1
|
Girod R, Vlasov E, Liz-Marzán LM, Bals S. Three-Dimensional Electron Microscopy of Chiral Nanoparticles: From Imaging to Measuring. NANO LETTERS 2025. [PMID: 40299986 DOI: 10.1021/acs.nanolett.5c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The increasing interest in plasmonic nanoparticles with intrinsic chirality, i.e., reduced symmetry and strong optical activity, calls for characterization beyond qualitative imaging. In this context, three-dimensional electron microscopy (3D EM), which provides images containing information on the particles' surface and may even retrieve the explicit 3D shapes, is seeing exciting developments and applications. In this Mini-Review, we focus on scanning electron microscopy (SEM), electron tomography, and secondary electron electron-beam-induced current (SEEBIC). We highlight the recent advances in these 3D EM techniques and the analysis of their data that relate to chiral metallic nanoparticles. The study of shape-property relationships, in particular by quantitatively analyzing geometric chirality and informing electromagnetic simulations, is covered. New ways in which 3D characterization is revealing the growth pathways of the nanoparticles are also presented. Finally, we provide an outlook on future opportunities for 3D EM to further guide the understanding and development of (chiral) nanoparticles.
Collapse
Affiliation(s)
- Robin Girod
- EMAT and NANOlight Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Evgenii Vlasov
- EMAT and NANOlight Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- CINBIO, University of Vigo, 36310 Vigo, Spain
| | - Sara Bals
- EMAT and NANOlight Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| |
Collapse
|
2
|
Yang Z, Lyu J, Qian J, Wang Y, Liu Z, Yao Q, Chen T, Cao Y, Xie J. Glutathione: a naturally occurring tripeptide for functional metal nanomaterials. Chem Sci 2025; 16:6542-6572. [PMID: 40134663 PMCID: PMC11931393 DOI: 10.1039/d4sc08599j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Glutathione (GSH), a naturally occurring tripeptide, plays an important role as an intracellular antioxidant in the physiological microenvironment and participates in redox balance, detoxification, and cellular and disease regulation. The unique structural features of GSH, including the reductive thiol and multiple coordination sites (carboxyl and amino group), make it a significant molecule not only in the physiological context but also as a ligand in the development of functional metal nanomaterials. In this context, GSH's role as a protective ligand and reducing agent in surface etching and ligand exchange reactions has been explored at the molecular level, expanding the diversity of GSH-protected metal nanomaterials. With photoluminescence (PL) as one of its most intriguing properties, investigations into GSH's influence on PL properties emphasize its multifaceted coordination capabilities in surface coating, charge transfer from electron-rich functional groups, chirality arising from its unique structure, and available conjugation sites. Moreover, the biocompatibility of GSH, combined with the synergistic effect of metal components, renders GSH-protected nanomaterials an "Inseparable Duo" highly suited for applications in bio-sensing, bio-imaging via PL radiative decay and anti-cancer bio-therapies through photothermal therapy, photodynamic therapy, and radiotherapy. By exploring the multifaceted roles of GSH, this Perspective aims to highlight pathways including the encouragement of deeper synthetic exploration, innovative design at the bio-nano interface, and expanded nanobiomedical applications.
Collapse
Affiliation(s)
- Zhucheng Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jingkuan Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Jing Qian
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Yifan Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| | - Tiankai Chen
- School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 P. R. China
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG (GHEI), South China Normal University Guangzhou 510006 P. R. China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
3
|
Im SW, Kim RM, Han JH, Ha IH, Lee HE, Ahn HY, Jo E, Nam KT. Synthesis of chiral gold helicoid nanoparticles using glutathione. Nat Protoc 2025; 20:1082-1096. [PMID: 39587326 DOI: 10.1038/s41596-024-01083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/25/2024] [Indexed: 11/27/2024]
Abstract
Chiral plasmonic nanostructures are in high demand because of their unique optical properties, which are applicable to polarization control, chiral sensing and biomedical applications. An easy and scalable synthesis method for these nanostructures may facilitate their development further. We have reported the synthesis for 432-symmetric chiral plasmonic nanoparticles by using a seed-mediated colloidal method facilitated by a chiral amino acid and peptides. Among those, 432 helicoid III nanoparticles particularly exhibited well-defined chiral morphologies and exceptional chiroptic properties, evidenced by a Kuhn's dissymmetry factor (g-factor) of 0.2, making them valuable for various applications. Here, we detail the synthesis stages, including the synthesis of seed nanoparticles, the verification of each stage outcome and the calibration of synthesis conditions. We further illustrate the troubleshooting section and video-document the stages to facilitate the reliable reproduction of 432 helicoid III nanoparticles. The procedure requires 8 h to complete and can be carried out by users with expertise in chemistry or materials science.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eunjeong Jo
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Pérez LA, Hu J, Mendoza-Carreño J, Garriga M, Alonso MI, Arteaga O, Goñi AR, Mihi A. Strong Chiro-Optical Activity of Plasmonic Metasurfaces with Inverted Pyramid Arrays. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15824-15835. [PMID: 40030081 PMCID: PMC11912205 DOI: 10.1021/acsami.4c19803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025]
Abstract
Chiral plasmonics has emerged as a powerful tool for manipulating light at the nanoscale with unprecedented control over light polarization. The advances in nanofabrication have led to the creation of nanostructures that support strong chiroptical responses. However, the complexity of the fabrication and the associated high costs remain major challenges in upscaling these architectures. Here, we report on the development of chiral plasmonic metasurfaces composed of inverted pyramid arrays with mismatched directions with respect to the lattice vectors of the array. These metasurfaces are fabricated using a combination of soft lithography and anisotropic etching, resulting in cost-effective and reproducible chiral nanostructures without the need for expensive equipment. The fabricated metasurfaces exhibit high differential transmittance values in the visible spectrum, which are among the highest reported for plasmonic films. Theoretical modeling corroborates the experimental results, demonstrating the significant influence of the mismatch angle on the chiral behavior. Complete polarimetric characterization reveals exceptional chiro-optical activity with circular birefringence exceeding 375°/μm and Kuhn's dissymmetry factors (g-factors) approaching unity.
Collapse
Affiliation(s)
- Luis Alberto Pérez
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Jinhui Hu
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Jose Mendoza-Carreño
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Miquel Garriga
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Maria Isabel Alonso
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Oriol Arteaga
- Department of Applied Physics, PLAT Group, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro R Goñi
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Agustín Mihi
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
5
|
Luan X, Tian Y, Wu F, Cheng L, Tang M, Lv X, Wei H, Wang X, Li F, Xu G, Niu W. Enantioselective synthesis of chiroplasmonic helicoidal nanoparticles by nanoconfinement in chiral dielectric shells. Nat Commun 2025; 16:2418. [PMID: 40069166 PMCID: PMC11897212 DOI: 10.1038/s41467-025-57624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Helicoid metal nanoparticles with intrinsic chirality have unveiled tailorable properties and unlocked many chirality-related applications across various fields. Nevertheless, the existing strategies for enantioselective synthesis of helicoid metal nanoparticles have been predominantly limited to gold. Here, we demonstrate a robust and versatile strategy for the enantioselective synthesis of helicoid nanoparticles beyond gold, leveraging chiral nanoconfinement provided by chiral SiO2 or nanoshells. The chiral nanoconfinement strategy enables the decoupling of ligand-directed crystal growth from chiral induction, allowing for the independent tuning of these two critical aspects. As a result, this approach can not only facilitate the replication of chiral shapes from the chiral nanoshells but also allow the generation of alternative chiral shapes. By employing this approach, we demonstrate the enantioselective synthesis of helicoid Pt, Au@Pt, Au@Pd, Au@Ag, and Au@Cu nanoparticles. The chiroplasmonic properties of Pt- and Pd-based chiral nanoparticles have been discovered, and the inversion of chiroplasmonic properties of Ag-based chiral nanoparticles via facet control has been documented and theoretically explained. The chiral nanoconfinement strategy enriches the toolbox for creating chiral nanoparticles and supports their exploration in diverse applications.
Collapse
Affiliation(s)
- Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lu Cheng
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yanshan Branch of Beijing Research Institute of Chemical Industry, SINOPEC, Beijing, China
| | - Minghua Tang
- Analysis and Testing Center, Soochow University, Suzhou, China
| | - Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Haili Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Xiaodan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Hao C, Meng D, Shi W, Xu C, Wang Q, Kuang H. Chiral Gold Nanostructure Monolayers as SERS Substrates for Ultrasensitive Detection of Enantiomer Biomarkers of Alzheimer's Disease. Angew Chem Int Ed Engl 2025:e202502115. [PMID: 40062420 DOI: 10.1002/anie.202502115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
The early diagnosis of neurodegenerative diseases, such as Alzheimer's disease (AD), requires the identification of sensitive and specific biomarkers. Detecting chiral molecules at concentrations relevant to disease states remains challenging. Herein, a new type of chiral gold nanostructure induced by D-/L-cysteine-leucine dipeptides with a g-factor of 0.1 was successfully synthesized for enantiomer biomarker detection. To enhance the discrimination performance, the chiral gold nanostructures were assembled into D-/L-Au monolayers. As surface-enhanced Raman scattering (SERS) substrates, the D-/L-Au monolayers simultaneously deliver molecular structural specificity and enantioselectivity within a single spectrum, which can be a versatile, label-free chiral discrimination strategy for the detection of D-/L-kynurenine (Kyn). The mechanism was unveiled to involve high enantioselective adsorption energies between L- and D-Kyn on the lattice plane (221), resulting in enantioselective sensing. The results showed that the L-Au monolayer reached a limit of detection (LOD) of 3.7 nm for L-Kyn, while the D-Au monolayer reached an LOD of 3.6 nM for D-Kyn. Notably, there was a significant difference in D-Kyn levels between AD patients and healthy individuals in serum samples, a distinction not observed for L-Kyn, which positioned D-Kyn as a potential novel biomarker for clinical prediagnosis of AD patients, marking the first report of its kind worldwide. This study provides a robust tool for advancing biomedical science and clinical diagnostics.
Collapse
Affiliation(s)
- Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Qing Wang
- Department of Neurosurgery, Wuxi Neurosurgical Institute, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
7
|
Zheng J, Fu Y, Wang J, Zhang W, Lu X, Lin HQ, Shao L, Wang J. Circularly polarized OLEDs from chiral plasmonic nanoparticle-molecule hybrids. Nat Commun 2025; 16:1658. [PMID: 39955278 PMCID: PMC11830063 DOI: 10.1038/s41467-025-57000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Organic light-emitting diodes (OLEDs) supporting the direct emission of circularly polarized (CP) light are essential for numerous technologies. The realization of CP-OLEDs with large dissymmetry (gEL) factors and high external quantum efficiencies (EQEs) has been accepted as a considerable challenge. Here we demonstrate the realization of efficient CP-OLEDs based on the assembly of chiral plasmonic nanoparticles (NPs) and supramolecular aggregates. The chiral plasmonic NPs serve as the chiral scaffold and chiral optical nanoantenna to modulate the circularly polarized absorption and emission of the supramolecular chromophores. We employ different chiral plasmonic NPs to construct various CP-OLEDs with the emission dominated by chiral excitons or chiral plasmons. The CP-OLED showing a high EQE of 2.5% and a large gEL factor of 0.31 is achieved, as a result of multiscale chirality transfer, plasmonic enhancement, and the suppression of the overshoot effect. The proposed schemes are compatible with the current manufacturing technology of OLEDs. This work demonstrates that chiral plasmonic NPs can be promising candidates in chiral photoelectric devices.
Collapse
Affiliation(s)
- Jiapeng Zheng
- School of Artificial Intelligence Science and Technology, Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Yuang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Jing Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Wei Zhang
- National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China
| | - Hai-Qing Lin
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, 999077, China.
| |
Collapse
|
8
|
Chen H, Hao C. Recent Advances in Chiral Gold Nanomaterials: From Synthesis to Applications. Molecules 2025; 30:829. [PMID: 40005140 PMCID: PMC11858563 DOI: 10.3390/molecules30040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, the field of chiral gold nanomaterials has witnessed significant advancements driven by their unique properties and diverse applications in various scientific domains. This review provides an in-depth examination of the synthesis methodologies and evolving applications of chiral gold nanomaterials, which have emerged as vital tools in areas such as antibacterial therapies, biosensing, catalysis, and nanomedicine. We start by discussing various synthesis techniques, focused on seed-mediated growth and circularly polarized light-assisted methods, each contributing to the controlled synthesis of chiral gold nanostructures with tailored optical activities. This review further delves into the applications of these nanomaterials, showcasing their potential in combating antibiotic-resistant bacteria, improving cancer immunotherapy, promoting tissue regeneration, and enabling precise biosensing through enhanced sensitivity and selectivity. We highlight the fundamental principles of chirality and its critical role in biological systems, emphasizing the importance of chiral gold nanomaterials in enhancing optical signals and facilitating molecular interactions. By consolidating recent findings and methodologies, this review endeavors to illuminate the promising future of chiral gold nanomaterials and their critical role in addressing contemporary scientific challenges.
Collapse
Affiliation(s)
| | - Changlong Hao
- School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Li LT, Wen S, Liu QY, Shi HF, Huang M, Liu C, Zhan L, Zhao XH, Zou HY, Huang CZ, Wang J. Intrinsic Chirality Modulation and Biosensing Application of Helical Gold Nanorods by Anisotropic Etching. Anal Chem 2025; 97:319-327. [PMID: 39707952 DOI: 10.1021/acs.analchem.4c04208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The investigation of plasmonic chirality is a profound and intriguing topic, and the distinctive morphology of intrinsically chiral nanoparticles has prompted significant interest in the structure-activity relationship between particle morphology and chirality. In this work, the anisotropic etching of chiral helical gold nanorods (HGNRs) by a cetyltrimethylammonium bromide (CTAB)-HAuCl4 complex was observed with an interesting bidirectional variation of intrinsic chirality that initially enhanced and subsequently weakened, which was related with the diversity in CTAB distribution. In addition, an ultrasensitive and convenient sensing platform for acetylcholinesterase was developed based on the circular dichroism signal recovery of HGNRs caused by the dual inhibition of HGNR etching. The distinctive etching process and mechanism of chiral nanoparticles offer new insights into understanding the structural features and biochemical applications of the plasmonic intrinsic chirality, which could be applied to the acquisition of chiral nanoparticles and sensitive detection platform based on chiral signal changes.
Collapse
Affiliation(s)
- Liang Tong Li
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Shuai Wen
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Qiu Yue Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - He Feng Shi
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Min Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chen Liu
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Hui Zhao
- The Beibei Affiliated Hospital of Chongqing Medical University, The Ninth's People's Hospital of Chongqing, Chongqing 400799, P. R. China
| | - Hong Yan Zou
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Jian Wang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
10
|
Jia H, Chiang FK, Chen J, Hu Y, Han Z, Wei L, Ma L, Qiu HJ. Enhanced Structure Stability of Au Nanobipyramids by an In Situ Customized Silver Armor. NANO LETTERS 2025; 25:608-614. [PMID: 39772810 DOI: 10.1021/acs.nanolett.4c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Revealing the structure stability and evolution of gold nanocrystals at the atomic scale is crucial to their versatile applications; however, the fundamental mechanism remains elusive due to the lack of in situ characterizations. In this work, the structural evolution of two types of Au nanobipyramids (Au NBPs) at elevated temperatures is monitored through in situ electron microscopy analysis, and there is a sharp distinction between their structure stability despite that they possess the same crystalline structure. Detailed material characterization reveals that the surface alloying of residual Ag with Au (customized Ag armor) can greatly inhibit the Au atom diffusion and contribute remarkably to the stability and surface-enhanced Raman scattering improvement. Moreover, the structure of the Au NBPs is further enhanced when the vulnerable tips are selectively coated with an oxide shell (Cu2O) to form a dumbbell-shaped nanostructure, which would undergo a completely different structure evolution at elevated temperatures.
Collapse
Affiliation(s)
- Henglei Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Fu-Kuo Chiang
- National Institute of Clean and Low Carbon Energy, Beijing 102209, China
| | - Jingyun Chen
- National Institute of Clean and Low Carbon Energy, Beijing 102209, China
| | - Yixuan Hu
- Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihua Han
- National Institute of Clean and Low Carbon Energy, Beijing 102209, China
| | - Linlin Wei
- National Institute of Clean and Low Carbon Energy, Beijing 102209, China
| | - Linge Ma
- National Institute of Clean and Low Carbon Energy, Beijing 102209, China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- National Institute of Clean and Low Carbon Energy, Beijing 102209, China
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
11
|
Wang Y, Zhang X, Xie D, Chen C, Huang Z, Li ZA. Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202419610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/03/2025]
Abstract
AbstractChirality, the property of objects that are nonsuperimposable on their mirror images, plays a crucial role in biological processes and cellular behaviors. Chiral engineered biomaterials have emerged as a promising approach to regulating cellular fate in regenerative medicine. However, few reviews provide a comprehensive examination of recent advancements in chiral biomaterials and their applications in cellular fate regulation. Herein, various fabrication techniques available for chiral biomaterials, including the use of chiral molecules, surface patterning, and self‐assembly are discussed. The mechanisms through which chiral biomaterials influence cellular responses, such as modulation of adhesion receptors, intracellular signaling, and gene expression, are explored. Notably, chiral biomaterials have demonstrated their ability to guide stem cell differentiation and augment tissue‐specific functions. The potential applications of chiral biomaterials in musculoskeletal disorders, neurodegenerative diseases, cardiovascular diseases, and wound healing are highlighted. Challenges and future perspectives, including standardization of fabrication methods and translation to clinical settings, are addressed. In conclusion, chiral engineered biomaterials offer exciting prospects for precisely controlling cellular fate, advancing regenerative medicine, and enabling personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Xin Zhang
- Institute of Sports Medicine Beijing Key Laboratory of Sports Injuries Peking University Third Hospital Beijing 100191 China
| | - Denghui Xie
- Department of Orthopaedic Surgery Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou 510630 China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases Guangzhou 510630 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety New Cornerstone Science Laboratory National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhifeng Huang
- Department of Chemistry The Chinese University of Hong Kong Shatin Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
| | - Zhong Alan Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- School of Biomedical Sciences The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Institute for Tissue Engineering and Regenerative Medicine The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shun Hing Institute of Advanced Engineering The Chinese University of Hong Kong Shatin, N.T. Hong Kong SAR China
- Shenzhen Research Institute The Chinese University of Hong Kong No.10, 2nd Yuexing Road, Nanshan Shenzhen Guangdong Province 518057 China
| |
Collapse
|
12
|
Chen J, Chen X, Murakami RI, Li H, Yu X, Feng W, Yang Y, Wang P, Zheng G, Tang Z, Wu X. Chiral Inorganic Nanomaterials Characterized by Advanced TEM: A Qualitative and Quantitative Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410676. [PMID: 39402913 DOI: 10.1002/adma.202410676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Chiral inorganic nanomaterials (CINMs) have garnered significant interest due to their exceptional optical, electronic, and catalytic properties, offering promising advancements in energy conversion, data storage, catalysis, and biomedicine. While traditional optical spectrophotometers reveal the chiroptical performance of CINMs on an ensemble level, the direct structural visualization for the qualitative and quantitative discernment of their chiral features has become increasingly distinct with the advancements of transmission electron microscopy (TEM) techniques. The need for reasonable and high-standard discrimination requirements of CINMs has driven the progress of chirality-based TEM technologies. Therefore, this review in the good season takes the initiative to summarize the current advancements in TEM technologies for CINMs characterization, emphasizing a qualitative analysis of chiral atomic-level features, 0D, 1D, and 2D nanocrystals, and assembled nanomaterials. Then, the quantitative methods for determining chirality is also highlighted, such as 3D electron tomography, and further address the evolution of chiral structures monitored by the Ex-situ and In-situ TEM technologies. By providing a roadmap for the current challenges and proposing future advancements in TEM technologies for the qualitative, quantitative, and real-time analysis of CINMs, it can drive innovations in the field of chiral nanomaterials as well as the development of TEM technologies.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Xuegang Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Ri-Ichi Murakami
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Hanbo Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Yu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Yuxin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
- Sichuan Province Engineering Research Center for Powder Metallurgy, Chengdu University, Chengdu, 610106, China
| | - Guangchao Zheng
- Colloidal Physics Group, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Zhiyong Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Ha IH, Kim RM, Han JH, Im SW, Jo J, Lee YH, Lv J, Lee UC, Ahn HY, Lee HE, Kim M, Nam KT. Synthesis of Chiral Ag, Pd, and Pt Helicoids inside Chiral Silica Mold. J Am Chem Soc 2024; 146:30741-30747. [PMID: 39388348 DOI: 10.1021/jacs.4c10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chiral inorganic nanomaterials hold significant promise for various applications, including enantioselective catalysis, polarization-controlling optical devices, metamaterials, and enantioselective molecular sensors. In our previous work, we presented a method for synthesizing chiral Au 432 helicoid III (Au helicoids) from peptides and amino acids, where helical gaps are intricately arranged with 432 symmetry within single cubic nanoparticles. In this study, we have achieved the fabrication of chiral silica molds through Au etching subsequent to the silica coating of Au helicoids. We demonstrate that these molds serve as geometrically confined reactors capable of producing chiral Ag, Pd, and Pt 432 helicoid III (Ag, Pd, and Pt helicoids). The morphology of the synthesized Ag, Pd, and Pt helicoids closely resembles that of the Au helicoids, exhibiting a superior g-factor compared to other reported chiral structures of each material. Notably, the Ag and Pd helicoids are found to be single-crystalline, with high-index planes exposed within the gaps. We believe that this silica mold-based approach can be generalized to synthesize chiral nanomaterials of various metal and even oxide materials.
Collapse
Affiliation(s)
- In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyeon Jo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiawei Lv
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ui Chan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Ni B, González‐Rubio G, Van Gordon K, Bals S, Kotov NA, Liz‐Marzán LM. Seed-Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412473. [PMID: 39380379 PMCID: PMC11586823 DOI: 10.1002/adma.202412473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Indexed: 10/10/2024]
Abstract
The controlled growth of gold nanostructures with complex shapes and reduced symmetry, exemplified by chiral gold nanorods and nanoparticles, is one of the most dynamic fields of nanochemistry. A timely summary of underlying concepts, including growth mechanisms and redefined chirality measures, would further promote this research area. In this perspective, we aim to establish qualitative connections between the chiral shapes and growth conditions, specifically for the seed-mediated synthesis of chiral gold nanorods as a convenient case of chiral morphogenesis. The crystallographic and morphological features of achiral nanorods used as seeds, the experimental conditions during chiral growth, and the symmetry of the chiral inducers, can all be exploited to obtain nanorods with intricate chiral shapes. Chirality characterization (such as electron tomography techniques) and quantification (including chirality measures) emerge as critical aspects to comprehensively explore and understand such structures, enabling optimization of their geometric and optical features. We conclude by discussing relevant challenges to be addressed toward a better controlled synthesis of chiral plasmonic nanostructures.
Collapse
Affiliation(s)
- Bing Ni
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth RoadAnn ArborMichigan48109USA
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guillermo González‐Rubio
- Departamento de Química FísicaUniversidad Complutense de MadridAvenida Complutense s/nMadrid28040Spain
| | - Kyle Van Gordon
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 194Donostia‐San Sebastián20014Spain
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of ExcellenceUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth RoadAnn ArborMichigan48109USA
| | - Luis M. Liz‐Marzán
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA)Paseo de Miramón 194Donostia‐San Sebastián20014Spain
- IkerbasqueBasque Foundation for ScienceBilbao48009Spain
- Biomedical Research Networking CenterBioengineeringBiomaterials and NanomedicineCIBER‐BBNPaseo de Miramón 194Donostia‐San Sebastián20014Spain
- CinbioUniversidade de VigoCampus Universitario s/nVigo36310Spain
| |
Collapse
|
15
|
Lv X, Tian Y, Wu F, Luan X, Li F, Shen Z, Xu G, Liu K, Niu W. Chiral plasmonic-dielectric coupling enables strong near-infrared chiroptical responses from helicoidal core-shell nanoparticles. Nat Commun 2024; 15:9234. [PMID: 39455559 PMCID: PMC11511876 DOI: 10.1038/s41467-024-53705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Helicoid plasmonic nanoparticles with intrinsic chirality are an emerging class of artificial chiral materials with tailorable properties. The ability to extend their chiroplasmonic responses to the near-infrared (NIR) range is critically important for biomedical and nanophotonic applications, yet the rational design of such materials remains challenging. Herein, a strategy employing chiral plasmon-dielectric coupling is proposed to manipulate the chiroptical responses into the NIR region with high optical anisotropy. Through this strategy, the helicoid Au@Cu2O nanoparticles with structural chirality are designed and synthesized with tunable and enriched NIR chiroptical responses. Specially, a high optical anisotropy (g-factor) with a value of 0.35 is achieved in the NIR region, and multi-band chiroptical behaviors are observed. Spectral and electromagnetic simulations elucidate that strong coupling between chiroplasmonic core and chiral dielectric shell with high refractive index contributes to the rich and strong chiroptical responses, which are related to the interplay between various emerged and enhanced electric and magnetic multipolar resonance modes proved by multipole expansion analysis. Moreover, the helicoid Au@Cu2O nanoparticles display greater polarization rotation capability than the helicoid Au nanoparticles. This work offers mechanistic insights into chiral plasmon-dielectric coupling and suggests a general approach of creating NIR chiroplasmonic materials.
Collapse
Affiliation(s)
- Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhili Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
16
|
Yang J, Sun L, Sun X, Tan J, Xu H, Zhang Q. Unraveling the Origin of Reverse Plasmonic Circular Dichroism from Discrete Bichiral Au Nanoparticles. NANO LETTERS 2024; 24:11706-11713. [PMID: 39230335 DOI: 10.1021/acs.nanolett.4c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bichiral plasmonic nanoparticles exhibited intriguing geometry-dependent circular dichroism (CD) reversal; however, the crucial factor that dominates the plasmonic CD is still unclear. Combined with CD spectroscopy and theoretical multipole analysis, we demonstrate that plasmonic CD originates from the excitation of electric quadrupolar plasmons. Moreover, a comparative study of two distinct quadrupolar modes reveals the correlation between the sign of the CD and the local geometric handedness at the plasmonic hotspots, thereby establishing a structure-property relationship in bichiral nanoparticles. The reverse CD is attributed to the opposite directions of the wavelength shift of the two plasmon modes upon changing the particle geometry. By finely tuning the size of bichiral nanoparticles, we can further reveal that the dependence of plasmonic CD on the electric quadrupolar plasmons. Our work sheds light on the physical origin of plasmonic CD and provides important guidelines for the design of chiral plasmonic nanoparticles toward chirality-dependent applications.
Collapse
Affiliation(s)
- Jian Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiqing Tan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Hongxing Xu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
18
|
Tian Y, Wu F, Lv X, Luan X, Li F, Xu G, Niu W. Enantioselective Surface-Enhanced Raman Scattering by Chiral Au Nanocrystals with Finely Modulated Chiral Fields and Internal Standards. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403373. [PMID: 39004880 DOI: 10.1002/adma.202403373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The chiral discrimination of enantiomers is crucial for drug screening and agricultural production. Surface-enhanced Raman scattering (SERS) is proposed for discriminating enantiomers benefiting from chiral plasmonic materials. However, the mechanism of enantioselective SERS is unclear, and fluctuating SERS intensities may result in errors. Herein, this work demonstrates a reliable SERS substrate using chiral Au nanocrystals with finely modulated chiral fields and internal standards. Chiral electromagnetic fields are enhanced after modulation, which is conducive to increasing the difference in the enantiomeric SERS intensity, as evidenced by the experimental and simulation results. Furthermore, the SERS stability is improved by the corrective effect of the internal standards, and the relative standard deviation is significantly reduced. Using finely modulated chiral fields and internal standards, L- and D-phenylalanine exhibit a stable six times difference in SERS ratio. Theoretical simulations reveal that linearly polarized light can also excite the chiral fields of chiral Au nanocrystals, indicating non-chiral far-field light is converted into chiral near-field sources by chiral Au nanocrystals. Thus, the mechanism of enantioselective SERS can be elucidated by the scattering difference of chiral molecules in chiral near fields. This study will pave the way for the development of enantioselective SERS and related chiroptical technologies.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiali Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoxi Luan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fenghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
19
|
Wang L, Wang Y, Chu C, Hu J, Wu S, Ma Y. Chirality Determination of Nanocrystals by Electron Crystallography. J Phys Chem Lett 2024; 15:6896-6908. [PMID: 38935349 DOI: 10.1021/acs.jpclett.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Chirality is a common phenomenon in nature and plays an important role in the properties of matter. The rational synthesis of chiral compounds and exploration of their applications in various fields require an unambiguous determination of their handedness. However, in many cases, determinations of the chiral crystal structure and chiral morphology have been a challenging task due to the lack of proper characterization methods, especially for nanosized crystals. Therefore, it is crucial to develop novel and efficient characterization methods. Owing to the strong interactions between matter and electrons, electron crystallography has become a powerful tool for structural analysis of nanomaterials. In recent years, methods based on electron crystallography, such as high-resolution electron microscopy imaging and electron diffraction, have been developed to unravel the chirality of nanomaterials. This brings new opportunities to the design, synthesis, and applications of versatile chiral nanomaterials. In this perspective, we summarize the recent methodology developments and ongoing research of electron crystallography for chiral structure and morphology determination of nanocrystals, including inorganic and organic materials, as well as highlight the potential and further improvement of these methods in the future.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yao Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Chaoyang Chu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Shitao Wu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
20
|
Liu C, Sun L, Yang G, Cheng Q, Wang C, Tao Y, Sun X, Wang Z, Zhang Q. Chiral Au-Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310353. [PMID: 38150652 DOI: 10.1002/smll.202310353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Integrating the plasmonic chirality with excellent catalytic activities in plasmonic hybrid nanostructures provides a promising strategy to realize the chiral nanocatalysis toward many chemical reactions. However, the controllable synthesis of catalytically active chiral plasmonic nanoparticles with tailored geometries and compositions remains a significant challenge. Here it is demonstrated that chiral Au-Pd alloy nanorods with tunable optical chirality and catalytically active surfaces can be achieved by a seed-mediated coreduction growth method. Through manipulating the chiral inducers, Au nanorods selectively transform into two different intrinsically chiral Au-Pd alloy nanorods with distinct geometric chirality and tunable optical chirality. By further adjusting several key synthetic parameters, the optical chirality, composition, and geometry of the chiral Au-Pd nanorods are fine-tailored. More importantly, the chiral Au-Pd alloy nanorods exhibit appealing chiral catalytic activities as well as polarization-dependent plasmon-enhanced nanozyme catalytic activity, which has great potential for chiral nanocatalysis and plasmon-induced chiral photochemistry.
Collapse
Affiliation(s)
- Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zixu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Wang L, Zheng J, Wang K, Khan M, Hu N, Li H, Li L, Wang J, Ni W. Circular Differential Photocurrent Mapping of Hot Electron Response from Individual Plasmonic Nanohelicoids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687553 DOI: 10.1021/acsami.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Chiral plasmonic nanocrystals have recently attracted increasing attention in circular polarization-dependent photocatalysis driven by hot carriers. While being concealed in traditional ensemble measurements, the individual chiral photocatalytic activity of nanocrystals can exclusively be revealed by directly correlating the circular differential photocurrent response to helical morphologies using single-particle techniques. Herein, we develop a method named circular differential photocurrent mapping (CDPM) and demonstrate that CDPM can be used to characterize the circular differential hot electron (CDHE) response from individual Au nanohelicoids (AuNHs) on a TiO2 photoanode in a photoelectrochemical cell. The single-particle circular differential scattering and CDHE measurements were interpreted with calculations performed on a model in direct correlation to the helical morphologies of the nanocrystal. While CDHE response was found inactive at a dipolar resonance of 750 nm, helicity-convoluted sites of HE generation were identified on the AuNH at a specific higher-order mode of 550 nm, resulting in a significant response of CDHE in association with the handedness of the AuNH. Details of circular differential contributions were further resolved by examining the efficiencies of individual AuNHs in terms of g-factors. Our study provides a powerful microscopic method at the single-particle level for the photocatalytic characterization of chiral nanocrystals, gaining fundamental insights into the photocatalysis of chirality, especially toward plasmon-induced asymmetrical photochemistry or photoelectrochemistry.
Collapse
Affiliation(s)
- Le Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Kaiyu Wang
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Majid Khan
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Ningneng Hu
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Hao Li
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Liang Li
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
22
|
Wan J, Sun L, Sun X, Liu C, Yang G, Zhang B, Tao Y, Yang Y, Zhang Q. Cu 2+-Dominated Chirality Transfer from Chiral Molecules to Concave Chiral Au Nanoparticles. J Am Chem Soc 2024; 146:10640-10654. [PMID: 38568727 DOI: 10.1021/jacs.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Foreign ions as additives are of great significance for realizing excellent control over the morphology of noble metal nanostructures in the state-of-the-art seed-mediated growth method; however, they remain largely unexplored in chiral synthesis. Here, we report on a Cu2+-dominated chiral growth strategy that can direct the growth of concave chiral Au nanoparticles with C3-dominant chiral centers. The introduction of trace amounts of Cu2+ ions in the seed-mediated chiral growth process is found to dominate the chirality transfer from chiral molecules to chiral nanoparticles, leading to the formation of chiral nanoparticles with a concave VC geometry. Both experimental and theoretical results further demonstrate the correlation between the nanoparticle structure and optical chirality for the concave chiral nanoparticle. The Cu2+ ion is found to dominate the chiral growth by selectively activating the deposition of Au atoms along the [110] and [111] directions, facilitating the formation of the concave VC. We further demonstrate that the Cu2+-dominated chiral growth strategy can be employed to generate a variety of concave chiral nanoparticles with enriched geometric chirality and desired chiroptical properties. Concave chiral nanoparticles also exhibit appealing catalytic activity and selectivity toward electrocatalytic oxidation of enantiomers in comparison to helicoidal nanoparticles. The ability to tune the geometric chirality in a controlled manner by simply manipulating the Cu2+ ions as additives opens up a promising strategy for creating chiral nanomaterials with increasing architectural diversity for chirality-dependent optical and catalytic applications.
Collapse
Affiliation(s)
- Jinling Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yahui Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Sun X, Sun L, Lin L, Guo S, Yang Y, Zhang B, Liu C, Tao Y, Zhang Q. Tuning the Geometry and Optical Chirality of Pentatwinned Au Nanoparticles with 5-Fold Rotational Symmetry. ACS NANO 2024; 18:9543-9556. [PMID: 38518176 DOI: 10.1021/acsnano.3c12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Chirality transfer from chiral molecules to chiral nanomaterials represents an important topic for exploring the origin of chirality in many natural and artificial systems. Moreover, developing a promising class of chiral nanomaterials holds great significance for various applications, including sensing, photonics, catalysis, and biomedicine. Here we demonstrate the geometric control and tunable optical chirality of chiral pentatwinned Au nanoparticles with 5-fold rotational symmetry using the seed-mediated chiral growth method. A distinctive growth pathway and optical chirality are observed using pentatwinned decahedra as seeds, in comparison with the single-crystal Au seeds. By employing different peptides as chiral inducers, pentatwinned Au nanoparticles with two distinct geometric chirality (pentagonal nanostars and pentagonal prisms) are obtained. The intriguing formation and evolution of geometric chirality with the twinned structure are analyzed from a crystallographic perspective upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. Moreover, the interesting effects of the molecular structure of peptides on tuning the geometric chirality of pentatwinned Au nanoparticles are also explored. Finally, we theoretically and experimentally investigate the far-field and near-field optical properties of chiral pentatwinned Au nanoparticles through numerical simulations and single-particle chiroptical measurements. The ability to tune the geometric chirality in a controlled manner represents an important step toward the development of chiral nanomaterials with increasing architectural complexity for chiroptical applications.
Collapse
Affiliation(s)
- Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lifei Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shaoyuan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yiming Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
24
|
Wang F, Wang X, Lu X, Huang C. Nanophotonic Enhanced Chiral Sensing and Its Biomedical Applications. BIOSENSORS 2024; 14:39. [PMID: 38248416 PMCID: PMC11154488 DOI: 10.3390/bios14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Chiral sensing is crucial in the fields of biology and the pharmaceutical industry. Many naturally occurring biomolecules, i.e., amino acids, sugars, and nucleotides, are inherently chiral. Their enantiomers are strongly associated with the pharmacological effects of chiral drugs. Owing to the extremely weak chiral light-matter interactions, chiral sensing at an optical frequency is challenging, especially when trace amounts of molecules are involved. The nanophotonic platform allows for a stronger interaction between the chiral molecules and light to enhance chiral sensing. Here, we review the recent progress in nanophotonic-enhanced chiral sensing, with a focus on the superchiral near-field and enhanced circular dichroism (CD) spectroscopy generated in both the dielectric and in plasmonic structures. In addition, the recent applications of chiral sensing in biomedical fields are discussed, including the detection and treatment of difficult diseases, i.e., Alzheimer's disease, diabetes, and cancer.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
| | - Xinchao Lu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Zheng Y, Li X, Huang L, Li X, Yang S, Wang Q, Du J, Wang Y, Ding W, Gao B, Chen H. Homochiral Nanopropeller via Chiral Active Surface Growth. J Am Chem Soc 2024; 146:410-418. [PMID: 38154093 DOI: 10.1021/jacs.3c09652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Under the control of chiral ligand glutathione and in the presence of hexadecyltrimethylammonium bromide, Au deposition on Au seeds is known to give chiral nanostructures. We have previously shown that the protruding chiral patterns, as opposed to flat facets, are likely caused by active surface growth, where nonuniform ligand coverage could be responsible for the focused growth at a few active sites. By pushing the limit of such a growth mode, here, we use decahedral seeds to prepare homochiral nanopropellers with intricate patterns of deep valleys and protruding ridges. Control experiments show that the focused growth depends on the rates of Au deposition by changing either the seed concentration or the reductant concentration, consistent with the proposed mechanism. The dynamic growth competition between the ligand-deficient active sites and the ligand-rich surfaces gradually focuses the growth onto a few active sites, causing the expansion of grooves, squeezing of steep ridges, and a surprising 36° rotation of the pentagonal outline. The imbalanced deposition on the prochiral slopes is responsible for the tilted grooves, the twisted walls, and thus the well-separated and distorted blades, which become the origin of the chiroptical responses.
Collapse
Affiliation(s)
- Yonglong Zheng
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Li
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Liping Huang
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xiaoxin Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Shenghao Yang
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Jiaxin Du
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Gao
- Institute of Modern Optics, School of Physics, Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Hongyu Chen
- Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
26
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
27
|
Zhu LR, Wang ZY, Luo JJ, Zheng YJ, Zou HL, Luo HQ, Zhao LB, Li NB, Li BL. Mercury-Mediated Epitaxial Accumulation of Au Atoms for Stained Hydrogel-Improved On-Site Mercury Monitoring. Anal Chem 2023; 95:18859-18870. [PMID: 38096265 DOI: 10.1021/acs.analchem.3c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.
Collapse
Affiliation(s)
- Liang Rui Zhu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhao-Yu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Jie Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liu-Bin Zhao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
28
|
Cheng Q, Yang J, Sun L, Liu C, Yang G, Tao Y, Sun X, Zhang B, Xu H, Zhang Q. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles. NANO LETTERS 2023. [PMID: 38038244 DOI: 10.1021/acs.nanolett.3c04265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Constructing chiral plexcitonic systems with tunable plasmon-exciton coupling may advance the scientific exploitation of strong light-matter interactions. Because of their intriguing chiroptical properties, chiral plasmonic materials have shown promising applications in photonics, sensing, and biomedicine. However, the strong coupling of chiral plasmonic nanoparticles with excitons remains largely unexplored. Here we demonstrate the construction of a chiral plasmon-exciton system using chiral AuAg nanorods and J aggregates for tuning the plexcitonic optical chirality. Circular dichroism spectroscopy was employed to characterize chiral plasmon-exciton coupling, in which Rabi splitting and anticrossing behaviors were observed, whereas the extinction spectra exhibited less prominent phenomena. By controlling the number of molecular excitons and the energy detuning between plasmons and excitons, we have been able to fine-tune the plexcitonic optical chirality. The ability to fine-tune the plexcitonic optical chirality opens up unique opportunities for exploring chiral light-matter interactions and boosting the development of emerging chiroptical devices.
Collapse
Affiliation(s)
- Qingqing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Yang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Binbin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Sun L, Tao Y, Yang G, Liu C, Sun X, Zhang Q. Geometric Control and Optical Properties of Intrinsically Chiral Plasmonic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306297. [PMID: 37572380 DOI: 10.1002/adma.202306297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Intrinsically chiral plasmonic nanomaterials exhibit intriguing geometry-dependent chiroptical properties, which is due to the combination of plasmonic features with geometric chirality. Thus, chiral plasmonic nanomaterials have become promising candidates for applications in biosensing, asymmetric catalysis, biomedicine, photonics, etc. Recent advances in geometric control and optical tuning of intrinsically chiral plasmonic nanomaterials have further opened up a unique opportunity for their widespread applications in many emerging technological areas. Here, the recent developments in the geometric control of chiral plasmonic nanomaterials are reviewed with special attention given to the quantitative understanding of the chiroptical structure-property relationship. Several important optical spectroscopic tools for characterizing the optical chirality of plasmonic nanomaterials at both ensemble and single-particle levels are also discussed. Three emerging applications of chiral plasmonic nanomaterials, including enantioselective sensing, enantioselective catalysis, and biomedicine, are further highlighted. It is envisioned that these advanced studies in chiral plasmonic nanomaterials will pave the way toward the rational design of chiral nanomaterials with desired optical properties for diverse emerging technological applications.
Collapse
Affiliation(s)
- Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|