1
|
Vo DNK, Ho HPT, Wu LS, Chen YY, Trinh HTV, Lin TY, Lim YY, Tsai KC, Tsai MH. Broad-spectrum antiviral activity of Ganoderma microsporum immunomodulatory protein: Targeting glycoprotein gB to inhibit EBV and HSV-1 infections via viral fusion blockage. Int J Biol Macromol 2025; 307:142179. [PMID: 40101816 DOI: 10.1016/j.ijbiomac.2025.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Epstein-Barr virus (EBV) and herpes simplex virus-1 (HSV-1) are members of the Herpesviridae family and cause various human malignancies and acute infections. Despite their clinical significance, effective treatments remain limited. Here, we report the broad-spectrum antiviral activity of Ganoderma microsporum immunomodulatory protein (GMI), a safe dietary ingredient known for its immunomodulatory, anti-tumor, and antiviral properties. GMI effectively blocks EBV infection in epithelial cells in a dose-dependent manner by targeting both viral and host cells. Notably, GMI displays antiviral activity across multiple EBV strains in epithelial cell infection and represses EBV infection in primary B cells. Mechanistically, GMI interacts with the EBV fusion glycoprotein gB and the host epithelial receptor EphA2 to disrupt viral fusion. Given the structural conservation of gB among herpesviruses, GMI was tested against HSV-1. Remarkably, GMI effectively blocks HSV-1 infection by targeting viral binding and fusion, as well as interacting with HSV-1 gB. In silico modeling suggests that GMI may interact with EBV and HSV-1 gB domain I, contributing to its antiviral activity. Our findings provide the first evidence that GMI suppresses both EBV and HSV-1 infections by targeting the conserved gB-mediated fusion process, suggesting its potential as an antiviral against herpesviruses that rely on fusion-mediated entry.
Collapse
Affiliation(s)
- Di Ngoc Kha Vo
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ha Phan Thanh Ho
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Syuan Wu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yi-Yun Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Hang Thi Viet Trinh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan; Research Center for Epidemic Prevention, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Gallinaro A, Falce C, Pirillo MF, Borghi M, Grasso F, Canitano A, Cecchetti S, Baratella M, Michelini Z, Mariotti S, Chiantore MV, Farina I, Di Virgilio A, Tinari A, Scarlatti G, Negri D, Cara A. Simian Immunodeficiency Virus-Based Virus-like Particles Are an Efficient Tool to Induce Persistent Anti-SARS-CoV-2 Spike Neutralizing Antibodies and Specific T Cells in Mice. Vaccines (Basel) 2025; 13:216. [PMID: 40266067 PMCID: PMC11945333 DOI: 10.3390/vaccines13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Virus-like particles (VLPs) represent an attractive platform for delivering vaccine formulations, combining a high biosafety profile with a potent immune-stimulatory ability. VLPs are non-infectious, non-replicating, self-assembling nanostructures that can be exploited to efficiently expose membrane-tethered glycoproteins such as the SARS-CoV-2 Spike (S) protein, the main target of approved preventive vaccines. Here, we describe the development and preclinical validation of Simian Immunodeficiency Virus (SIV)-based GFP-labeled VLPs displaying S from the B.1.617.2 (Delta) variant (VLP/S-Delta) for inducing persistent anti-SARS-CoV-2 neutralizing antibodies (nAbs) and S-specific T cell responses in mice. Methods: SIV-derived VLP/S-Delta were produced by co-transfecting a plasmid expressing SIVGag-GFP, required for VLP assembly and quantification by flow virometry, a plasmid encoding the Delta S protein deleted in the cytoplasmic tail (CT), to improve membrane binding, and a VSV.G-expressing plasmid, to enhance VLP uptake. Recovered VLPs were titrated by flow virometry and characterized in vitro by transmission electron microscopy (TEM) and confocal microscopy (CLSM). BALB/c mice were immunized intramuscularly with VLP/S-Delta following a prime-boost regimen, and humoral and cellular immune responses were assessed. Results: VLP/S-Delta were efficiently pseudotyped with CT-truncated S-Delta. After BALB/c priming, VLP/S-Delta elicited both specific anti-RBD IgGs and anti-Delta nAbs that significantly increased after the boost and were maintained over time. The prime-boost vaccination induced similar levels of cross-nAbs against the ancestral Wuhan-Hu-1 strain as well as cross-nAbs against Omicron BA.1, BA.2 and BA.4/5 VoCs, albeit at lower levels. Moreover, immunization with VLP/S-Delta induced S-specific IFNγ-producing T cells. Conclusions: These data suggest that SIV-based VLPs are an appropriate delivery system for the elicitation of efficient and sustained humoral and cellular immunity in mice, paving the way for further improvements in the immunogen design to enhance the quality and breadth of immune responses against different viral glycoproteins.
Collapse
Affiliation(s)
- Alessandra Gallinaro
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.G.); (C.F.); (M.F.P.); (A.C.); (Z.M.)
| | - Chiara Falce
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.G.); (C.F.); (M.F.P.); (A.C.); (Z.M.)
| | - Maria Franca Pirillo
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.G.); (C.F.); (M.F.P.); (A.C.); (Z.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (F.G.); (S.M.); (M.V.C.); (I.F.)
| | - Felicia Grasso
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (F.G.); (S.M.); (M.V.C.); (I.F.)
| | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.G.); (C.F.); (M.F.P.); (A.C.); (Z.M.)
| | - Serena Cecchetti
- Confocal Microscopy Unit NMR, Confocal Microscopy Area Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Marco Baratella
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (M.B.); (G.S.)
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.G.); (C.F.); (M.F.P.); (A.C.); (Z.M.)
| | - Sabrina Mariotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (F.G.); (S.M.); (M.V.C.); (I.F.)
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (F.G.); (S.M.); (M.V.C.); (I.F.)
| | - Iole Farina
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (F.G.); (S.M.); (M.V.C.); (I.F.)
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (M.B.); (G.S.)
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (F.G.); (S.M.); (M.V.C.); (I.F.)
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.G.); (C.F.); (M.F.P.); (A.C.); (Z.M.)
| |
Collapse
|
3
|
Zhao F, Zhang Y, Zhang Z, Chen Z, Wang X, Wang S, Li R, Li Y, Zhang Z, Zheng W, Wang Y, Zhang Z, Wu S, Yang Y, Zhang J, Zai X, Xu J, Chen W. Epitope-focused vaccine immunogens design using tailored horseshoe-shaped scaffold. J Nanobiotechnology 2025; 23:119. [PMID: 39966941 PMCID: PMC11834273 DOI: 10.1186/s12951-025-03200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants highlights the need to update coronavirus 2019 disease (COVID-19) vaccine components. Epitope-based vaccine designs targeting conserved and immunorecessive regions of SARS-CoV-2 are critically needed. Here, we report an engineered epitope-focused immunogen design based on a novel horseshoe-shaped natural protein scaffold, named ribonuclease inhibitor 1 (RNH1), that can multiply display of conserved neutralizing epitopes from SARS-CoV-2 S2 stem helix. The designed immunogen RNH1-S1139 demonstrates high binding affinity to S2-specific neutralizing antibodies and elicits robust epitope-targeted antibody responses either through homologous or heterologous vaccination regimens. RNH1-S1139 immune serum has been proven to have similar binding ability against SARS-CoV, SARS-CoV-2 and its variants, providing broad-spectrum protection as a membrane fusion inhibitor. Further studies showed that RNH1 has the potential to serve as a versatile scaffold that displays other helical epitopes from various antigens, including respiratory syncytial virus (RSV) F glycoprotein. Our proposed immunogen engineering strategy via tailored horseshoe-shape nano-scaffold supports the continued development of epitope-focused vaccines as part of a next-generation vaccine design.
Collapse
Affiliation(s)
- Fangxin Zhao
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yue Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhiling Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaolin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shaoyan Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yaohui Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhang Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Wanru Zheng
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yudong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhe Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shipo Wu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Wei Chen
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
- Lead Contact, Beijing, China.
| |
Collapse
|
4
|
Harris C, Kapingidza AB, San JE, Christopher J, Gavitt T, Rhodes B, Janowska K, O'Donnell C, Lindenberger J, Huang X, Sammour S, Berry M, Barr M, Parks R, Newman A, Overton M, Oguin T, Acharya P, Haynes BF, Saunders KO, Wiehe K, Azoitei ML. Design of SARS-CoV-2 RBD Immunogens to Focus Immune Responses Towards Conserved Coronavirus Epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632180. [PMID: 39829739 PMCID: PMC11741430 DOI: 10.1101/2025.01.09.632180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
SARS-CoV-2 continues to evolve, with new variants emerging that evade pre-existing immunity and limit the efficacy of existing vaccines. One approach towards developing superior, variant-proof vaccines is to engineer immunogens that preferentially elicit antibodies with broad cross-reactivity against SARS-CoV-2 and its variants by targeting conserved epitopes on spike. The inner and outer faces of the Receptor Binding Domain (RBD) are two such conserved regions targeted by antibodies that recognize diverse human and animal coronaviruses. To promote the elicitation of such antibodies by vaccination, we engineered "resurfaced" RBD immunogens that contained mutations at exposed RBD residues outside the target epitopes. In the context of pre-existing immunity, these vaccine candidates aim to disfavor the elicitation of strain-specific antibodies against the immunodominant Receptor Binding Motif (RBM) while boosting the induction of inner and outer face antibodies. The engineered resurfaced RBD immunogens were stable, lacked binding to monoclonal antibodies with limited breadth, and maintained strong interactions with target broadly neutralizing antibodies. When used as vaccines, they limited humoral responses against the RBM as intended. Multimerization on nanoparticles further increased the immunogenicity of the resurfaced RBDs immunogens, thus supporting resurfacing as a promising immunogen design approach to rationally shift natural immune responses to develop more protective vaccines.
Collapse
|
5
|
Halfmann PJ, Patel RS, Loeffler K, Yasuhara A, Van De Velde LA, Yang JE, Chervin J, Troxell C, Huang M, Zheng N, Wright ER, Thomas PG, Wilson PC, Kawaoka Y, Kane RS. Multivalent S2 subunit vaccines provide broad protection against Clade 1 sarbecoviruses in female mice. Nat Commun 2025; 16:462. [PMID: 39774966 PMCID: PMC11706982 DOI: 10.1038/s41467-025-55824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protects female transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in female Fc-γ receptor knockout mice reveal that antibody-based cellular effector mechanisms play a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.
Collapse
Affiliation(s)
- Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Raj S Patel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Atsuhiro Yasuhara
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lee-Ann Van De Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Jordan Chervin
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Chloe Troxell
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Min Huang
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Naiying Zheng
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Cryo-EM Research Center, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, Midwest Center for Cryo-Electron Tomography, University of Wisconsin, Madison, WI, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan.
| | - Ravi S Kane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
6
|
Michalewicz K, Barahona M, Bravi B. ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning. Structure 2024; 32:2422-2434.e5. [PMID: 39461331 DOI: 10.1016/j.str.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network model that achieves state-of-the-art performance in the prediction of antibody binding affinity using as input a representation of antibody-antigen structures in terms of normal mode correlation maps derived from elastic network models. This representation captures not only structural features but energetic patterns of local and global residue fluctuations. The learnt representations are interpretable: they reveal similarities of binding patterns among antibodies targeting the same antigen type, and can be used to quantify the importance of antibody regions contributing to binding affinity. Our results show the importance of the antigen imprint in the normal mode landscape, and the dominance of cooperative effects and long-range correlations between antibody regions to determine binding affinity.
Collapse
Affiliation(s)
- Kevin Michalewicz
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Barbara Bravi
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
7
|
Grunst MW, Qin Z, Dodero-Rojas E, Ding S, Prévost J, Chen Y, Hu Y, Pazgier M, Wu S, Xie X, Finzi A, Onuchic JN, Whitford PC, Mothes W, Li W. Structure and inhibition of SARS-CoV-2 spike refolding in membranes. Science 2024; 385:757-765. [PMID: 39146425 PMCID: PMC11449073 DOI: 10.1126/science.adn5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds the receptor angiotensin converting enzyme 2 (ACE2) and drives virus-host membrane fusion through refolding of its S2 domain. Whereas the S1 domain contains high sequence variability, the S2 domain is conserved and is a promising pan-betacoronavirus vaccine target. We applied cryo-electron tomography to capture intermediates of S2 refolding and understand inhibition by antibodies to the S2 stem-helix. Subtomogram averaging revealed ACE2 dimers cross-linking spikes before transitioning into S2 intermediates, which were captured at various stages of refolding. Pan-betacoronavirus neutralizing antibodies targeting the S2 stem-helix bound to and inhibited refolding of spike prehairpin intermediates. Combined with molecular dynamics simulations, these structures elucidate the process of SARS-CoV-2 entry and reveal how pan-betacoronavirus S2-targeting antibodies neutralize infectivity by arresting prehairpin intermediates.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | | | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Yanping Hu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Shenping Wu
- Department of Pharmacology, Yale University, West Haven, CT 06516, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Zhang QE, Lindenberger J, Parsons RJ, Thakur B, Parks R, Park CS, Huang X, Sammour S, Janowska K, Spence TN, Edwards RJ, Martin M, Williams WB, Gobeil S, Montefiori DC, Korber B, Saunders KO, Haynes BF, Henderson R, Acharya P. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. Mol Cell 2024; 84:2747-2764.e7. [PMID: 39059371 PMCID: PMC11366207 DOI: 10.1016/j.molcel.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.
Collapse
Affiliation(s)
- Qianyi E Zhang
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA
| | | | - Ruth J Parsons
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA
| | - Bhishem Thakur
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Rob Parks
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Chan Soo Park
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Xiao Huang
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Salam Sammour
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Taylor N Spence
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Mitchell Martin
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA
| | - Sophie Gobeil
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Centre de Recherche en Infectiologie de l'Université Laval, PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, QC, Canada
| | - David C Montefiori
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; The New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Kevin O Saunders
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA
| | - Rory Henderson
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA.
| |
Collapse
|
9
|
Ornelas MY, Ouyang WO, Wu NC. A library-on-library screen reveals the breadth expansion landscape of a broadly neutralizing betacoronavirus antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597810. [PMID: 38915656 PMCID: PMC11195093 DOI: 10.1101/2024.06.06.597810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) typically evolve cross-reactivity breadth through acquiring somatic hypermutations. While evolution of breadth requires improvement of binding to multiple antigenic variants, most experimental evolution platforms select against only one antigenic variant at a time. In this study, a yeast display library-on-library approach was applied to delineate the affinity maturation of a betacoronavirus bnAb, S2P6, against 27 spike stem helix peptides in a single experiment. Our results revealed that the binding affinity landscape of S2P6 varies among different stem helix peptides. However, somatic hypermutations that confer general improvement in binding affinity across different stem helix peptides could also be identified. We further showed that a key somatic hypermutation for breadth expansion involves long-range interaction. Overall, our work not only provides a proof-of-concept for using a library-on-library approach to analyze the evolution of antibody breadth, but also has important implications for the development of broadly protective vaccines.
Collapse
Affiliation(s)
- Marya Y. Ornelas
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Zhang QE, Lindenberger J, Parsons R, Thakur B, Parks R, Park CS, Huang X, Sammour S, Janowska K, Spence TN, Edwards RJ, Martin M, Williams WB, Gobeil S, Montefiori DC, Korber B, Saunders KO, Haynes BF, Haynes BF, Henderson R, Acharya P. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580004. [PMID: 38405707 PMCID: PMC10888797 DOI: 10.1101/2024.02.12.580004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A recombinant lineage of the SARS-CoV-2 Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryo-EM structures of XBB.1.5, XBB.1.16, EG.5 and EG.5.1 spike (S) ectodomains to reveal reinforced 3-RBD-down receptor inaccessible closed states mediated by interprotomer receptor binding domain (RBD) interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters including stability, receptor binding and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.
Collapse
|