1
|
Lu Y, Zhang Y, He W, Zhou Y, Lian Q. Enhanced catalytic ozonation via FeBi bimetallic catalyst: Unveiling the role of zero-valent Bi as an oxygen vacancy-mediated electron reservoir. ENVIRONMENTAL RESEARCH 2025; 277:121617. [PMID: 40239739 DOI: 10.1016/j.envres.2025.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
A series of bimetallic carbon catalysts (FeM@C, M = Bi, Ce, Co, Ni, Mn) were synthesized via pyrolysis of metal-organic framework (MOF) precursors, among which FeBi@C exhibits exceptional catalytic ozonation performance, achieving 90.73 % oxalic acid removal within 30 min and retaining 84 % of its initial activity over eight consecutive cycles. Advanced characterizations, including EPR, and in-situ Raman spectroscopy, revealed that oxygen vacancies (OV) serve as active sites for ozone adsorption, leading to the formation of reactive oxygen species (ROS) and ≡ Fe-O-O- peroxo intermediates. The post-reaction XPS analysis indicated significant shifts in binding energies and changes in the proportions of oxygen species, revealing the unique Fe-Bi synergy. The Fe2p spectra showed a decrease in Fe2+ content and a negative shift in binding energy, indicating an active Fe2+/Fe3+ redox cycle. The Bi4f spectra confirmed the presence of zero-valent Bi, which acts as an "electron reservoir", continuously donating electrons to enhance Fe2+/Fe3+ redox cycle and promote ozone activation. This unique mechanism, where zero-valent Bi sustains the electron transfer cycle, significantly enhances both the catalytic efficiency and long-term stability of the FeBi@C system, distinguishing it from conventional bimetallic catalysts. This work provides a novel strategy for designing high-performance catalysts for environmental remediation.
Collapse
Affiliation(s)
- Yingtao Lu
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiping Zhang
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wanting He
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Zhou
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Qiyu Lian
- Future City (Future Water) Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China.
| |
Collapse
|
2
|
Zhang Y, Chen M, He X, Zhao E, Liang H, Shang J, Liu K, Chen J, Zuo S, Zhou M. Intrinsic strain of defect sites steering chlorination reaction for water purification. Nat Commun 2025; 16:2652. [PMID: 40102410 PMCID: PMC11920279 DOI: 10.1038/s41467-025-57841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Carbon nanotube (CNT)-based heterogeneous advanced oxidation processes (AOPs) used for water purification have been exploited for several decades. Many strategies for modifying CNTs have been utilized to improve their catalytic performance in remediation processes. However, the strain fields of the intrinsic defect sites on CNT steering AOPs (such as chlorination) have not yet been reported. Here, we explored the strained defect sites for steering the chlorination process for water purification. The strained defect sites with the elongated sp2 hybridized C-C bonds boost electronic reactivity with the chlorine molecules via the initial Yeager-type adsorption. As a result, the reactive species in chlorination can be regulated on demand, such as the ratio of high-selectivity ClO• ranging from 38.8% in conventional defect-based systems to 87.5% in our strain-dominated process, which results in the generation of harmless intermediates and even deep mineralization during 2,4-DCP abatement. This work highlights the role that strain fields have on controlling the extent of chlorination reactions.
Collapse
Affiliation(s)
- Yinqiao Zhang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mohan Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xuanyu He
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Erzhuo Zhao
- School of Environment, Tsinghua University, Beijing, PR China
| | - Hao Liang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Jingge Shang
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, PR China
| | - Jianqiu Chen
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Sijin Zuo
- School of Engineering, State of Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| | - Minghua Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| |
Collapse
|
3
|
Jin H, Jiang N, Chen Y, Feng Z, Cheng H, Guan L. High-yield synthesis of FeNC as support of PtFe nanoparticles for the oxygen reduction reaction by a green ball milling method. NANOTECHNOLOGY 2025; 36:155402. [PMID: 39981651 DOI: 10.1088/1361-6528/adb8c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Enhancing catalytic activity, durability and reducing costs are major challenges in commercialization of proton exchange membrane fuel cells (PEMFCs). Non-precious metal catalysts face durability challenges when applied to PEMFCs, while platinum (Pt)-based catalysts are hampered by their high costs and weak interactions with carbon supports, limiting their application in PEMFCs. Combining Pt-based catalysts with iron-nitrogen-carbon (FeNC) supports can improve the oxygen reduction reaction performance. However, traditional preparation methods for FeNC supports, such as liquid-phase and hydrothermal synthesis, are cumbersome and have low yield. Here, we introduce a simple ball-milling method to synthesize FeNC with high yield that achieves a high-surface-area and uniform dispersion of Fe atoms. The FeNC support anchors PtFe nanoparticles at FeNxsites. This enhances support-alloy interactions and suppresses particle aggregation. The obtained catalyst denoted as PtFe/B-FeNC exhibits an exceptional mass activity of 2.57 A mgPt-1at 0.9 V, representing a 12.2-fold increase compared to the commercial Pt/C. There is only 30 mV degradation for the catalyst after 120 k cycles, indicating outstanding stability. This research paves the way for the green synthesis of PtFe/B-FeNC with high yield, facilitating the development of commercial materials for other electrochemical devices.
Collapse
Affiliation(s)
- Huihui Jin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Nannan Jiang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Yujia Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Zhijie Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Haoying Cheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
4
|
Deng Y, Liu H, Lai L, She F, Liu F, Li M, Yu Z, Li J, Zhu D, Li H, Wei L, Chen Y. Platinum-Ruthenium Bimetallic Nanoparticle Catalysts Synthesized Via Direct Joule Heating for Methanol Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403967. [PMID: 39106223 PMCID: PMC11840475 DOI: 10.1002/smll.202403967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Indexed: 08/09/2024]
Abstract
Platinum-Ruthenium (PtRu) bimetallic nanoparticles are promising catalysts for methanol oxidation reaction (MOR) required by direct methanol fuel cells. However, existing catalyst synthesis methods have difficulty controlling their composition and structures. Here, a direct Joule heating method to yield highly active and stable PtRu catalysts for MOR is shown. The optimized Joule heating condition at 1000 °C over 50 microseconds produces uniform PtRu nanoparticles (6.32 wt.% Pt and 2.97 wt% Ru) with an average size of 2.0 ± 0.5 nanometers supported on carbon black substrates. They have a large electrochemically active surface area (ECSA) of 239 m2 g-1 and a high ECSA normalized specific activity of 0.295 mA cm-2. They demonstrate a peak mass activity of 705.9 mA mgPt -1 for MOR, 2.8 times that of commercial 20 wt.% platinum/carbon catalysts, and much superior to PtRu catalysts obtained by standard hydrothermal synthesis. Theoretical calculation results indicate that the superior catalytic activity can be attributed to modified Pt sites in PtRu nanoparticles, enabling strong methanol adsorption and weak carbon monoxide binding. Further, the PtRu catalyst demonstrates excellent stability in two-electrode methanol fuel cell tests with 85.3% current density retention and minimum Pt surface oxidation after 24 h.
Collapse
Affiliation(s)
- Yeyu Deng
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Heng Liu
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980–8577Japan
| | - Leo Lai
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Fangxin She
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Fangzhou Liu
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Mohan Li
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Zixun Yu
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Jing Li
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Di Zhu
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980–8577Japan
| | - Li Wei
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Yuan Chen
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| |
Collapse
|
5
|
Yao Z, Chen Y, Wang X, Hu K, Ren S, Zhang J, Song Z, Ren N, Duan X. High-entropy alloys catalyzing polymeric transformation of water pollutants with remarkably improved electron utilization efficiency. Nat Commun 2025; 16:148. [PMID: 39747918 PMCID: PMC11697309 DOI: 10.1038/s41467-024-55627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation. The HEAs-PMS system achieves ultrafast pollutant removal across a wide pH range with strong resistance to real-world water interferences. Furthermore, the nonradical HEAs-PMS system selectively transforms phenolics into high-molecular-weight products via a polymerization pathway. The unique non-mineralization regime remarkably reduces PMS consumption and achieves a high electron utilization efficiency of up to 213.4%. Further DFT calculations and experimental analysis reveal that Fe and Co in HEA-NPs act as the primary catalytic sites to complex with PMS for activation, while Ni, Cu, and Pd serve as charge mediators to facilitate electron transfer. The resulting PMS* complexes on HEAs possess a high redox potential, which drives spatially separated phenol oxidation on nitrogen-doped graphene support to form phenoxyl radicals, subsequently triggering the formation of high-molecule polymeric products via polymerization reactions. This study offers engineered HEAs catalysts for water treatment with low oxidant consumption and emissions.
Collapse
Affiliation(s)
- Ziwei Yao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, P. R. China
| | - Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, P. R. China.
| | - Xiaodan Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, P. R. China
| | - Kunsheng Hu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Jinqiang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Zhao Song
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Tang Q, Wu B, Huang X, Ren W, Liu L, Tian L, Chen Y, Zhang LS, Sun Q, Kang Z, Ma T, Zou JP. Electron transfer mediated activation of periodate by contaminants to generate 1O 2 by charge-confined single-atom catalyst. Nat Commun 2024; 15:9549. [PMID: 39500863 PMCID: PMC11538331 DOI: 10.1038/s41467-024-53941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-N3S1 configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate 1O2. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and 1O2. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate 1O2. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of 1O2 avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP's electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.
Collapse
Affiliation(s)
- Qianqian Tang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Bangxiang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Xiaowen Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Lingling Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Ying Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Long-Shuai Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Zhibing Kang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
| |
Collapse
|
7
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
8
|
Li H, Jin X, Owens G, Chen Z. Reconstructing the electron and spin structures of nanoscale iron sulfide through a biosurfactant layer towards radical-nonradical co-dominant regime. J Colloid Interface Sci 2024; 672:299-310. [PMID: 38843682 DOI: 10.1016/j.jcis.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Radical-nonradical co-dominant pathways have become a hot topic in advanced oxidation, but achieving this on transition metal sulfides (TMS) remains challenging because their inherently higher electron and spin densities always induce radicals rather than nonradicals. Herein, a biosurfactant layer (BLR) was introduced to redistribute the electron and spin structure of nanoscale iron sulfide (FeS), which allowed both radical and nonradical to co-dominate the catalytic reaction. The resulting BLR-encased FeS hybrid (BLR@FeS) exhibited satisfactory removal efficiency (98.5 %) for hydrogen peroxide (H2O2) activation, outperforming both the constituent components [FeS (70.9 %) and BLR (86.2 %)]. Advanced characterizations showed that C, O, N-related sites (-CO and -NC) in BLR attracted electrons in FeS due to their strong electronegativity and electron-withdrawing capacity, which not only decreased electron density in FeS, but also resulted in a shift of the Fe/S sites from the high-spin to the medium-spin state. The reaction routes established by the BLR@FeS/H2O2 system maintained desirable stability against environmental interferences such as common inorganic anions, humic acid and changes in pH. Our study provides a state-of-the-art, molecule-level understanding of tunable co-dominant pathways and expands the targeted applications in the field of advanced oxidation.
Collapse
Affiliation(s)
- Heng Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
9
|
Fang Z, Zhou Z, Zeng Z, Xia YG, Liu J, Hu B, Li K, Li JH, Lu Q. Revealing the Synergistic Effect of Cation and Anion Vacancies on Enhanced Fenton-Like Reaction: The Electron Density Modulation of O 2p-Co 3d Bands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402748. [PMID: 38898734 DOI: 10.1002/smll.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Defect engineering is considered as a flexible and effective mean to improve the performance of Fenton-like reactions. Herein, a simple method is employed to synthesize Co3O4 catalysts with Co-O vacancy pairs (VP) for peroxymonosulfate (PMS) activation. Multi-scaled characterization, experimental, and simulation results jointly revealed that the cation vacancies-VCo contributed to enhanced conductivity and anion vacancies-VO provided a new active center for the 1O2 generation. Co3O4-VP can optimize the O 2p and Co 3d bands with the strong assistance of synergistic double vacancies to reduce the reaction energy barrier of the "PMS → Co(IV) = O → 1O2" pathway, ultimately triggering the stable transition of mechanism. Co3O4-VP catalysts with radical-nonradical collaborative mechanism achieve the synchronous improvement of activity and stability, and have good environmental robustness to favor water decontamination applications. This result highlights the possibility of utilizing anion and cation vacancy engineering strategies to rational design Co3O4-based materials widely used in catalytic reactions.
Collapse
Affiliation(s)
- Zhimo Fang
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zhou Zhou
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Zepeng Zeng
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Yuan-Gu Xia
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji Liu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Bin Hu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Kai Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Ji-Hong Li
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| | - Qiang Lu
- National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
10
|
Wu Z, Xiong Z, Huang B, Yao G, Zhan S, Lai B. Long-range interactions driving neighboring Fe-N 4 sites in Fenton-like reactions for sustainable water decontamination. Nat Commun 2024; 15:7775. [PMID: 39237559 PMCID: PMC11377441 DOI: 10.1038/s41467-024-52074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Actualizing efficient and sustainable environmental catalysis is essential in global water pollution control. The single-atom Fenton-like process, as a promising technique, suffers from reducing potential environmental impacts of single-atom catalysts (SACs) synthesis and modulating functionalized species beyond the first coordination shell. Herein, we devised a high-performance SAC possessing impressive Fenton-like reactivity and extended stability by constructing abundant intrinsic topological defects within carbon planes anchored with Fe-N4 sites. Coupling atomic Fe-N4 moieties and adjacent intrinsic defects provides potent synergistic interaction. Density functional theory calculations reveal that the intrinsic defects optimize the d-band electronic structure of neighboring Fe centers through long-range interactions, consequently boosting the intrinsic activity of Fe-N4 sites. Life cycle assessment and long-term steady operation at the device level indicate promising industrial-scale treatment capability for actual wastewater. This work emphasizes the feasibility of synergistic defect engineering for refining single-atom Fenton-like chemistry and inspires rational materials design toward sustainable environmental remediation.
Collapse
Affiliation(s)
- Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
| | - Gang Yao
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China
- Sino-German Centre for innovative Environmental Technologies (WATCH e.V.), Aachen, Germany
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, China.
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Zhao Z, Sun J, Li X, Qin S, Li C, Zhang Z, Li Z, Meng X. Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution. Nat Commun 2024; 15:7475. [PMID: 39209881 PMCID: PMC11362148 DOI: 10.1038/s41467-024-51976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Rational design of bimetallic alloy is an effective way to improve the electrocatalytic activity and stability of Mo-based cathode for ampere-level hydrogen evolution. However, it is still critical to realise desirable syntheses due to the wide reduction potentials between different metal elements and uncontrollable nucleation processes. Herein, we propose a rapid Joule heating method to effectively load RuMo alloy onto MoOx matrix. As-prepared catalyst exhibits excellent stability (2000 h @ 1000 mA cm-2) and ultralow overpotential (9 mV, 18 mV and 15 mV in 1 M KOH, 1 M PBS, 0.5 M H2SO4 solution, respectively) at 10 mA cm-2. Based on first-principle simulations and operando measurements, the impressive electrocatalytic stability and activity are investigated. And the role of rapid Joule heating method is highlighted and discussed in details. This study showcases rapid Joule heating as a feasible strategy to construct highly efficient alloy-based electrocatalysts.
Collapse
Affiliation(s)
- Zhan Zhao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jianpeng Sun
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shiyu Qin
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zizhen Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Zhu ZS, Wang Y, Duan X, Wang P, Zhong S, Ren S, Xu X, Gao B, Vongsvivut JP, Wang S. Atomic-Level Engineered Cobalt Catalysts for Fenton-Like Reactions: Synergy of Single Atom Metal Sites and Nonmetal-Bonded Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401454. [PMID: 38685794 DOI: 10.1002/adma.202401454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Single atom catalysts (SACs) are atomic-level-engineered materials with high intrinsic activity. Catalytic centers of SACs are typically the transition metal (TM)-nonmetal coordination sites, while the functions of coexisting non-TM-bonded functionalities are usually overlooked in catalysis. Herein, the scalable preparation of carbon-supported cobalt-anchored SACs (CoCN) with controlled Co─N sites and free functional N species is reported. The role of metal- and nonmetal-bonded functionalities in the SACs for peroxymonosulfate (PMS)-driven Fenton-like reactions is first systematically studied, revealing their contribution to performance improvement and pathway steering. Experiments and computations demonstrate that the Co─N3C coordination plays a vital role in the formation of a surface-confined PMS* complex to trigger the electron transfer pathway and promote kinetics because of the optimized electronic state of Co centers, while the nonmetal-coordinated graphitic N sites act as preferable pollutant adsorption sites and additional PMS activation sites to accelerate electron transfer. Synergistically, CoCN exhibits ultrahigh activity in PMS activation for p-hydroxybenzoic acid oxidation, achieving complete degradation within 10 min with an ultrahigh turnover frequency of 0.38 min-1, surpassing most reported materials. These findings offer new insights into the versatile functions of N species in SACs and inspire rational design of high-performance catalysts in complicated heterogeneous systems.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yantao Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jitraporn Pimm Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
Cheng Y, Deng B, Scotland P, Eddy L, Hassan A, Wang B, Silva KJ, Li B, Wyss KM, Ucak-Astarlioglu MG, Chen J, Liu Q, Si T, Xu S, Gao X, JeBailey K, Jana D, Torres MA, Wong MS, Yakobson BI, Griggs C, McCary MA, Zhao Y, Tour JM. Electrothermal mineralization of per- and polyfluoroalkyl substances for soil remediation. Nat Commun 2024; 15:6117. [PMID: 39033169 PMCID: PMC11271446 DOI: 10.1038/s41467-024-49809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent and bioaccumulative pollutants that can easily accumulate in soil, posing a threat to environment and human health. Current PFAS degradation processes often suffer from low efficiency, high energy and water consumption, or lack of generality. Here, we develop a rapid electrothermal mineralization (REM) process to remediate PFAS-contaminated soil. With environmentally compatible biochar as the conductive additive, the soil temperature increases to >1000 °C within seconds by current pulse input, converting PFAS to calcium fluoride with inherent calcium compounds in soil. This process is applicable for remediating various PFAS contaminants in soil, with high removal efficiencies ( >99%) and mineralization ratios ( >90%). While retaining soil particle size, composition, water infiltration rate, and cation exchange capacity, REM facilitates an increase of exchangeable nutrient supply and arthropod survival in soil, rendering it superior to the time-consuming calcination approach that severely degrades soil properties. REM is scaled up to remediate soil at two kilograms per batch and promising for large-scale, on-site soil remediation. Life-cycle assessment and techno-economic analysis demonstrate REM as an environmentally friendly and economic process, with a significant reduction of energy consumption, greenhouse gas emission, water consumption, and operation cost, when compared to existing soil remediation practices.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bing Deng
- Department of Chemistry, Rice University, Houston, TX, USA.
- School of Environment, Tsinghua University, Beijing, China.
| | - Phelecia Scotland
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, Houston, TX, USA
- Applied Physics Program, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | - Arman Hassan
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Bo Wang
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Karla J Silva
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bowen Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | - Jinhang Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Qiming Liu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Tengda Si
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaodong Gao
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
- Carbon Hub, Rice University, Houston, TX, USA
| | - Khalil JeBailey
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Debadrita Jana
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
| | - Mark Albert Torres
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemistry, Rice University, Houston, TX, USA
- Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment (NEWT), Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Boris I Yakobson
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- Smalley-Curl Institute, Rice University, Houston, TX, USA
| | | | | | - Yufeng Zhao
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Corban University, Salem, OR, USA.
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Smalley-Curl Institute, Rice University, Houston, TX, USA.
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
14
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
15
|
Yang Y, Gong K, Shi Q, Wu X, Li K, Tong X, Li J, Zhang L, Wang X, Li B, Bao X, Meng S. Facet-Dependent Fe 2O 3/BiVO 4(110)/BiVO 4(010)/Fe 2O 3 Dual S-Scheme Photocatalyst as an Efficient Visible-Light-Driven Peroxymonosulfate Activator for Norfloxacin Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9155-9169. [PMID: 38641555 DOI: 10.1021/acs.langmuir.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.
Collapse
Affiliation(s)
- Yang Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, Linyi University, Linyi 276000, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
| | - Kexin Gong
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Qiuhui Shi
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Xinyu Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China
| | - Xinyuan Tong
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Jiarong Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Lichao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Xin Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Bao Li
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, Linyi University, Linyi 276000, China
| | - Xianming Bao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| | - Sugang Meng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
16
|
Zhang S, Hussain S, Tang Y, Wang K, Wang X, Zhang L, Liao Y, Wang C, Hao Y, Gao R. Enzyme-triggered on-demand release of a H 2O 2-self-supplying CuO 2@Fe 3O 4 nanoagent for enhanced chemodyamic antimicrobial therapy and wound healing. J Mater Chem B 2024; 12:3404-3416. [PMID: 38487992 DOI: 10.1039/d3tb02762g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Nanoagents for chemodynamic therapy (CDT) hold a promising future in the field of antimicrobials, especially copper peroxide (CuO2) (CP) nanomaterials which have garnered significant attention due to their ability to self-supply H2O2. Nevertheless, the poor stability of CuO2 remains a critical challenge which restricts its practical application in the antibacterial field. In this study, an advanced nano-antimicrobial system HA-CP@Fe3O4 with enzyme-responsive properties is developed by coating hyaluronic acid (HA) on CuO2-loaded iron tetraoxide nanoparticles. The coating of HA not only stabilizes the CuO2 nanomaterials but also provides responsiveness towards the enzyme hyaluronidase, which is typically secreted by some bacteria. The outer layer of HA in HA-CP@Fe3O4 undergoes decomposition in the presence of hyaluronidase-secreting bacteria, resulting in the release of CuO2@Fe3O4. The released CuO2@Fe3O4 then self-supplies H2O2 and generates reactive oxygen species (ROS) within the infected microenvironment through Fenton and Russell effects, to ultimately achieve effective and precise antimicrobial activity. Simultaneously, the magnetic property provided by Fe3O4 allows the substance to be directed towards the infection site. Both in vitro and in vivo tests demonstrated that HA-CP@Fe3O4 exhibited excellent antimicrobial capabilities at low concentration (30 μg mL-1), exceptional biocompatibility and the ability to accelerate wound healing. The findings of this work offer a new and promising approach for targeted and precise CDT.
Collapse
Affiliation(s)
- Sijie Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Kaili Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xingyan Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Long Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuheng Liao
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chen Wang
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Hao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
17
|
Liu Y, Xu J, Li X, Zhou W, Cui X, Tian P, Yu H, Wang X. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2024; 395:130371. [PMID: 38278455 DOI: 10.1016/j.biortech.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 μm) and reduced the abundance of small-sized (10-50 μm) and large-sized MPs (>1000 μm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.
Collapse
Affiliation(s)
- Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jiayi Xu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiaolu Li
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Wuyi Zhou
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Pengjiao Tian
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Haizhong Yu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China.
| |
Collapse
|
18
|
Xie X, Xiao F, Zhan S, Zhu M, Xiang Y, Zhong H, Huang H. Deep Oxidation of Chlorinated VOCs by Efficient Catalytic Peroxide Activation over Nanoconfined Co@NCNT Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1625-1635. [PMID: 38207092 DOI: 10.1021/acs.est.3c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The catalytic removal of chlorinated VOCs (CVOCs) in gas-solid reactions usually suffers from chlorine-containing byproduct formation and catalyst deactivation. AOP wet scrubber has recently attracted ever-increasing interest in VOC treatment due to its advantages of high efficiency and no gaseous byproduct emission. Herein, the low-valence Co nanoparticles (NPs) confined in a N-doped carbon nanotube (Co@NCNT) were studied to activate peroxymonosulfate (PMS) for efficient CVOC removal in a wet scrubber. Co@NCNT exhibited unprecedented catalytic activity, recyclability, and low Co ion leakage (0.19 mg L-1) for chlorobenzene degradation in a very wide pH range (3-11). The chlorobenzene removal efficiency was kept stable above 90% over Co@NCNT, much higher than that of nonconfined Co@NCNS (45%). The low-valence Co NPs achieved a continuous electron redox cycling (Co0/Co2+ → Co3+ → Co0/Co2+) and greatly promoted the O-O bond dissociation of PMS with the least energy (0.83 eV) inside the channel of Co@NCNT to form abundant HO• and SO4•-. Thus, the deep oxidation of chlorobenzene was achieved without any biphenyl byproducts from the coupling reaction. This study provided a new avenue for designing novel nanoconfined catalysts with outstanding activity, paving the way for the deep oxidation of CVOC waste gas via AOP wet scrubber.
Collapse
Affiliation(s)
- Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Sihui Zhan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 510006, P. R. China
| | - Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|