1
|
Suarez C, Cheang SE, Larke JA, Jiang J, Weng CYC, Stacy A, Couture G, Chen Y, Bacalzo NP, Smilowitz JT, German JB, Mills DA, Lemay DG, Lebrilla CB. Development of a comprehensive food glycomic database and its application: Associations between dietary carbohydrates and insulin resistance. Food Chem 2025; 473:142977. [PMID: 39864179 DOI: 10.1016/j.foodchem.2025.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Carbohydrates are an integral part of a healthy diet. The molecular compositions of carbohydrates encompass a very broad range of unique structures with many being ill-defined. This vast structural complexity is distilled into vague categories such as total carbohydrates, sugars, starches, and soluble/insoluble fibers. Structural elucidation of the food glycome is until recently extremely slow and immensely challenging. Dietary carbohydrates, including monosaccharides, oligosaccharides, glycosidic linkages, and polysaccharides were determined for the most consumed foods in the US consisting of 250 common foods using a multiglycomic platform. The food glycome was then correlated with clinical data from the National Health and Nutrition Examination Survey (NHANES) consisting of dietary recalls from 13,550 adults to determine associations between dietary carbohydrates, their structural features and insulin resistance. Several features were more powerful predictors compared to traditional measures indicating the need for molecular fine-scale food carbohydrate data in guiding precision nutrition initiatives and clinical studies.
Collapse
Affiliation(s)
- Christopher Suarez
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Jules A Larke
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | | | - J Bruce German
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Danielle G Lemay
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Liu J, Xia W, Wu Q, Zhang Y, Wu Y, Li B, Chen F, Du X, Wu S, Yang Y, Gao Y, Wu M, Su L, Tong H. Fucoidan alleviates high sucrose-induced metabolic disorders and enhances intestinal homeostasis through modulation of Notch signaling. J Adv Res 2025; 71:189-207. [PMID: 38825316 DOI: 10.1016/j.jare.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION The therapeutic potential of fucoidan (FUC), a natural polysaccharide, in metabolic disorders is recognized, yet its underlying mechanisms remain unclear. METHODS We conducted investigations into the therapeutic mechanisms of FUC sourced from Sargassum fulvellum concerning metabolic disorders induced by a high-sucrose diet (HSD), employing Drosophila melanogaster and mice models. Drosophila larvae were subjected to HSD exposure to monitor growth inhibition, reduced pupation, and developmental delays. Additionally, we examined the impact of FUC on growth- and development-related hormones in Drosophila. Furthermore, we assessed the modulation of larval intestinal homeostasis by FUC, focusing on the regulation of Notch signaling. In mice, we evaluated the effects of FUC on HSD-induced impairments in intestinal epithelial barrier integrity and gut hormone secretion. RESULTS FUC supplementation significantly enhanced pupal weight in Drosophila larvae and effectively countered HSD-induced elevation of glucose and triglyceride levels. It notably influenced the expression of growth- and development-related hormones, particularly augmenting insulin-like peptides production while mitigating larval growth retardation. FUC also modulated larval intestinal homeostasis by negatively regulating Notch signaling, thereby protecting against HSD-induced metabolic stress. In mice, FUC ameliorated HSD-induced impairments in ileum epithelial barrier integrity and gut hormone secretion. CONCLUSIONS Our findings demonstrate the multifaceted therapeutic effects of FUC in mitigating metabolic disorders and maintaining intestinal health. FUC holds promise as a therapeutic agent, with its effects attributed partly to the sulfate group and its ability to regulate Notch signaling, emphasizing its potential for addressing metabolic disorders.
Collapse
Affiliation(s)
- Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Institute of Traditional Chinese Medicine Health Industry, Nanchang 330115, China
| | - Weiqiang Xia
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fangyu Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xueting Du
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Laijin Su
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
3
|
Narimatsu Y, Kato M, Iwakoshi-Ukena E, Furumitsu M, Ukena K. A murine model of obesity with hyperinsulinemia and hepatic steatosis involving neurosecretory protein GL gene and a low-fat/medium-sucrose diet. Peptides 2025; 186:171376. [PMID: 39993656 DOI: 10.1016/j.peptides.2025.171376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) featuring hepatic steatosis and insulin dysregulation is becoming a common cause of chronic hepatic diseases. Although the involvement of endocrine disruption in the onset and progression of MASLD is thought to be critical, there are limited effective animal models reflecting hyperinsulinemia and hepatic steatosis. Here, we propose a MASLD mouse model that combines neuropeptide effects and dietary nutrition. We employed chronic overexpression of the gene encoding neurosecretory protein GL (NPGL) in the hypothalamus of ICR mice under a low-fat/medium-sucrose diet (LFMSD). Npgl overexpression promoted fat accumulation in the white adipose tissues in 2 weeks. Basal insulin levels were increased and pancreatic islets expanded following Npgl overexpression. Histological and molecular biological approaches revealed that Npgl overexpression enhanced de novo lipogenesis, leading to hepatic steatosis. Nine-week overexpression of Npgl exacerbated obesity and hyperinsulinemia, resulting in hyperglycemia. Moreover, prolonged Npgl overexpression aggravated fat accumulation in the liver with a change in the lipid metabolic pathway. These findings suggest that Npgl overexpression readily leads to obesity with hyperinsulinemia and hepatic steatosis in ICR mice under an LFMSD.
Collapse
Affiliation(s)
- Yuki Narimatsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| | - Masaki Kato
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Megumi Furumitsu
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
4
|
Abbasi M, Heath B, McGinness L. Effects of Multivitamin Supplementation on Metabolic Parameters in High- and Low-Fat Diet-Fed C57BL/6J Mice: Potential Links to Adipose Tissue Browning and Gut Microbiome. Nutrients 2025; 17:1045. [PMID: 40292481 PMCID: PMC11944532 DOI: 10.3390/nu17061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES The relationship between diet, micronutrient supplementation, and metabolic regulation emphasizes the potential of nutritional strategies to address obesity and related disorders. Certain vitamins have the potential to enhance thermogenesis and metabolic health. However, the impact of multivitamin supplementation on white adipose tissue (WAT) browning, the gut microbiome (GM), and metabolic function is not well understood. This study investigated the effects of multivitamin supplementation on obesity-related metabolic dysfunction in mice fed a high-fat diet (HFD) or a low-fat diet (LFD). METHODS Male C57BL/6J mice were assigned to group 1: control chow diet (CHD); 2: control HFD; 3: multivitamin-supplemented HFD (Mv-HFD); 4: control LFD; or 5: multivitamin-supplemented LFD (Mv-LFD). Diets, either supplemented with multivitamins A, D, B1, B5, and C or non-supplemented, were administered for 12 weeks. Metabolic parameters, adipose tissue browning, and the GM composition were analyzed. RESULTS The Mv-HFD significantly reduced weight gain, adipose tissue mass, blood glucose levels, and insulin resistance induced by an HFD. Additionally, it increased energy expenditure and thermogenic gene expression in WAT. Both the Mv-HFD and Mv-LFD improved the GM composition by increasing beneficial bacteria. CONCLUSIONS Multivitamin supplementation improved metabolic health by potentially promoting WAT browning, enhancing energy expenditure, and modulating the GM composition. These findings suggest that multivitamins could offer a promising strategy for combating obesity and associated metabolic dysfunction.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| | - Braeden Heath
- Department of Biomedical Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Lauren McGinness
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Iliev ID, Ananthakrishnan AN, Guo CJ. Microbiota in inflammatory bowel disease: mechanisms of disease and therapeutic opportunities. Nat Rev Microbiol 2025:10.1038/s41579-025-01163-0. [PMID: 40065181 DOI: 10.1038/s41579-025-01163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Perturbations in the intestinal microbiome are strongly linked to the pathogenesis of inflammatory bowel disease (IBD). Bacteria, fungi and viruses all make up part of a complex multi-kingdom community colonizing the gastrointestinal tract, often referred to as the gut microbiome. They can exert various effects on the host that can contribute to an inflammatory state. Advances in screening, multiomics and experimental approaches have revealed insights into host-microbiota interactions in IBD and have identified numerous mechanisms through which the microbiota and its metabolites can exert a major influence on the gastrointestinal tract. Looking into the future, the microbiome and microbiota-associated processes will be likely to provide unparalleled opportunities for novel diagnostic, therapeutic and diet-inspired solutions for the management of IBD through harnessing rationally designed microbial communities, powerful bacterial and fungal metabolites, individually or in combination, to foster intestinal health. In this Review, we examine the current understanding of the cross-kingdom gut microbiome in IBD, focusing on bacterial and fungal components and metabolites. We examine therapeutic and diagnostic opportunities, the microbial metabolism, immunity, neuroimmunology and microbiome-inspired interventions to link mechanisms of disease and identify novel research and therapeutic opportunities for IBD.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
6
|
Yu J, Chen Y, Li D, Zhang L, Zhang Y, Zhang J, Zhu J, Li Z, Fu H, Guan D, Zhang R, Liu L, Wang C, Sun C, Feng R. Specific macronutrient clusters associated with lower mortality risk: Evidence from NHANES 1999-2018. J Adv Res 2025:S2090-1232(25)00117-1. [PMID: 39956403 DOI: 10.1016/j.jare.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/01/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025] Open
Abstract
INTRODUCTION Accumulating evidence suggest that imbalanced macronutrient composition would increase the risk of chronic diseases. However, previous studies that predominantly focused on individual macronutrients often failed to thoroughly elucidate this complex association. OBJECTIVES This study aimed to comprehensively analyze the relationship between macronutrient clusters and all-cause mortality. METHODS The study included 26,615 adults aged 20-75 years from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. A three-dimensional cube method was employed to categorize clusters of macronutrients intake. The association between dietary macronutrient clusters and all-cause mortality was investigated using Cox proportional hazards modeling and restricted cubic spline (RCS) analysis. RESULTS Over a weighted median follow-up duration of 7.58 years, 3,998 deaths were recorded. After adjusting for potential confounders, compared with the reference Cluster Pm:Fm:Cmh, 4 specific Clusters were associated with reduced all-cause mortality: Cluster Pm:Fm:Cm (HR: 0.79, 95 % CI: 0.67-0.92), Cluster Pm:Fmh:Cml (HR: 0.76, 95 % CI: 0.61-0.95), Cluster Pm:Fmh:Cm (HR: 0.86, 95 % CI: 0.75-0.97), and Cluster Pl:Fm:Cmh (HR: 0.73, 95 % CI: 0.60-0.89). Three-node RCS analysis revealed non-linear relationships between carbohydrate within Cluster Pm:Fm:Cm and protein within Cluster Pl:Fm:Cmh and overall mortality. Subgroup and sensitivity analyses corroborated the robustness of these associations across different age, gender, and energy intake levels. CONCLUSIONS This study employed a three-dimensional cube approach to categorize the human macronutrients intake into 24 clusters. Cluster Pm:Fm:Cm, Clusters Pm:Fmh:Cml, Cluster Pm:Fmh:Cm, and Cluster Pl:Fm:Cmh exhibited a lower mortality risk. Different clusters of macronutrients could be a precondition in nutrition intervene strategy.
Collapse
Affiliation(s)
- Jiaying Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Defang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Jiaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Jiayu Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Zican Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Hongxin Fu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Dongwei Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Runan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Cheng Wang
- Department of Environmental Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Precision Nutrition and Health of Ministry of Education, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, PR China.
| |
Collapse
|
7
|
OKI C, UNO K, SASASE T, TSUTSUI T, SEKIGUCHI K, YAMAGUCHI A, MANDAI K, SHINOHARA M, SUGIMOTO M, MAEKAWA T, MIYAJIMA K, OHTA T. High-fat/high-sucrose diet-induced renal changes in obese diabetic mice: a comparison with db/db and KK-Ay mice. J Vet Med Sci 2025; 87:138-146. [PMID: 39662940 PMCID: PMC11830451 DOI: 10.1292/jvms.24-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Many genetic and environmental factors are involved in the development and progression of diabetic kidney disease (DKD), and its pathology shows various characteristics. Animal models of DKD play an important role in elucidating its pathogenesis and developing new therapies. In this study, we investigated the pathophysiological features of two DKD animal models: db/db mice (background of hyperglycemia) and KK-Ay mice (background of hyperinsulinemia). Male and female mice were fed a high-fat/high-sucrose (HFS) diet for eight weeks. Two mouse models fed the HFS diet showed increases in urinary protein, kidney weight, and glomerular size, but these changes were pronounced in KK-Ay mice. Pathological examination revealed tubulointerstitial fibrosis in KK-Ay mice fed the HFS diet, but not in db/db mice. In addition, fat accumulation was observed in the macula densa of db/db mice and in the glomeruli of KK-Ay mice fed with the HFS diet. In conclusion, an HFS diet exacerbates renal lesions with tubulointerstitial fibrosis in KK-Ay mice, and KK-Ay mice fed an HFS diet are expected to be useful as a DKD model.
Collapse
Affiliation(s)
- Chika OKI
- Biological/Pharmacological Research Laboratories, Takatsuki
Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka,
Japan
- Laboratory of Animal Physiology and Functional Anatomy,
Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kinuko UNO
- Laboratory of Animal Physiology and Functional Anatomy,
Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomohiko SASASE
- Biological/Pharmacological Research Laboratories, Takatsuki
Research Center, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka,
Japan
- Laboratory of Animal Physiology and Functional Anatomy,
Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro TSUTSUI
- Laboratory of Animal Physiology and Functional Anatomy,
Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keita SEKIGUCHI
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Ayane YAMAGUCHI
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Kouhei MANDAI
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Miki SUGIMOTO
- Laboratory of Animal Physiology and Functional Anatomy,
Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tatsuya MAEKAWA
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Katsuhiro MIYAJIMA
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Takeshi OHTA
- Laboratory of Animal Physiology and Functional Anatomy,
Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Cui Z, Dong Y, Sholl J, Lu J, Raubenheimer D. The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. Annu Rev Anim Biosci 2025; 13:441-464. [PMID: 39556489 DOI: 10.1146/annurev-animal-111523-102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nutrition is a complex and contested area in biomedicine, which requires diverse evidence sources. Nonhuman primate models are considered an important biomedical research tool because of their biological similarities to humans, but they are typically used with little explicit consideration of their ecology and evolution. Using the rhesus macaque (RM), we consider the potential of nutritional ecology for enriching the use of primates as models for human nutrition. We introduce some relevant aspects of RM evolutionary and social ecology and discuss two examples where they have been used in biomedical research: obesity and aging. We next consider how insights from nutritional ecology can help inform and direct the use of RM as a biomedical model. We conclude by illustrating how conceptual tools might inform the use of RM as a model for human nutrition and extracting insights from RM that might be relevant to broader theoretical considerations around animal model systems.
Collapse
Affiliation(s)
- Zhenwei Cui
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Yunlong Dong
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan Sholl
- ImmunoConcept Lab, Université de Bordeaux, Collège Sciences de la Santé, CNRS UMR 5164, Bordeaux, France
| | - Jiqi Lu
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
| | - David Raubenheimer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia;
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Senior AM, Raubenheimer D, Couteur DGL, Simpson SJ. The Geometric Framework for Nutrition and Its Application to Rodent Models. Annu Rev Anim Biosci 2025; 13:389-410. [PMID: 39546416 DOI: 10.1146/annurev-animal-111523-102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rodents have been the primary model for mammalian nutritional physiology for decades. Despite an extensive body of literature, controversies remain around the effects of specific nutrients and total energy intake on several aspects of nutritional biology, even in this well-studied model. One approach that is helping to bring clarity to the field is the geometric framework for nutrition (GFN). The GFN is a multidimensional paradigm that can be used to conceptualize nutrition and nutritional effects, design experiments, and interpret results. To date, more than 30 publications have applied the GFN to data from rodent models of nutrition. Here we review the major conclusions from these studies. We pay particular attention to the effects of macronutrients on satiety, glucose metabolism, lifespan and the biology of aging, reproductive function, immune function, and the microbiome. We finish by highlighting several knowledge gaps that became evident upon reviewing this literature.
Collapse
Affiliation(s)
- Alistair M Senior
- Sydney Precision Data Science Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David Raubenheimer
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - David G Le Couteur
- ANZAC Research Institute, The Concord Hospital, Concord, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| | - Stephen J Simpson
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia; , , ,
| |
Collapse
|
10
|
Shimizu H, Miyamoto J, Hisa K, Ohue-Kitano R, Takada H, Yamano M, Nishida A, Sasahara D, Masujima Y, Watanabe K, Nishikawa S, Takahashi S, Ikeda T, Nakajima Y, Yoshida N, Matsuzaki C, Kageyama T, Hayashi I, Matsuki A, Akashi R, Kitahama S, Ueyama M, Murakami T, Inuki S, Irie J, Satoh-Asahara N, Toju H, Mori H, Nakaoka S, Yamashita T, Toyoda A, Yamamoto K, Ohno H, Katayama T, Itoh H, Kimura I. Sucrose-preferring gut microbes prevent host obesity by producing exopolysaccharides. Nat Commun 2025; 16:1145. [PMID: 39880823 PMCID: PMC11779931 DOI: 10.1038/s41467-025-56470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S. salivarius may prevent host obesity caused by excess sucrose intake via the exopolysaccharide (EPS) -short-chain fatty acid (SCFA) -carbohydrate metabolic axis in male mice. Healthy human donor-derived S. salivarius produced high EPS levels from sucrose but not from other sugars. S. salivarius abundance was significantly decreased in human donors with obesity compared with that in healthy donors, and the EPS-SCFA bacterial carbohydrate metabolic process was attenuated. Our findings reveal an important mechanism by which host-commensal interactions in glycometabolism affect energy regulation, suggesting an approach for preventing lifestyle-related diseases via prebiotics and probiotics by targeting bacteria and EPS metabolites.
Collapse
Affiliation(s)
- Hidenori Shimizu
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Noster Inc., Kamiueno, Muko-shi, Kyoto, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Keiko Hisa
- Noster Inc., Kamiueno, Muko-shi, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiromi Takada
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Daiki Sasahara
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Noster Inc., Kamiueno, Muko-shi, Kyoto, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Keita Watanabe
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shota Nishikawa
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Sakura Takahashi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takako Ikeda
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuya Nakajima
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Naofumi Yoshida
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Ishikawa, Japan
| | - Takuya Kageyama
- Center for Ecological Research, Kyoto University, Otsu-shi, Shiga, Japan
| | - Ibuki Hayashi
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akari Matsuki
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo-shi, Hokkaido, Japan
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Ryo Akashi
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Seiichi Kitahama
- Department of Metabolic and Bariatric Surgery, Center for Obesity, Diabetes and Endocrinology, Chibune General Hospital, Osaka-shi, Osaka, Japan
| | - Masako Ueyama
- Sleep Apnea Syndrome Treatment Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Kiyose-shi, Tokyo, Japan
| | - Takumi Murakami
- Advanced Genomics Center, National Institute of Genetics, Yata, Mishima-shi, Shizuoka, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo, Japan
| | - Shinsuke Inuki
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, Kyoto, Japan
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Yata, Mishima-shi, Shizuoka, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo-shi, Hokkaido, Japan
| | - Tomoya Yamashita
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe-shi, Hyogo, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Yata, Mishima-shi, Shizuoka, Japan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Wakayama-shi, Wakayama, Japan
| | - Hiroaki Ohno
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Takane Katayama
- Laboratory of Molecular Biology and Bioresponse, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
- Department of Moonshot Research and Development Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
11
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. Fructose-Induced Metabolic Dysfunction Is Dependent on the Baseline Diet, the Length of the Dietary Exposure, and Sex of the Mice. Nutrients 2024; 17:124. [PMID: 39796558 PMCID: PMC11722689 DOI: 10.3390/nu17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. This study investigates how diet and sex interact with fructose to modulate the metabolic outcomes. Methods: Male and female mice were fed different normal chow diets, Boston chow diet (BCD; 23% protein, 22% fat, 55% carbohydrates), Lexington chow diet (LXD; 24% protein, 18% fat, 58% carbohydrates), and low-fat diet (LFD; 20% protein, 10% fat, 70% carbohydrates), supplemented with 30% fructose in water. Results: Fructose-supplemented male mice on BCD gained weight and developed glucose intolerance and hepatic steatosis. Conversely, male mice given fructose on LXD did not gain weight, remained glucose-tolerant, and had normal hepatic lipid content. Furthermore, fructose-fed male mice on LFD did not gain weight. However, upon switching to BCD, they gained weight, exhibited worsening liver steatosis, and advanced hepatic insulin resistance. The effects of fructose are sex-dependent. Thus, female mice did not gain weight and remained insulin-sensitive with fructose supplementation on BCD, despite developing hepatic steatosis. These differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Conclusions: Metabolic dysfunction attributed to fructose intake is not a universal outcome. Instead, it depends on baseline diet, dietary exposure length, and sex.
Collapse
Affiliation(s)
- Taghreed Fadhul
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Heba Ali
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Yasir Alsiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Jibran A. Wali
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen J. Simpson
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| |
Collapse
|
12
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. The propensity of fructose to induce metabolic dysfunction is dependent on the baseline diet, length of the dietary exposure, and sex of the mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625441. [PMID: 39651130 PMCID: PMC11623593 DOI: 10.1101/2024.11.26.625441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background/Objectives Numerous studies have implicated high intake of sugar, particularly fructose, with the development of obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This paradox questions how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. Methods To answer this question, male and female mice were fed different normal chow diets and provided 30% fructose solution in water. Results Fructose-supplemented male mice on the Boston Chow Diet (BCD=23% protein, 22% fat, 55% carbs) gained weight, developed glucose intolerance and hepatic steatosis. In contrast, male mice on the Lexington Chow Diet (LXD=24% protein, 18% fat, 58% carbs) did not gain weight, remained glucose tolerant, and had normal hepatic lipid content when supplemented with fructose. Furthermore, fructose-fed male mice on a Low-Fat Diet (LFD=20% protein, 10% fat, 70% carbs) didn't gain weight, but once switched to the BCD, they gained weight, exhibited worsening liver steatosis, and more advanced hepatic insulin resistance. The effects of fructose are sex-dependent, as female mice didn't gain weight and remained insulin-sensitive when given fructose on BCD, despite developing hepatic steatosis. Conclusions The differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Thus, metabolic dysfunction attributed to fructose intake is not a universal outcome; rather, it depends on the baseline diet, sex, and exposure length.
Collapse
|
13
|
Son GH, Lee HS, Kwon YJ, Lee JW. Association between carbohydrate to protein or fat ratio and mortality: A prospective cohort study. Clin Nutr ESPEN 2024; 63:805-812. [PMID: 39159831 DOI: 10.1016/j.clnesp.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND & AIMS The effect of dietary macronutrient balance on longevity and metabolic health remains a subject of considerable interest. We aimed to investigate the association of carbohydrate-to-protein and carbohydrate-to-fat ratios with all-cause and cardiovascular mortalities. METHODS In this population-based study, data from the Korean Genome and Epidemiology Study were integrated with those from national data sources, including mortality records from the Korea National Statistical Office. The primary outcomes were all-cause and cardiovascular mortalities. Carbohydrate-to-protein and carbohydrate-to-fat ratios were evaluated based on dietary habits assessed through a food frequency questionnaire. Harrell's C-index was employed to determine optimal cut-off points for carbohydrate-to-protein and carbohydrate-to-fat ratios. Cox proportional hazards regression models were used to assess associations. RESULTS A total of 143,050 participants aged ≥40 years were included in the analyses. Compared with individuals with non-elevated carbohydrate-to-protein ratios (<5.2), those with elevated carbohydrate-to-protein ratios (>9.9) exhibited a higher all-cause mortality (hazard ratio 1.09, 95% confidence interval 1.01-1.17); however, no correlation between carbohydrate-to-protein ratio and cardiovascular mortality (hazard ratio 1.13, 95% confidence interval 0.96-1.32) was observed. Compared with those with non-elevated carbohydrate-to-fat ratios (<5.1), those with higher carbohydrate-to-fat ratios (>7.1) exhibited increased all-cause (hazard ratio 1.08, 95% confidence interval 1.00-1.16) and cardiovascular (hazard ratio 1.27, 95% confidence interval 1.06-1.52) mortalities. CONCLUSIONS Our findings regarding macronutrient ratios and their association with mortality suggest that reducing excessive carbohydrate intake and increasing the consumption of protein and fats may have beneficial effects on longevity and cardiovascular health. Further studies are needed to understand the underlying mechanisms of these effects.
Collapse
Affiliation(s)
- Gyu-Hyeon Son
- Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea.
| | - Ji-Won Lee
- Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute for Innovation in Digital Healthcare, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
14
|
Hume C, Baglot SL, Javorcikova L, Lightfoot SHM, Scheufen J, Hill MN. Effects of prenatal THC vapor exposure on body weight, glucose metabolism, and feeding behaviors in chow and high-fat diet fed rats. Int J Obes (Lond) 2024; 48:981-992. [PMID: 38528095 DOI: 10.1038/s41366-024-01512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND 4-20% of people report using cannabis during pregnancy, thereby it is essential to assess the associated risks. There is some evidence that prenatal cannabis exposure (PCE) may be associated with increased risk for developing of obesity and diabetes later in life, however this has not been well explored under controlled conditions. The aim of this study was to use a translational THC vapor model in rodents to characterize the effects of PCE on adiposity, glucose metabolism, and feeding patterns in adulthood, with focus on potential sex differences. METHODS Pregnant Sprague Dawley rats were exposed to vaporized THC (100 mg/ml) or control (polyethylene glycol vehicle) across the entire gestational period. Adult offspring from PCE (n = 24) or control (n = 24) litters were subjected to measures of adiposity, glucose metabolism and feeding behavior. Rats were then placed onto special diets (60% high-fat diet [HFD] or control 10% low fat diet [LFD]) for 4-months, then re-subjected to adiposity, glucose metabolism and feeding behavior measurements. RESULTS PCE did not influence maternal weight or food consumption but was associated with transient decreased pup weight. PCE did not initially influence bodyweight or adiposity, but PCE did significantly reduce the rate of bodyweight gain when on HFD/LFD, regardless of which diet. Further, PCE had complex effects on glucose metabolism and feeding behavior that were both sex and diet dependent. No effects of PCE were found on plasma leptin or insulin, or white adipose tissue mass. CONCLUSIONS PCE may not promote obesity development but may increase risk for diabetes and abnormal eating habits under certain biological and environmental conditions. Overall, this data enhances current understanding of the potential impacts of PCE.
Collapse
Affiliation(s)
- Catherine Hume
- Hotchkiss Brain Institute | Mathison Centre for Mental Health Research & Education | Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology & Anatomy | Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
| | - Samantha L Baglot
- Hotchkiss Brain Institute | Mathison Centre for Mental Health Research & Education | Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Lucia Javorcikova
- Hotchkiss Brain Institute | Mathison Centre for Mental Health Research & Education | Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Savannah H M Lightfoot
- Hotchkiss Brain Institute | Mathison Centre for Mental Health Research & Education | Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Jessica Scheufen
- Hotchkiss Brain Institute | Mathison Centre for Mental Health Research & Education | Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Graduate Program in Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute | Mathison Centre for Mental Health Research & Education | Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
- Department of Cell Biology & Anatomy | Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
15
|
Venetos NM, Stomberski CT, Qian Z, Premont RT, Stamler JS. Activation of hepatic acetyl-CoA carboxylase by S-nitrosylation in response to diet. J Lipid Res 2024; 65:100542. [PMID: 38641009 PMCID: PMC11126798 DOI: 10.1016/j.jlr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
Nitric oxide (NO), produced primarily by nitric oxide synthase enzymes, is known to influence energy metabolism by stimulating fat uptake and oxidation. The effects of NO on de novo lipogenesis (DNL), however, are less clear. Here we demonstrate that hepatic expression of endothelial nitric oxide synthase is reduced following prolonged administration of a hypercaloric high-fat diet. This results in marked reduction in the amount of S-nitrosylation of liver proteins including notably acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL. We further show that ACC S-nitrosylation markedly increases enzymatic activity. Diminished endothelial nitric oxide synthase expression and ACC S-nitrosylation may thus represent a physiological adaptation to caloric excess by constraining lipogenesis. Our findings demonstrate that S-nitrosylation of liver proteins is subject to dietary control and suggest that DNL is coupled to dietary and metabolic conditions through ACC S-nitrosylation.
Collapse
Affiliation(s)
- Nicholas M Venetos
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Colin T Stomberski
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhaoxia Qian
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
16
|
Tao X, Rahimi M, Michaelis M, Görs S, Brenmoehl J, Vanselow J, Baddela VS. Saturated fatty acids inhibit unsaturated fatty acid induced glucose uptake involving GLUT10 and aerobic glycolysis in bovine granulosa cells. Sci Rep 2024; 14:9888. [PMID: 38688953 PMCID: PMC11061182 DOI: 10.1038/s41598-024-59883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Fatty acids have been shown to modulate glucose metabolism in vitro and in vivo. However, there is still a need for substantial evidence and mechanistic understanding in many cell types whether both saturated and unsaturated fatty acids (SFAs and UFAs) pose a similar effect and, if not, what determines the net effect of fatty acid mixes on glucose metabolism. In the present study, we asked these questions by treating granulosa cells (GCs) with the most abundant non-esterified fatty acid species in bovine follicular fluid. Results revealed that oleic and alpha-linolenic acids (UFAs) significantly increased glucose consumption compared to palmitic and stearic acids (SFAs). A significant increase in lactate production, extracellular acidification rate, and decreased mitochondrial activity indicate glucose channeling through aerobic glycolysis in UFA treated GCs. We show that insulin independent glucose transporter GLUT10 is essential for UFA driven glucose consumption, and the induction of AKT and ERK signaling pathways necessary for GLUT10 expression. To mimic the physiological conditions, we co-treated GCs with mixes of SFAs and UFAs. Interestingly, co-treatments abolished the UFA induced glucose uptake and metabolism by inhibiting AKT and ERK phosphorylation and GLUT10 expression. These data suggest that the net effect of fatty acid induced glucose uptake in GCs is determined by SFAs under physiological conditions.
Collapse
Affiliation(s)
- Xuelian Tao
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Maryam Rahimi
- Abteilung Biotechnologie und Reproduktion Landwirtschaftlicher Nutztiere, Georg-August-Universität Göttingen, 37037, Göttingen, Germany
| | - Marten Michaelis
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julia Brenmoehl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vijay Simha Baddela
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
17
|
Yang Z, Kubant R, Kranenburg E, Cho CE, Anderson GH. The Effect of Micronutrients on Obese Phenotype of Adult Mice Is Dependent on the Experimental Environment. Nutrients 2024; 16:696. [PMID: 38474824 DOI: 10.3390/nu16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The environment of the test laboratory affects the reproducibility of treatment effects on physiological phenotypes of rodents and may be attributed to the plasticity of the epigenome due to nutrient-gene-environment interactions. Here, we explored the reproducibility of adding a multi-vitamin-mineral (MVM) mix to a nutrient-balanced high-fat (HF) diet on obesity, insulin resistance (IR), and gene expression in the tissues of adult male mice. Experiments of the same design were conducted in three independent animal facilities. Adult C57BL/6J male mice were fed an HF diet for 6 weeks (diet induced-obesity model) and then continued for 9-12 weeks on the HF diet with or without 5-fold additions of vitamins A, B1, B6, B12, Zn, and 2-fold Se. The addition of the MVM affected body weight, fat mass, gene expression, and markers of IR in all three locations (p < 0.05). However, the direction of the main effects was influenced by the interaction with the experimental location and its associated environmental conditions known to affect the epigenome. In conclusion, MVM supplementation influenced phenotypes and expression of genes related to adipose function in obese adult male mice, but the experimental location and its associated conditions were significant interacting factors. Preclinical studies investigating the relationship between diet and metabolic outcomes should acknowledge the plasticity of the epigenome and implement measures to reproduce studies in different locations.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eva Kranenburg
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Gaweł E, Hall B, Siatkowski S, Grabowska A, Zwierzchowska A. The Combined Effects of High-Intensity Interval Exercise Training and Dietary Supplementation on Reduction of Body Fat in Adults with Overweight and Obesity: A Systematic Review. Nutrients 2024; 16:355. [PMID: 38337640 PMCID: PMC10857230 DOI: 10.3390/nu16030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Excessive body fat is associated with various comorbidities including cardiovascular disease, type 2 diabetes mellitus and certain types of cancer. The search for effective, relatively easy to maintain body-fat reduction interventions has been ongoing. We aimed to review the current literature to assess the effectiveness of high-intensity interval training with and without dietary supplementation on body fat loss, concentration of markers of metabolic health and aerobic capacity of adults with overweight and obesity. Seventy full-text articles were assessed to determine their eligibility and thirteen were included in the review. The methodology of this systematic review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Almost all studies (93%) demonstrated effectiveness of high-intensity interval training of various protocols in reducing body fat, improving metabolic health and aerobic capacity of adults with overweight and obesity. These effects were enhanced by an addition of a dietary supplement, such as green tea or ginger or other. Although combining HIIT with dietary supplementation seem to improve body composition, metabolic health and aerobic capacity in adults with overweight and obesity in some instances to a greater extent than HIIT alone, it does not seem to be necessary to combine these two interventions.
Collapse
Affiliation(s)
- Eliza Gaweł
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikolowska Street 72a, 40-065 Katowice, Poland; (E.G.); (A.Z.)
| | - Barbara Hall
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72, 40-065 Katowice, Poland;
| | - Szymon Siatkowski
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72, 40-065 Katowice, Poland;
| | - Agata Grabowska
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Anna Zwierzchowska
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikolowska Street 72a, 40-065 Katowice, Poland; (E.G.); (A.Z.)
| |
Collapse
|
19
|
Crean AJ, Pulpitel TJ, Pini T, Rickard JP, de Graaf SP, Senior AM, Simpson SJ, Wali JA. Low-Fat, High-Carbohydrate Diets Reduce Body Weight and Sperm Count but Increase Sperm Motility in Mice. J Nutr 2024; 154:60-68. [PMID: 37984745 DOI: 10.1016/j.tjnut.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Male reproduction is impacted by both over- and under-nutrition, demonstrated by animal studies using high-fat and low-protein dietary interventions. Little is known about the impacts of low-fat, high-carb diets and types of dietary carbohydrates on sperm traits. OBJECTIVES Using a nutritional geometry approach, we investigated the effects of partially or completely substituting glucose for fructose in isocaloric diets containing either 10%, 20%, or 30% fat (by energy) on sperm traits in mice. METHODS Male C57BL/6J mice were fed 1 of 15 experimental diets for 18 wk starting from 8 wk of age. Reproductive organs were then harvested, and sperm concentration, motility, and velocity were measured using Computer-Assisted Sperm Analysis. RESULTS Increasing dietary fat from 10% to 30% while maintaining energy density at 14.3 kJ/g and protein content at 20% resulted in increased body weight and sperm production but reduced the percentage of motile sperm. Body weight and seminal vesicle weight were maximized on diets containing a 50:50 mix of fructose and glucose, but carbohydrate type had few significant impacts on epididymal sperm traits. CONCLUSIONS The opposing impacts of dietary fat on mouse sperm quantity and quality observed suggest that male fertility may not be optimized by a single diet; rather, context-specific dietary guidelines targeted to specific concerns in semen quality may prove useful in treating male infertility.
Collapse
Affiliation(s)
- Angela J Crean
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia.
| | - Tamara J Pulpitel
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Taylor Pini
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Queensland, School of Veterinary Science, Queensland, Australia
| | - Jessica P Rickard
- The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Simon P de Graaf
- The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Alistair M Senior
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Stephen J Simpson
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| | - Jibran A Wali
- The University of Sydney, Charles Perkins Centre, New South Wales, Australia; The University of Sydney, School of Life and Environmental Sciences, New South Wales, Australia
| |
Collapse
|
20
|
Neal ES, Zimmerman DA, Brady RL. Diet composition during the early post-nursing period: in male mice, macronutrients matter. J Physiol 2023; 601:4657-4658. [PMID: 37723409 DOI: 10.1113/jp285540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Affiliation(s)
- Elliott S Neal
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Dayna A Zimmerman
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Rebecca L Brady
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|