inflammation induced by intraperitoneal injection of lipopolysaccharide. Angiograms are obtained using OCT, and fluorescence signal images are acquired by the FOI system upon intravenous injection of fluorescein isothiocyanate via a catheter inserted into the tail vein. Results Our findings reveal that lipopolysaccharide (LPS) administration significantly increases both the percentage and duration of capillary stalling compared to mice receiving a 0.9% saline injection. Moreover, LPS-induced mice exhibit significantly prolonged arteriovenous transit time compared to control mice. Conclusions These observations suggest that capillary stalling, induced by inflammation, modulates cerebral mean transit time, a measure that has translational potential.
Collapse
Affiliation(s)
- Cong Zhang
- Polytechnique Montreal, Department of Electrical Engineering, Montreal, Quebec, Canada
- Montreal Heart Institute, Research center, Montreal, Quebec, Canada
| | - Mohammad Jamshidi
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Patrick Delafontaine-Martel
- Polytechnique Montreal, Department of Electrical Engineering, Montreal, Quebec, Canada
- Montreal Heart Institute, Research center, Montreal, Quebec, Canada
| | - Andreas A Linninger
- University of Illinois at Chicago, Department of Biomedical Engineering, Chicago, Illinois, United States
- University of Illinois at Chicago, Department of Neurosurgery, Chicago, Illinois, United States
| | - Frédéric Lesage
- Polytechnique Montreal, Department of Electrical Engineering, Montreal, Quebec, Canada
- Montreal Heart Institute, Research center, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Du Y, Li D, Hu Z, Liu S, Xia Q, Zhu J, Xu J, Yu T, Zhu D. Dual-Channel in Spatial-Frequency Domain CycleGAN for perceptual enhancement of transcranial cortical vascular structure and function. Comput Biol Med 2024; 173:108377. [PMID: 38569233 DOI: 10.1016/j.compbiomed.2024.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Observing cortical vascular structures and functions using laser speckle contrast imaging (LSCI) at high resolution plays a crucial role in understanding cerebral pathologies. Usually, open-skull window techniques have been applied to reduce scattering of skull and enhance image quality. However, craniotomy surgeries inevitably induce inflammation, which may obstruct observations in certain scenarios. In contrast, image enhancement algorithms provide popular tools for improving the signal-to-noise ratio (SNR) of LSCI. The current methods were less than satisfactory through intact skulls because the transcranial cortical images were of poor quality. Moreover, existing algorithms do not guarantee the accuracy of dynamic blood flow mappings. In this study, we develop an unsupervised deep learning method, named Dual-Channel in Spatial-Frequency Domain CycleGAN (SF-CycleGAN), to enhance the perceptual quality of cortical blood flow imaging by LSCI. SF-CycleGAN enabled convenient, non-invasive, and effective cortical vascular structure observation and accurate dynamic blood flow mappings without craniotomy surgeries to visualize biodynamics in an undisturbed biological environment. Our experimental results showed that SF-CycleGAN achieved a SNR at least 4.13 dB higher than that of other unsupervised methods, imaged the complete vascular morphology, and enabled the functional observation of small cortical vessels. Additionally, the proposed method showed remarkable robustness and could be generalized to various imaging configurations and image modalities, including fluorescence images, without retraining.
Collapse
Affiliation(s)
- Yuwei Du
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Xia
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
8
|
Liu C, Cárdenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:78. [PMID: 38600598 PMCID: PMC11005245 DOI: 10.1186/s13195-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. METHODS We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccharide-induced neuroinflammation. RESULTS Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. CONCLUSIONS This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shayna Teitelbaum
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Austin Birmingham
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammed Alfadhel
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammad A Yaseen
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Liu C, Cardenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562353. [PMID: 37905082 PMCID: PMC10614808 DOI: 10.1101/2023.10.16.562353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccaride-induced neuroinflammation. Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
|