1
|
Karimian-Jazi K, Enbergs N, Golubtsov E, Schregel K, Ungermann J, Fels-Palesandro H, Schwarz D, Sturm V, Kernbach JM, Batra D, Ippen FM, Pflüger I, von Knebel Doeberitz N, Heiland S, Bunse L, Platten M, Winkler F, Wick W, Paech D, Bendszus M, Breckwoldt MO. Differentiating Glioma Recurrence and Pseudoprogression by APTw CEST MRI. Invest Radiol 2025; 60:414-422. [PMID: 39644107 DOI: 10.1097/rli.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
OBJECTIVES Recurrent glioma is highly treatment resistant due to its metabolic, cellular, and molecular heterogeneity and invasiveness. Tumor monitoring by conventional MRI has shortcomings to assess these key glioma characteristics. Recent studies introduced chemical exchange saturation transfer for metabolic imaging in oncology and assessed its diagnostic value for newly diagnosed glioma. This prospective study investigates amide proton transfer-weighted (APTw) MRI at 3 T as an imaging biomarker to elucidate the molecular heterogeneity and invasion patterns of recurrent glioma in comparison to pseudoprogression (PsPD). MATERIALS AND METHODS We performed a monocenter, prospective trial and screened 371 glioma patients who received tumor monitoring between August 2021 and March 2024 at our institution. The study included IDH wildtype astrocytoma and IDH mutant astrocytoma and oligodendroglioma, graded according to the WHO 2021 classification. Patients had received clinical standard of care treatment including surgical resection and radiochemotherapy prior to study inclusion. Patients were monitored by 3 monthly MRI follow-up imaging, and response assessment was performed according to the RANO criteria. Within this cohort, we identified 30 patients who presented with recurrent glioma and 12 patients with PsPD. In addition to standard anatomical sequences (FLAIR and T1-w Gd-enhanced sequences), MRI included APTw imaging. After sequence co-registration, semiautomated segmentation was performed of the FLAIR lesion, CE lesion, resection cavity, and the contralateral normal-appearing white matter, and APTw signals were quantified in these regions of interest. RESULTS APTw values were highest in solid, Gd-enhancing tumor parts as compared with the nonenhancing FLAIR lesion (APTw: 1.99% vs 1.36%, P = 0.001), whereas there were no detectable APTw alterations in the normal-appearing white matter (APTw: 0.005%, P < 0.001 compared with FLAIR). Patients with progressive disease had higher APTw levels compared with patients with PsPD (APTw: 1.99% vs 1.26%, P = 0.008). Chemical exchange saturation transfer identified heterogeneity within the FLAIR lesion that was not detectable by conventional sequences. There were also focal APTw signal peaks within contrast enhancing lesions as putative metabolic hotspots within recurrent glioma. The resection cavity developed an APTw increase at recurrence that was not detectable prior to recurrence nor in patients with PsPD (APTw before recurrence: 0.6% vs 2.68% at recurrence, P = 0.03). CONCLUSIONS Our study shows that APTw imaging can differentiate PD and PsPD. We identify previously undetectable imaging patterns during glioma recurrence, which include alterations within resection cavity associated with disease progression. Our work highlights the clinical potential of APTw imaging for glioma monitoring and further establishes it as an imaging biomarker in neuro-oncology.
Collapse
Affiliation(s)
- Kianush Karimian-Jazi
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (K.K.-J., N.E., E.G., K.S., J.U., H.F.-P., D.S., V.S., J.M.K., I.P., S.H., M.B., M.O.B.); Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany (K.K.-J., F.W., W.W.); Department of Neurology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany (D.B., F.M.I., F.W., W.W.); DKTK, DKFZ, Clinical Cooperation Unit Neuropathology, Heidelberg, Germany (F.M.I.); Division of Radiology, DKFZ, Heidelberg, Germany (N.V., D.P.); Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany (L.B., M.P., M.O.B.); Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany (L.B., M.P.); Division of Neuroradiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany (D.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Awais M, Rehman A, Bukhari SS. Advances in liquid biopsy and virtual biopsy for care of patients with glioma: a narrative review. Expert Rev Anticancer Ther 2025; 25:529-550. [PMID: 40183671 DOI: 10.1080/14737140.2025.2489629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION The World Health Organization's 2021 classification of central nervous system neoplasms incorporated molecular and genetic features for classifying gliomas. Classification of gliomas located in deep-seated structures became a clinical conundrum given the absence of crucial pathological and molecular data. Advances in noninvasive imaging modalities offered virtual biopsy as a novel solution to this problem by identifying surrogate radiomic signatures. Liquid biopsies of blood or cerebrospinal fluid provided another enormous opportunity for identifying genomic, metabolomic and proteomic signatures. AREAS COVERED We summarize and appraise the current state of evidence with regards to virtual biopsy and liquid biopsy in the care of patients with gliomas. PubMed, Embase and Google Scholar were searched on 7/30/2024 for relevant articles published after the year 2013 in the English language. EXPERT OPINION A large body of preclinical and preliminary clinical evidence suggests that virtual biopsy is possible with the combined use of multiple novel imaging modalities in conjunction with machine learning and radiomics. Likewise, liquid biopsy in conjunction with focused ultrasound may be a valuable tool to obtain proteomic and genomic data regarding glioma in a minimally invasive manner. These modalities will likely become an integral part of care for patients with glioma in the future.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Radiology, The Aga Khan University, Karachi, Pakistan
| | - Abdul Rehman
- Department of Medicine, Tidal Health Peninsula Regional, Salisbury, MD, USA
| | - Syed Sarmad Bukhari
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Li X, Xiao X, Han X, Cheng Y, Cui B, Zhang M, Liu H, Lu J. Magnetic resonance spectroscopy for enhanced multiparametric MRI characterization of [ 18F]FET PET-negative gliomas. EJNMMI Res 2025; 15:37. [PMID: 40195261 PMCID: PMC11977091 DOI: 10.1186/s13550-025-01224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Approximately 30-36% of gliomas presented with [18F]fluoroethyl-L-tyrosine ([18F]FET) PET-negative at primary diagnosis, which interferes with the differentiation of gliomas from other isolated brain lesions. Preoperative noninvasive identification of [18F]FET PET-negative gliomas to aggressive surgical treatment could reduce ineffective treatment and improve prognosis. This study aimed to assess the potential utility of multiparametric MRI with 1H-magnetic resonance spectroscopy (1H-MRS) in the diagnosis of gliomas within [18F]FET PET-negative isolated cerebral lesions. RESULTS A total of 51 patients (mean age 44.35 ± 27.15 years, 26 males) with 37 gliomas and 14 non-gliomas were recruited for the study. More than half of PET-negative gliomas presented T2-FLAIR mismatch sign, whereas non-gliomas were more likely to present absence of T2-FLAIR mismatch sign (54.05% vs. 7.14%, p < 0.001). Choline to creatine (Cho/Cr) ratios in gliomas were significantly higher than those in non-gliomas (2.21 vs. 1.30, p < 0.001). Multiparametric MRI (AUC = 0.88) outperformed conventional MRI (AUC = 0.72) in differentiating gliomas from non-gliomas (NRI = 0.29, p = 0.02). And WHO grade was correlated with Cho/Cr and total lesion tracer standardized uptake (TLU) (r = 0.43 and 0.55; p = 0.007 and < 0.001; respectively). Low-grade PET-negative gliomas exhibit low levels of both TLU and Cho/Cr, but the distribution of TLU and Cho/Cr is more variable in high-grade gliomas. Furthermore, there was a moderated correlation between TLU and Cho/Cr in low-grade PET-negative gliomas (r = 0.54, p = 0.017), whereas there was no correlation in the high-grade PET-negative gliomas (r = -0.017, p = 0.95). CONCLUSION Multiparametric MRI with 1H-MRS demonstrates significant promise in enhancing the diagnosis and overall clinical management for [18F]FET PET-negative gliomas. Moreover, the correlation between TLU and Cho/Cr that was affected by tumor grading of 2021 WHO criteria provides a rationale for further research into the mechanisms of reduced [18F]FET uptake in gliomas.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Han
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Ye Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China
| | - Meng Zhang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Chan SC, Chiu TL, Ng SH, Kao HW, Tsai ST, Liu SH. 18F-FET PET/CT can aid in diagnosing patients with indeterminate MRI findings for brain tumors: a prospective study. Ann Nucl Med 2025; 39:342-352. [PMID: 39589672 DOI: 10.1007/s12149-024-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This prospective study aimed to evaluate the diagnostic value of fluorine-18-labeled fluoroethyltyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in diagnosing brain tumors within an Asian patient population. METHODS Patients suspected of having primary or recurrent brain tumors were prospectively recruited. Each patient underwent 18F-FET and fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT on separate days within 1 week. We calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy to compare the diagnostic performance of the two PET scans. The standardized uptake value (SUV) and tumor-to-background ratio (TBR) of the lesions were determined using static images. Additionally, time-activity curves (TACs) and time-to-peak (TTP) were generated from the dynamic PET images. RESULTS From September 2019 to December 2023, 33 subjects were enrolled for reasons including suspected brain tumors (n = 20) or suspicious glioma recurrence (n = 8) on magnetic resonance imaging (MRI) and restaging for glioma (n = 5). Among the patients with suspected brain tumors or glioma recurrence on MRI, 25% had false-positive results. 18F-FET PET/CT accurately identified 86% of these false positives. The sensitivity, specificity, PPV, NPV, and accuracy of visual interpretation of 18F-FET PET/CT were 96.2%, 85.7%, 96.2%, 85.7%, and 93.9%, respectively. The corresponding 18F-FDG PET/CT values were 73.1%, 71.4%, 90.5%, 41.7%, and 72.7%. 18F-FET PET/CT demonstrated significantly higher sensitivity and accuracy than 18F-FDG PET (p = 0.031 and p = 0.030, respectively). Using TBRmean as an adjunct reference index enhanced the diagnostic accuracy of 18F-FET PET/CT, achieving a sensitivity and NPV of 100%. Wash-out TAC or TTP < 20 min was associated with a PPV of 100% for brain tumors. CONCLUSIONS 18F-FET PET/CT appears to be a valuable tool for assessing brain tumors with indeterminate MRI findings in this Asian cohort. 18F-FET PET/CT offers benefits over 18F-FDG PET in differentiating brain tumors from nontumor brain lesions, particularly when using semiquantitative analysis with TBR. This study was registered on CinicalTrial.gov (NCT06563024).
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- Department of Nuclear Medicine, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 333423, Taiwan
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
- Department of Radiology, School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| | - Shu-Hsin Liu
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
5
|
Hu X, Zhang G, Wang Y, Zhang X, Xie R, Liu X, Ding H. Microvascular heterogeneity exploration in core and invasive zones of orthotopic rat glioblastoma via ultrasound localization microscopy. Eur Radiol Exp 2025; 9:30. [PMID: 40045008 PMCID: PMC11882483 DOI: 10.1186/s41747-025-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND We studied the microvascular structure and function of in situ glioblastoma using ultrasound localization microscopy (ULM). METHODS The in vivo study was conducted via craniotomy in six Sprague-Dawley rats. Capillary pattern, capillary hemodynamics, and functional quantitative parameters were compared among tumor core, invasive zone, and normal brain tissue with ex vivo micro-computed tomography (micro-CT) and scanning electron microscopy. Correlations between quantitative parameters and histopathological vascular density (VD-H), proliferation index, and histopathological vascular maturity index (VMI-H) were evaluated. Kruskal-Wallis H, ANOVA, Mann-Whitney U, Pearson, and Spearman correlation statistics were used. RESULTS Compared to the tumor core, the invasive zone exhibited higher microvascularity structural disorder and complexity, increased hemodynamic heterogeneity, higher local blood flow perfusion (p ≤ 0.033), and slightly lower average flow velocity (p = 0.873). Significant differences were observed between the invasive zone and normal brain tissue across all parameters (p ≤ 0.001). ULM demonstrated higher microstructural resolution compared to micro-CT and a nonsignificant difference compared to scanning electron microscopy. The invasive zone vascular density correlated with VD-H (r = 0.781, p < 0.001). Vessel diameter (r = 0.960, p < 0.001), curvature (r = 0.438, p = 0.047), blood flow velocity (r = 0.487, p = 0.025), and blood flow volume (r = 0.858, p < 0.001) correlated with proliferation index. Vascular density (r = -0.444, p = 0.044) and fractal dimension (r = -0.933, p < 0.001) correlated with VMI-H. CONCLUSION ULM provided high-resolution, noninvasive imaging of glioblastoma microvascularity, offering insights into structural/functional abnormalities. RELEVANCE STATEMENT ULM technology based on ultrafast ultrasound can accurately quantify the microvessels of glioblastoma, providing a new method for evaluating the effectiveness of antiangiogenic therapy and visualizing disease progression. This method may facilitate early therapeutic assessment. KEY POINTS ULM reliably captures the vascular structures and hemodynamic features of glioblastoma in rats. Micro-CT and scanning electron microscopy validated its effectiveness in microvascular non-invasion characterization. ULM is expected to effectively evaluate glioblastoma anti-vascular therapy response.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Gaobo Zhang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, E Fudan Univertity, Shanghai, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China.
| |
Collapse
|
6
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part I-Essential Information on Preoperative and Immediate Postoperative Imaging. Korean J Radiol 2025; 26:246-268. [PMID: 39999966 PMCID: PMC11865903 DOI: 10.3348/kjr.2024.0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/27/2025] Open
Abstract
The paradigm of isocitrate dehydrogenase (IDH)-wildtype glioblastoma is rapidly evolving, reflecting clinical, pathological, and imaging advancements. Thus, it remains challenging for radiologists, even those who are dedicated to neuro-oncology imaging, to keep pace with this rapidly progressing field and provide useful and updated information to clinicians. Based on current knowledge, radiologists can play a significant role in managing patients with IDH-wildtype glioblastoma by providing accurate preoperative diagnosis as well as preoperative and postoperative treatment planning including accurate delineation of the residual tumor. Through active communication with clinicians, extending far beyond the confines of the radiology reading room, radiologists can impact clinical decision making. This Part 1 review provides an overview about the neuropathological diagnosis of glioblastoma to understand the past, present, and upcoming revisions of the World Health Organization classification. The imaging findings that are noteworthy for radiologists while communicating with clinicians on preoperative and immediate postoperative imaging of IDH-wildtype glioblastomas will be summarized.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
7
|
Luan X, Gao Y, Pan Y, Huang Z, Zeng F, He G, He B, Ye D, Song Y. Bifunctional Nanoassembly Enables Metabolism-Driven Microfluidic Blood Screening Guided by MRI Localization for Cancer Monitoring. Anal Chem 2025; 97:3395-3403. [PMID: 39900559 DOI: 10.1021/acs.analchem.4c05427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Early detection and precise tumor localization are critical for improving treatment outcomes and enabling more targeted and minimally invasive therapies as biotechnology evolves. However, endogenous biomarkers from early lesions face significant challenges, such as short circulation times and blood dilution, which hinder early diagnostic efforts. In this study, we present a multimodal nanosensor specifically engineered to target cancer by responding to CD44 and tumor-associated enzymes within the microenvironment. Following systemic administration, the nanosensor selectively accumulates at the disease site, delivering hexaminolevulinate (HAL) to produce protoporphyrin IX (PpIX) as a synthetic biomarker, thus amplifying disease signals for analysis via a microfluidics-based device. Concurrently, embedded Gd2O3 nanoclusters facilitate tumor visualization through magnetic resonance imaging (MRI). Beyond tumor diagnosis, this innovative methodology supports the multimodal monitoring of drug response through the assessment of blood reporter signals and MRI imaging. This multifunctional system addresses critical limitations in traditional cancer diagnostics, which typically rely on sequential blood biomarker tests, followed by imaging. Our approach enhances diagnostic efficiency, minimizes the need for invasive procedures, and promotes more accurate and personalized cancer care.
Collapse
Affiliation(s)
- Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Hou L, Chen Z, Chen F, Sheng L, Ye W, Dai Y, Guo X, Dong C, Li G, Liao K, Li Y, Ma J, Wei H, Ran W, Shang J, Ling X, Patel JS, Liang SH, Xu H, Wang L. Synthesis, preclinical assessment, and first-in-human study of [ 18F]d 4-FET for brain tumor imaging. Eur J Nucl Med Mol Imaging 2025; 52:864-875. [PMID: 39482500 DOI: 10.1007/s00259-024-06964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
PURPOSE Tumor-to-background ratio (TBR) is a critical metric in oncologic PET imaging. This study aims to enhance the TBR of [18F]FET in brain tumor imaging by substituting deuterium ("D") for hydrogen ("H"), thereby improving the diagnostic sensitivity and accuracy. METHODS [18F]d4-FET was synthesised by two automated radiochemistry modules. Biodistribution studies and imaging efficacy were evaluated in vivo and ex vivo in rodent models, while metabolic stability and radiation dosimetry were assessed in non-human primates. Additionally, preliminary imaging evaluations were carried out in five brain tumor patients: three glioma patients underwent imaging with both [18F]d4-FET and [18F]FET, and two patients with brain metastases were imaged using [18F]d4-FET and [18F]FDG. RESULTS [18F]d4-FET demonstrated high radiochemical purity and yield. PET/MRI in rodent models demonstrated superior TBR for [18F]d4-FET compared to [18F]FET, and autoradiography showed tumor margins that correlated well with pathological extents. Studies in cynomolgus monkeys indicated comparable in vivo stability and effective dose with [18F]FET. In glioma patients, [18F]d4-FET showed enhanced TBR, while in patients with brain metastases, [18F]d4-FET displayed superior lesion delineation compared to [18F]FDG, especially in smaller metastatic sites. CONCLUSION We successfully synthesized the novel PET radiotracer [18F]d4-FET, which retains the advantageous properties of [18F]FET while potentially enhancing TBR for glioma imaging. Preliminary studies indicate excellent stability, efficacy, and sensitivity of [18F]d4-FET, suggesting its potential in clinical evaluations of brain tumors. TRIAL REGISTRATION ChiCTR2400081576, registration date: 2024-03-05, https://www.chictr.org.cn/bin/project/edit?pid=206162.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zhiyong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, China
| | - Lianghe Sheng
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingchu Dai
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Xiaoyu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jie Ma
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine, & Key Laboratory of Basic and Translational Research On Radiopharmaceuticals, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Chung C. Defining the Biologically Active Tumor for Radiation Therapy. Int J Radiat Oncol Biol Phys 2025; 121:290-291. [PMID: 39824571 DOI: 10.1016/j.ijrobp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 01/20/2025]
Affiliation(s)
- Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
10
|
Li Y, Wang R, Chen J, Zhu Z, Wang Y, Ma W. 68Ga-NOTA-RM26 PET/CT in the evaluation of glioma: a pilot prospective study. EJNMMI Res 2025; 15:6. [PMID: 39821814 PMCID: PMC11748694 DOI: 10.1186/s13550-025-01198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Gliomas are the most common malignant primary tumors of the central nervous system. There is an urgent need for new convenient, targeted and specific imaging agents for gliomas. This study aimed to firstly evaluate the feasibility of 68Ga-NOTA-RM26 PET/CT imaging in glioma and analyze the relationship between the imaging characteristics and glioma grade, classification and molecular alterations. RESULTS Twenty-two patients were confirmed as glioma by surgery or biopsy. All patients exhibited 68Ga-NOTA-RM26 uptake. SUVmax was chosen as the imaging marker for analysis. For all glioma patients, there were significant differences between grades (P = 0.047). For primary gliomas, SUVmax had good discrimination for both tumor classifications (P = 0.045) and grades (P = 0.03). There was a positive correlation (P < 0.01) between GRPR expression level and SUVmax. P53 mutations caused significant differences in SUVmax (P = 0.03). CONCLUSIONS This study is the first application of 68Ga-NOTA-RM26 in glioma patients and confirmed the safety and efficacy in glioma patients. 68Ga-NOTA-RM26 PET/CT has potential value in tumor grade, classification, and molecular alterations. TRIAL REGISTRATION ClinicalTrials.gov: NCT06412952. Registered 26 April 2024, https://clinicaltrials.gov/study/NCT06412952.
Collapse
Affiliation(s)
- Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingci Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhaohui Zhu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Lee DY, Oh JS, Kim JW, Oh M, Oh SJ, Lee S, Kim YH, Kim JH, Nam SJ, Song SW, Kim JS. Pre-operative dual-time-point [ 18F]FET PET differentiates CDKN2A/B loss and PIK3CA mutation status in adult-type diffuse glioma: a single-center prospective study. Eur J Nucl Med Mol Imaging 2025; 52:669-682. [PMID: 39365462 DOI: 10.1007/s00259-024-06935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE While [18F]FET PET plays a complementary role in glioma imaging, it needs to be more comprehensively understood for improved characterization of glioma prior to surgery given the evolving landscape of molecular neuropathology. Thus, we investigated the utility of pre-operative dual-time-point [18F]FET PET in correlation with next-generation sequencing (NGS) data in patients with adult-type diffuse glioma (ADG). METHODS Adult patients who were suspected to have primary glioma were prospectively recruited between June 2021 and January 2024. They underwent pre-operative dual-time-point static PET/CT at 20 min (early) and 80 min (delay) after [18F]FET injection. Semi-quantitative parameters of the hottest lesion (SUVmax) of tumour and the hottest lesion-to-normal brain ratio (TBRmax) were assessed from each summed image. Furthermore, the percentage changes (△) of SUVmax and TBRmax between two images were calculated. Histopathology of glioma was determined according to the 2021 WHO classification and NGS data. RESULTS This study investigated a dozen genes in 76 patients, of whom 51 had isocitrate dehydrogenase (IDH)-wild-type glioblastoma, 13 had IDH-mutant astrocytoma, and 12 had IDH-mutant oligodendroglioma. Every tumour was [18F]FET-avid having TBRmax more than 1.6. Patients with CDKN2A/B loss had significantly higher values of SUVmax (5.7 ± 1.6 vs. 4.7 ± 1.3, p = 0.004; 5.0 ± 1.4 vs. 4.4 ± 1.2, p = 0.026) and TBRmax (6.5 ± 1.8 vs. 5.1 ± 1.7, p = 0.001; 5.3 ± 1.5 vs. 4.3 ± 1.3, p = 0.004) in both scans than patients without CDKN2A/B loss, even after adjustment for age, MRI enhancement, tumor grade and type of pathology. Furthermore, patients with PIK3CA mutation (16.2 ± 11.8 vs. 6.7 ± 11.6, p = 0.007) had significantly higher △SUVmax than patients without PIK3CA mutation, even after adjustment for age, MRI enhancement, tumor grade, and type of pathology. CONCLUSION Among the dozen genes investigated in this prospective study in patients with ADG, we found out that CDKN2A/B loss and PIK3CA mutation status could be differentiated by pre-operative dual-time-point [18F]FET PET/CT.
Collapse
Affiliation(s)
- Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jeong Won Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sang Woo Song
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
12
|
Horsley PJ, Bailey DL, Schembri G, Hsiao E, Drummond J, Back MF. The role of amino acid PET in radiotherapy target volume delineation for adult-type diffuse gliomas: A review of the literature. Crit Rev Oncol Hematol 2025; 205:104552. [PMID: 39521308 DOI: 10.1016/j.critrevonc.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To summarise existing literature examining amino acid positron emission tomography (AA-PET) for radiotherapy target volume delineation in patients with gliomas. METHODS Systematic search of MEDLINE and EMBASE databases. RESULTS Twenty studies met inclusion criteria. Studies comparing MRI- and AA-PET- derived target volumes consistently found these to be complementary. Across studies, AA-PET was a strong predictor of the site of subsequent relapse. In studies examining AA-PET-guided radiotherapy at standard doses, including one study using reduced margins, survival outcomes were similar to historical cohorts whose volumes were generated using MRI alone. Four prospective single-arm trials examining AA-PET-guided dose-escalated radiotherapy reported mixed results. The two trials that used both a higher biologically-effective dose and boost-volumes defined using both MRI and AA-PET reported promising outcomes. CONCLUSION AA-PET is a promising complementary tool to MRI for radiotherapy target volume delineation, with potential benefits requiring further validation including margin reduction and facilitation of dose-escalation.
Collapse
Affiliation(s)
- Patrick J Horsley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Geoffrey Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - James Drummond
- Department of Radiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael F Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; The Brain Cancer Group, Sydney, New South Wales, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| |
Collapse
|
13
|
Day IL, Tamboline M, Lipshutz GS, Xu S. Recent developments in translational imaging of in vivo gene therapy outcomes. Mol Ther 2024:S1525-0016(24)00849-9. [PMID: 39741403 DOI: 10.1016/j.ymthe.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Gene therapy achieves therapeutic benefits by delivering genetic materials, packaged within a delivery vehicle, to target cells with defective genes. This approach has shown promise in treating various conditions, including cancer, metabolic disorders, and tissue-degenerative diseases. Over the past 5 years, molecular imaging has increasingly supported gene therapy development in both preclinical and clinical studies. High-quality images from positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and computed tomography (CT) enable quantitative and reliable monitoring of gene therapy. Most reported studies have applied imaging biomarkers to non-invasively evaluate the outcomes of gene therapy. This review aims to inform researchers in molecular imaging and gene therapy about the integration of these two disciplines. We highlight recent developments in using imaging biomarkers to monitor the outcome of in vivo gene therapy, where the therapeutic delivery vehicle is administered systemically. In addition, we discuss prospects for further incorporating imaging biomarkers to support the development and application of gene therapy.
Collapse
Affiliation(s)
- Isabel L Day
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Hou S, Lin N, Wang Y. Preparation of Red-Emitting CDs for Glioma Imaging and Fe 3+ Sensing. ACS OMEGA 2024; 9:44418-44424. [PMID: 39524613 PMCID: PMC11541525 DOI: 10.1021/acsomega.4c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Red-emitting fluorescent carbon dots (CDs) have garnered significant attention due to their wide-ranging applications in biological fields. However, challenges such as complex precursors, labor-intensive preparation processes, and low quantum yields have hindered their broader utilization. In this study, we developed a simple and efficient solvothermal method to synthesize fluorescent CDs with tunable emission wavelengths using aniline derivatives as precursors. The emission wavelengths of the synthesized CDs were influenced by the functional groups at the para-position of the aniline derivatives with stronger electron-donating effects leading to a red shift in emissions. Notably, bright red-emitting CDs with a quantum yield of 19.42% and excellent photobleaching resistance were obtained by using p-phenylenediamine as the sole precursor. These CDs exhibited sensitivity to Fe3+ ions, demonstrating a strong linear detection range (R 2 = 0.999) from 0 to 50 μM. Additionally, the CDs were uniform in size (2-5 nm), emitted stable red fluorescence in pH conditions ranging from 4 to 10, and were successfully internalized by glioma cells, enabling precise fluorescence imaging of gliomas both in vitro and in vivo.
Collapse
Affiliation(s)
- Shiqiang Hou
- Department
of Neurosurgery, The Affiliated Chuzhou
Hospital of Anhui Medical University, The First People’s Hospital
of Chuzhou, Chuzhou 239001, China
| | - Ning Lin
- Department
of Neurosurgery, The Affiliated Chuzhou
Hospital of Anhui Medical University, The First People’s Hospital
of Chuzhou, Chuzhou 239001, China
| | - Yi Wang
- Center
for Advanced Low-Dimension Materials, State Key Laboratory for Modification
of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201600, China
| |
Collapse
|
15
|
Holzgreve A, Nitschmann A, Maier SH, Büttner M, Schönecker S, Marschner SN, Fleischmann DF, Corradini S, Belka C, la Fougère C, Bodensohn R, Albert NL, Niyazi M. FET PET-based target volume delineation for the radiotherapy of glioblastoma: A pictorial guide to help overcome methodological pitfalls. Radiother Oncol 2024; 198:110386. [PMID: 38880414 DOI: 10.1016/j.radonc.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
PET is increasingly used for target volume definition in the radiotherapy of glioblastoma, as endorsed by the 2023 ESTRO-EANO guidelines. In view of its growing adoption into clinical practice and upcoming PET-based multi-center trials, this paper aims to assist in overcoming common pitfalls of FET PET-based target delineation in glioblastoma.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Ahmanson Translational Theranostics Division, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA.
| | - Alexander Nitschmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian H Maier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Daniel F Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | | | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), Tübingen, Germany
| |
Collapse
|
16
|
Yoon JH, Lee H, Kwon D, Lee D, Lee S, Cho E, Kim J, Kim D. Integrative approach of omics and imaging data to discover new insights for understanding brain diseases. Brain Commun 2024; 6:fcae265. [PMID: 39165479 PMCID: PMC11334939 DOI: 10.1093/braincomms/fcae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Treatments that can completely resolve brain diseases have yet to be discovered. Omics is a novel technology that allows researchers to understand the molecular pathways underlying brain diseases. Multiple omics, including genomics, transcriptomics and proteomics, and brain imaging technologies, such as MRI, PET and EEG, have contributed to brain disease-related therapeutic target detection. However, new treatment discovery remains challenging. We focused on establishing brain multi-molecular maps using an integrative approach of omics and imaging to provide insights into brain disease diagnosis and treatment. This approach requires precise data collection using omics and imaging technologies, data processing and normalization. Incorporating a brain molecular map with the advanced technologies through artificial intelligence will help establish a system for brain disease diagnosis and treatment through regulation at the molecular level.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jaehoon Kim
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| |
Collapse
|
17
|
Liu P, Huang J, Duan W, Song T, Wang J, Zhang C, Du Y, Chen Y, Fu R, Lu J, Chen Z. FET PET provides adjunctive value to FDG PET in distinction of spinal cord tumors. Heliyon 2024; 10:e33353. [PMID: 39040377 PMCID: PMC11261781 DOI: 10.1016/j.heliyon.2024.e33353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Objective This study aimed to compare the diagnostic efficacy of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET and 2-deoxy-2-[18F]fluoro-d-deoxyglucose (18F-FDG) PET for spinal cord lesions. Materials and methods Paired preoperative 18F-FDG PET/MRI and 18F-FET PET/MRI scans were conducted on patients with suspected spinal cord tumors. Clinical manifestations and PET performance, including SUVmean, SUVmax, TBRmean, TBRmax, metabolic tumor volume (MTV), and total lesion metabolism (TLM), and tumor volume, were compared using group analysis and receiver operating characteristic (ROC) curves. Results Thirty-five patients were categorized into three groups based on their pathological diagnosis: high-grade tumors (HGTs, n = 6), low-grade tumors (LGTs, n = 19), and non-tumor diseases (NTDs, n = 10). The background SUVmean of 18F-FET PET was significantly lower than that of 18F-FDG PET (p < 0.0001), while the delineated tumor volumes showed no significant difference (p > 0.05). The mass SUVmean, SUVmax, MTV, and TLM values of both 18F-FDG PET and 18F-FET PET were statistically different between HGTs and LGTs (p < 0.05). Similarly, the mass SUVmax, TBRmax, MTV, and TLM values of both 18F-FDG PET and 18F-FET PET, as well as the mass SUVmean of 18F-FET PET, exhibited statistical differences between HGTs and NTDs (p < 0.05). But none were able to distinguish LGTs and NTDs (p > 0.05). Notably, 18F-FET PET provided valuable supporting diagnostic evidence in 1 case of mixed neuronal-glial tumor (MNGT) and 2 cases of intramedullary inflammatory lesions. Optimal cut-off values of all measured parameters for distinguishing tumors and NTDs were determined through ROC analysis. Conclusion 18F-FET PET presented comparable diagnostic performance to 18F-FDG PET in differentiating HGTs, LGTs, and NTDs, but exhibited particular utility in MNGT and inflammatory lesions.
Collapse
Affiliation(s)
- Penghao Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jing Huang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianbin Song
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jiyuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Can Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yueqi Du
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ye Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Renkui Fu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
18
|
He C, Guo Y, Zhou N, Wang Z, Liu T, Xu X, Wang F, Zhu H, Yang Z, Yang X, Xia L. Construction and Application of a PD-L1-Targeted Multimodal Diagnostic and Dual-Functional Theranostics Nanoprobe. Int J Nanomedicine 2024; 19:5479-5492. [PMID: 38863646 PMCID: PMC11166151 DOI: 10.2147/ijn.s461701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
Background In recent years, PD-L1 has been primarily utilized as an immune checkpoint marker in cancer immunotherapy. However, due to tumor heterogeneity, the response rate to such therapies often falls short of expectations. In addition to its role in immunotherapy, PD-L1 serves as a specific target on the surface of tumor cells for targeted diagnostic and therapeutic interventions. There is an absence of a fully developed PD-L1-targeted diagnostic and therapeutic probe for clinical use, which constrains the exploration and clinical exploitation of this target. Methods and Results In this study, we engineered a PD-L1-targeted probe with multimodal imaging and dual therapeutic functionalities utilizing organic melanin nanoparticles. Functionalization with the WL12-SH peptide endowed the nanoprobe with specific targeting capabilities. Subsequent radiolabeling with 89Zr (half-life: 100.8 hours) and chelation of Mn2+ ions afforded the probe the capacity for simultaneous PET and MRI imaging modalities. Cellular uptake assays revealed pronounced specificity, with -positive cells exhibiting significantly higher uptake than -negative counterparts (p < 0.05). Dual-modal PET/MRI imaging delineated rapid and sustained accumulation at the neoplastic site, yielding tumor-to-non-tumor (T/NT) signal ratios at 24 hours post-injection of 16.67±3.45 for PET and 6.63±0.64 for MRI, respectively. We conjugated the therapeutic radionuclide 131I (half-life: 8.02 days) to the construct and combined low-dose radiotherapy and photothermal treatment (PTT), culminating in superior antitumor efficacy while preserving a high safety profile. The tumors in the cohort receiving the dual-modality therapy exhibited significantly reduced volume and weight compared to those in the control and monotherapy groups. Conclusion We developed and applied a novel -targeted multimodal theranostic nanoprobe, characterized by its high specificity and superior imaging capabilities as demonstrated in PET/MRI modalities. Furthermore, this nanoprobe facilitates potent therapeutic efficacy at lower radionuclide doses when used in conjunction with PTT.
Collapse
Affiliation(s)
- Chengxue He
- Medical College, Guizhou University, Guiyang, GuiZhou Province, People’s Republic of China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - YanHui Guo
- Department of Radiology, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Hepato-Pancreato-Biliary Surgery, Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Zhi Yang
- Medical College, Guizhou University, Guiyang, GuiZhou Province, People’s Republic of China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xianteng Yang
- Medical College, Guizhou University, Guiyang, GuiZhou Province, People’s Republic of China
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, GuiZhou Province, People’s Republic of China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| |
Collapse
|
19
|
Li Z, Chen J, Kong Z, Shi Y, Xu M, Mu BS, Li N, Ma W, Yang Z, Wang Y, Liu Z. A bis-boron boramino acid PET tracer for brain tumor diagnosis. Eur J Nucl Med Mol Imaging 2024; 51:1703-1712. [PMID: 38191817 DOI: 10.1007/s00259-024-06600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
PURPOSE Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure. METHODS This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging. RESULTS Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115-0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement. CONCLUSION This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.
Collapse
Affiliation(s)
- Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Head and Neck Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China
| | - Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhibo Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
20
|
Ge W, Chen G, Huang X, Gao B, Wang F. Heteroions Radii Matching Produced Intensely Luminescent Bismuth-Ag 2S Nanocrystals for through-Skull NIR-II Imaging of Orthotopic Glioma. NANO LETTERS 2024; 24:4562-4570. [PMID: 38591327 DOI: 10.1021/acs.nanolett.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Heteroions doped Ag2S nanocrystals (NCs) exhibiting enhanced near-infrared-II emission (NIR-II) hold great promise for glioma diagnosis. Nevertheless, current doped Ag2S NCs paradoxically improved properties via toxic dopants, and the blood-brain barrier (BBB) constitutes another challenge for orthotopic glioma imaging. Thus, it is urgent to develop biofriendly high-bright Ag2S NCs with active BBB-penetration for glioma-targeted imaging. Herein, bismuth (Bi) was screened to obtain Bi-Ag2S NCs with high absolute PLQY (∼13.3%) for its matched ionic-radius (1.03 Å) with Ag+. The Bi-Ag2S NCs exhibited a higher luminance and deeper penetration (5-6 mm) than clinical indocyanine green. Upon conjugation with lactoferrin, the NCs acquired BBB-crossing and glioma-targeting abilities. Time-dependent NIR-II-imaging demonstrated their effective accumulation in glioma with skull/scalp intact after intravenous injection. Moreover, the toxic-metal-free NCs exhibited negligible toxicity and great biocompatibility. The success of leveraging the ion-radii comparison may unlock the full potential of doped-Ag2S NCs in bioimaging and inspire the development of various doped NIR-II NCs.
Collapse
Affiliation(s)
- Wei Ge
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Gang Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P.R. China
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Beibei Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
21
|
Harat M, Miechowicz I, Rakowska J, Zarębska I, Małkowski B. A Biopsy-Controlled Prospective Study of Contrast-Enhancing Diffuse Glioma Infiltration Based on FET-PET and FLAIR. Cancers (Basel) 2024; 16:1265. [PMID: 38610944 PMCID: PMC11010945 DOI: 10.3390/cancers16071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
Accurately defining glioma infiltration is crucial for optimizing radiotherapy and surgery, but glioma infiltration is heterogeneous and MRI imperfectly defines the tumor extent. Currently, it is impossible to determine the tumor infiltration gradient within a FLAIR signal. O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET often reveals high-grade glioma infiltration beyond contrast-enhancing areas on MRI. Here, we studied FET uptake dynamics in tumor and normal brain structures by dual-timepoint (10 min and 40-60 min post-injection) acquisition to optimize analysis protocols for defining glioma infiltration. Over 300 serial stereotactic biopsies from 23 patients (mean age 47, 12 female/11 male) of diffuse contrast-enhancing gliomas were taken from areas inside and outside contrast enhancement or outside the FET hotspot but inside FLAIR. The final diagnosis was G4 in 11, grade 3 in 10, and grade 2 in 2 patients. The target-to-background (TBRs) ratios and standardized uptake values (SUVs) were calculated in areas used for biopsy planning and in background structures. The optimal method and threshold values were determined to find a preferred strategy for defining glioma infiltration. Standard thresholding (1.6× uptake in the contralateral brain) in standard acquisition PET images differentiated a tumor of any grade from astrogliosis, although the uptake in astrogliosis and grade 2 glioma was similar. Analyzing an optimal strategy for infiltration volume definition astrogliosis could be accurately differentiated from tumor samples using a choroid plexus as a background. Early acquisition improved the AUC in many cases, especially within FLAIR, from 56% to 90% sensitivity and 41% to 61% specificity (standard TBR 1.6 vs. early TBR plexus). The current FET-PET evaluation protocols for contrast-enhancing gliomas are limited, especially at the tumor border where grade 2 tumor and astrogliosis have similar uptake, but using choroid plexus uptake in early acquisitions as a background, we can precisely define a tumor within FLAIR that was outside of the scope of current FET-PET protocols.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, 85-681 Bydgoszcz, Poland;
| | - Izabela Zarębska
- Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland;
| | - Bogdan Małkowski
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
22
|
Albert NL, Furtner J, van den Bent MJ, Preusser M. The potential of amino acid PET imaging for prediction and monitoring of vorasidenib response in IDH-mutant gliomas. Neuro Oncol 2024; 26:403-406. [PMID: 38070497 PMCID: PMC10911996 DOI: 10.1093/neuonc/noad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Julia Furtner
- Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Martin J van den Bent
- The Brain Tumour Center at the Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Metz MC, Ezhov I, Peeken JC, Buchner JA, Lipkova J, Kofler F, Waldmannstetter D, Delbridge C, Diehl C, Bernhardt D, Schmidt-Graf F, Gempt J, Combs SE, Zimmer C, Menze B, Wiestler B. Toward image-based personalization of glioblastoma therapy: A clinical and biological validation study of a novel, deep learning-driven tumor growth model. Neurooncol Adv 2024; 6:vdad171. [PMID: 38435962 PMCID: PMC10907005 DOI: 10.1093/noajnl/vdad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Background The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we performed clinical and biological validation of a novel growth model, aiming to close the gap between the experimental state and clinical implementation. Methods One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway activation maps (generated with PARADIGM; TCGA only), and infiltration (Dw) as well as proliferation (ρ) parameters stemming from a Fisher-Kolmogorov growth model. To further evaluate clinical potential, we performed the same growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and compared model-derived tumor volume and recurrence coverage with standard radiotherapy plans. Results The parameter ratio Dw/ρ (P < .05 in TCGA) as well as the simulated tumor volume (P < .05 in TCGA/UCSF) were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation between 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased radiation volume utilizing model-derived target volumes instead of standard radiation plans. Conclusions Identifying a significant correlation between computed growth parameters and clinical and biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblastoma. This might improve the accuracy of radiation planning in the near future.
Collapse
Affiliation(s)
- Marie-Christin Metz
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University of Munich, Munich, Germany
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Jan C Peeken
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Josef A Buchner
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Jana Lipkova
- Department of Pathology and Molecular Medicine, University of California, Irvine, Irvine, CA, USA
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
- Helmholtz Artificial Intelligence Cooperation Unit, Helmholtz Zentrum Munich, Munich, Germany
- TranslaTUM—Central Institute for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | | | - Claire Delbridge
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Christian Diehl
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | | | - Jens Gempt
- Department of Neurosurgery, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Langen KJ, Galldiks N, Lohmann P, Mottaghy FM. Boosting the acceptance of 18F-FET PET for image-guided treatment planning with a multi-centric prospective trial. Eur J Nucl Med Mol Imaging 2023; 50:3817-3819. [PMID: 37682302 PMCID: PMC10611633 DOI: 10.1007/s00259-023-06426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Juelich, Juelich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.
| |
Collapse
|