1
|
C M, N M, N K S, M D, C IR, E S. Evaluation of high temperature impacts and nanotechnology as a shield against temperature stress on tomatoes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177551. [PMID: 39557167 DOI: 10.1016/j.scitotenv.2024.177551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rising temperature due to changing climate significantly impacts the production of tomato. The morpho-physiological functions of tomato such as gas exchange, growth and development, flowering, fruit setting, quality, fruit size, weight that can influence the yield and production is drastically affected by higher temperatures. Among the growth stages of tomato, flowering and fruit setting stage is highly vulnerable to high temperature resulting in reduced flower numbers, increased flower abortion, stigma exertion, abnormal ovule, reduced pollen germination, pollen numbers, pollen tube development, pollen viability and increased male sterility. The flower to fruit ratio and duration also highly influenced by higher temperatures. It significantly reduced fruit set, fruit number, weight and quality (Lycopene, carotenoids), changing sugars and acids ratio. Apart from day temperature, the asymmetrically rising night temperature and difference in day and night temperature pattern plays a considerable role in physiological and biochemical processes of tomato. Nanotechnology proves to be a successful tool for sustainable production of tomato than many other alternative mitigation strategies due to its localized action, low quantity requirement, minimal wastage, less residues, eco friendliness, biodegradability, multifunctionality, synergistic capabilities and higher plant productivity. It imitates the antioxidant enzymes playing active role in physiological functions in tomato thereby inducing tolerance mechanisms for managing high temperature stress. Further research should focus on use of several other nanoparticles that have potential but not yet experimented on tomato to mitigate heat stress and producing biodegradable, green synthesized nanoparticles that are cost effective and affordable to farmers.
Collapse
Affiliation(s)
- Musierose C
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Maragatham N
- Centre for Students Welfare, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Sathyamoorthy N K
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Indu Rani C
- Department of Vegetable Sciences, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Somasundaram E
- Agri Business Management, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
2
|
Li J, Zhou Q, Dao Y, Song D, Yu Z, Chang J, Jeppesen E. Periodically asymmetric responses of deep chlorophyll maximum to light and thermocline in a clear monomictic lake: Insights from monthly and diel scale observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177000. [PMID: 39427899 DOI: 10.1016/j.scitotenv.2024.177000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Deep chlorophyll maximum (DCM), a chlorophyll peak in the water column, has important implications for biogeochemical cycles, energy flow and water surface algal blooms in deep lakes. However, how an observed periodically asymmetric DCM response to environmental variables remains unclear, limiting our in-depth understanding and effective eco-environmental management of deep lakes. Based on both monthly field investigations in 2021 and diel continuous observations in 2021-2023 in clear, monomictic Lake Fuxian, Southwest China, the temporal dynamics and drivers of DCM were examined and periodic features of DCM were found, with a formation period (FP, February-July) and a weakening period (WP, August-December). On the monthly scale, although DCM dynamics were partly attributed to thermocline structures, the role of light penetration depths varied with period. In the FP, the influence of light on DCM was direct, i.e., increased depth and thickness but decreased magnitude. Differently, the influence of light mainly occurred by affecting thermocline structures in the WP, where water quality was another important driver. On the diel scale, light was a major reason for a thicker and lower (magnitude) DCM during day than at night, and the response of DCM to environmental factors between the FP and WP differed also more during day. This periodically asymmetric response of daytime DCM not only being caused by light but possibly also related to other physical factors such as lake surface water temperature, wind speed and precipitation. Bayesian network modelling suggested that water darkening and stratification intensification may promote a shallower, thinner and larger (magnitude) DCM in both FP and WP, but achieving such changes in DCM requires different light and thermocline thresholds. Our findings provide new information valuable for modelling DCM and for predicting the related surface algal blooms in deep lakes under climate change and eutrophication.
Collapse
Affiliation(s)
- Jingyi Li
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Qichao Zhou
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China.
| | - Yue Dao
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Di Song
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China
| | - Zhirong Yu
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China.
| | - Erik Jeppesen
- Yunnan Key Laboratory of Ecological Protection and Resource Utilization of River-lake Networks, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark; Department of Biology, Limnology Laboratory, Üniversiteler Mahallesi, Middle East Technical University, Çankaya, Ankara 06800, Turkey; Sino-Danish Centre for Education and Research (SDC), Beijing 100049, China
| |
Collapse
|
3
|
Sosa-Guillén P, González A, Pérez JC, Expósito FJ, Díaz JP. Bioclimatic indicators dataset for the orographically complex Canary Islands archipelago. Sci Data 2024; 11:1323. [PMID: 39632921 PMCID: PMC11618343 DOI: 10.1038/s41597-024-04134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
The Canary Islands are an archipelago of significant natural value, with a large variety of endemic species living in them, making essential the study of the effects of climate change. This research is based on the use of dynamic techniques of climatic regionalisation to obtain climate projections that contribute to the conservation of ecosystems in the Canary Islands. In this work, climate projections derived from WRF simulations with a spatial resolution of 3 km were used to obtain a novel dataset of 53 bioclimatic indicators, called BICI-ULL (Bioclimatic Indicators in the Canary Islands, University of La Laguna). The regional climate simulations were driven by three CMIP5 models (GFDL-ESM2M, IPSL-CM5A-MR, and MIROC-ESM) over three periods (1980-2009, 2030-2059, 2070-2099) and two emission scenarios (representative concentration pathway 4.5 and 8.5), to obtain, among others, the standard climatic variables used to generate the bioclimatic indicators: temperature, precipitation, solar radiation, humidity and wind speed.
Collapse
Affiliation(s)
- Paula Sosa-Guillén
- Grupo de Observación de la Tierra y la Atmósfera (GOTA). Universidad de La Laguna. A/Astrofísico Francisco Sánchez s/n. 38200 La Laguna, Tenerife, España, Spain.
| | - Albano González
- Grupo de Observación de la Tierra y la Atmósfera (GOTA). Universidad de La Laguna. A/Astrofísico Francisco Sánchez s/n. 38200 La Laguna, Tenerife, España, Spain
| | - Juan C Pérez
- Grupo de Observación de la Tierra y la Atmósfera (GOTA). Universidad de La Laguna. A/Astrofísico Francisco Sánchez s/n. 38200 La Laguna, Tenerife, España, Spain
| | - Francisco J Expósito
- Grupo de Observación de la Tierra y la Atmósfera (GOTA). Universidad de La Laguna. A/Astrofísico Francisco Sánchez s/n. 38200 La Laguna, Tenerife, España, Spain
| | - Juan P Díaz
- Grupo de Observación de la Tierra y la Atmósfera (GOTA). Universidad de La Laguna. A/Astrofísico Francisco Sánchez s/n. 38200 La Laguna, Tenerife, España, Spain
| |
Collapse
|
4
|
Chen M, Henderson M, Liu B, Zhou W, Ma R, Huang W, Dou Z. Winter climate change mediates the sensitivity of vegetation leaf-out to spring warming in high latitudes in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1476576. [PMID: 39687319 PMCID: PMC11646735 DOI: 10.3389/fpls.2024.1476576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Global warming has significantly altered plant phenology by advancing the timing of leaf emergence, impacting vegetation productivity and adaptability. Winter and spring temperatures have commonly been used to explain spring phenology shifts, but we still lack a solid understanding of the effects of interactions between conditions in different seasons. This study utilizes normalized difference vegetation index (NDVI) and meteorological data to examine the effects of changes in winter and spring temperatures and precipitation on the start of the vegetation growing season (SOS) at high latitudes in China from 1982 to 2015. We found that SOS in Northeast China, as a whole, showed a weak advancing trend (moving earlier in the year), but with obvious regional differences. Even within the same vegetation type, changes in SOS were faster in the cold north (1.9 days/decade) and the cold and dry northwest (1.6 days/decade) than the regional averages for deciduous needleleaf forests (DNF; 1.2 days/decade) and grasslands (0.6 days/decade). Increases in spring temperatures dominate forest SOS advancement, while grassland SOS is mainly influenced by winter and spring precipitation. Decreases in winter minimum temperature (Tmin) enhance the spring temperature sensitivity of SOS. The way that winter precipitation regulates the spring temperature sensitivity of SOS differs among vegetation types: increasing sensitivity in grasslands but suppressing it in DNF. The moderating effects of winter conditions account for the greatest part of the regional differences in the magnitude of change in SOS. Our findings highlight that, although rising spring temperatures significantly affect SOS, winter Tmin and precipitation are crucial for understanding spatial SOS differences, particularly in cold, arid high-latitude regions. Winter conditions play an essential role in regulating the response of vegetation SOS to spring climate at high latitudes. These results suggest that considering the moderating effect of winter climate can facilitate more accurate predictions of temperature-driven phenological changes under future climate change.
Collapse
Affiliation(s)
- Mingyang Chen
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Mark Henderson
- Mills College, Northeastern University, Oakland, CA, United States
| | - Binhui Liu
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Wanying Zhou
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Rong Ma
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Weiwei Huang
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Zeyu Dou
- College of Forestry, The Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Cohen G, Rowland ST, Benavides J, Lindert J, Kioumourtzoglou MA, Parks RM. Daily temperature variability and mental health-related hospital visits in New York State. ENVIRONMENTAL RESEARCH 2024; 257:119238. [PMID: 38815717 DOI: 10.1016/j.envres.2024.119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/11/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Despite plausible behavioral and physiological pathways, limited evidence exists on how daily temperature variability is associated with acute mental health-related episodes. OBJECTIVES We aimed to explore associations between daily temperature range (DTR) and mental health-related hospital visits using data of all hospital records in New York State during 1995-2014. We further examined factors that may modify these associations, including age, sex, hospital visit type and season. METHODS Using a case-crossover design with distributed lag non-linear DTR terms (0-6 days), we estimated associations between ZIP Code-level DTR and hospital visits for mood (4.6 million hospital visits), anxiety (2.4 million), adjustment (∼368,000), and schizophrenia disorders (∼211,000), controlling for daily mean temperature, via conditional logistic regression models. We assessed potential heterogeneity by age, sex, hospital visit type (in-patient vs. out-patient), and season (summer, winter, and transition seasons). RESULTS For all included outcomes, we observed positive associations from period minimum DTR (0.1 °C) until 25th percentile (5.2 °C) and between mean DTR (7.7 °C) and 90th percentile (12.2 °C), beyond which we observed negative associations. For mood disorders, an increase in DTR from 0.1 °C to 12.2 °C was associated with a cumulative 16.0% increase (95% confidence interval [CI]: 12.8, 19.2%) in hospital visit rates. This increase was highest during transition seasons (32.5%; 95%CI: 26.4, 39.0%) compared with summer (10.7%; 95%CI: 4.8, 16.8%) and winter (-1.6%; 95%CI: -7.6, 4.7%). For adjustment and schizophrenia disorders, the strongest associations were seen among the youngest group (0-24 years) with almost no association in the oldest group (65+ years). We observed no evidence for modification by sex and hospital visit type. DISCUSSION Daily temperature variability was positively associated with mental health-related hospital visits within specific DTR ranges in New York State, after controlling for daily mean temperature. Given uncertainty on how climate change modifies temperature variability, additional research is crucial to comprehend the implications of these findings, particularly under different scenarios of future temperature variability.
Collapse
Affiliation(s)
- Gali Cohen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Israel
| | - Sebastian T Rowland
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jaime Benavides
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jutta Lindert
- Department of Health and Social Work, University of Applied Sciences Emden, Emden, Germany
| | | | - Robbie M Parks
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Bodineau T, de Villemereuil P, Agostini S, Decencière B, Le Galliard JF, Meylan S. Breeding phenology drives variation in reproductive output, reproductive costs, and offspring fitness in a viviparous ectotherm. J Evol Biol 2024; 37:1023-1034. [PMID: 38989795 DOI: 10.1093/jeb/voae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Phenological advances are a widespread response to global warming and can contribute to determine the climate vulnerability of organisms, particularly in ectothermic species, which are highly dependent on ambient temperatures to complete their life cycle. Yet, the relative contribution of breeding dates and temperature conditions during gestation on fitness of females and their offspring is poorly documented in reptiles. Here, we exposed females of the common lizard Zootoca vivipara to contrasting thermal scenarios (cold vs. hot treatment) during gestation and quantified effects of parturition dates and thermal treatment on life-history traits of females and their offspring for 1 year. Overall, our results suggest that parturition date has a greater impact than thermal conditions during gestation on life history strategies. In particular, we found positive effects of an earlier parturition date on juvenile survival, growth, and recruitment suggesting that environmental-dependent selection and/or differences in parental quality between early and late breeders underlie seasonal changes in offspring fitness. Yet, an earlier parturition date compromised the energetic condition of gravid females, which suggests the existence of a mother-offspring conflict regarding the optimization of parturition dates. While numerous studies focused on the direct effects of alterations in incubation temperatures on reptile life-history traits, our results highlight the importance of considering the role of breeding phenology in assessing the short- and long-term effects of thermal developmental plasticity.
Collapse
Affiliation(s)
- Théo Bodineau
- Sorbonne Université, UPEC, UPCité, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris - UMR 7618), Paris, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études - PSL, MNHN, CNRS, SU, UA, Paris, France
- Institut Universitaire de France (IUF), France
| | - Simon Agostini
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UAR 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Beatriz Decencière
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UAR 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Jean-François Le Galliard
- Sorbonne Université, UPEC, UPCité, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris - UMR 7618), Paris, France
- École normale supérieure, PSL Research University, Département de biologie, CNRS, UAR 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Saint-Pierre-lès-Nemours, France
| | - Sandrine Meylan
- Sorbonne Université, UPEC, UPCité, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES Paris - UMR 7618), Paris, France
| |
Collapse
|
7
|
Qi X, Liu S, Wu S, Wang J, Wang J, Zheng C, Wang Y, Liu Y, Luo Q, Li Q, Wang L, Zhao J. Interannual Variations in Terrestrial Net Ecosystem Productivity and Climate Attribution in the Southern Hilly Region of China. PLANTS (BASEL, SWITZERLAND) 2024; 13:246. [PMID: 38256799 PMCID: PMC10819449 DOI: 10.3390/plants13020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The vegetation ecosystem in the southern hilly region of China (SHRC) plays a crucial role in the country's carbon reservoir. Clarifying the dynamics of net primary productivity (NPP) in this area and its response to climate factors in the context of climate change is important for national forest ecology, management, and carbon neutrality efforts. This study, based on remote sensing and meteorological data spanning the period 2001 to 2021, aims to unveil the spatiotemporal patterns of vegetation productivity and climate factors in the southern hilly region, explore interannual variation characteristics of vegetation productivity with altitude, and investigate the response characteristics of NPP to various climate factors. The results indicate that from 2001 to 2021, the annual average NPP in the southern hilly region had a significant increasing trend of 2.13 ± 0.78 g m-2 a-1. The trend of NPP varies significantly with altitude. Despite a general substantial upward trend in vegetation NPP, regions at lower elevations exhibit a faster rate of increase, suggesting a diminishing difference in the NPP of different elevation ranges. The overall rise in average temperature has positive implications for the southern hilly region, while the impact of precipitation on vegetation NPP demonstrates noticeable spatial heterogeneity. Regions in which vegetation NPP is significantly negatively correlated with precipitation are mainly concentrated in the southern areas of Guangdong, Fujian, and Jiangxi provinces. In contrast, other regions further away from the southeastern coast tend to exhibit a positive correlation. Over the past two decades, there has been an asymmetry in the diurnal temperature variation in the SHRC, with the nighttime warming rate being 1.8 times that of the daytime warming rate. The positive impact of daytime warming on NPP of vegetation is more pronounced than the impact of nighttime temperature changes. Understanding the spatiotemporal patterns of NPP in the SHRC and the characteristics of its response to climate factors contributes to enhancing our ability to protect and manage vegetation resources amidst the challenges of global climate change.
Collapse
Affiliation(s)
- Xin Qi
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Shuhua Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (S.L.); (L.W.)
| | - Shaoan Wu
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Jian Wang
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Jiaming Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China;
| | - Chao Zheng
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Yong Wang
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Yang Liu
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Quan Luo
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Qianglong Li
- Changsha Natural Resources Comprehensive Survey, China Geological Survey, Changsha 410600, China; (X.Q.); (S.W.); (J.W.); (C.Z.); (Y.W.); (Q.L.)
| | - Liang Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (S.L.); (L.W.)
| | - Jie Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China; (S.L.); (L.W.)
| |
Collapse
|