1
|
Mu M, Tuluhong M, Jiang J, Yang M, Long X, Wang Z, Nie W, Zhao S, Wu Y, Hong J, Liu F, Cui G, Yin X. Role of the beneficial phyllosphere microbiome in the defense against red clover anthracnose caused by Colletotrichum americae-borealis. Microbiol Res 2025; 297:128184. [PMID: 40239427 DOI: 10.1016/j.micres.2025.128184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Red clover (Trifolium pratense), a high-quality forage plant, faces significant threats from anthracnose in northeastern China, but the pathogen responsible remains unidentified. The phyllosphere microbiota is crucial in plantpathogen interactions, yet its role in the resistance of red clover to anthracnose is poorly understood. Using morphological, molecular, and multigene phylogenetic analyses, we identified Colletotrichum americae-borealis (Cab) as the pathogen that causes anthracnose in red clover in China. We also investigated changes in the phyllosphere microbiomes of highly resistant (XJ) and susceptible (SC) red clover materials after Cab infection, via 16S rRNA gene sequencing. The results revealed significant differences in bacterial α- and β-diversity, with novel microbial taxa and a complex microbial network emerging postinfection. Notably, after Cab inoculation, the Shannon diversity index in XJ exhibited more pronounced changes, manifested as an increase in the abundance of beneficial microorganisms such as Bacillus, Pantoea, and Pseudomonas. Network analysis revealed that the XJ microbiome was more complex and stable than the SC microbiome was, regardless of infection status. Bacillus J2, the dominant bacterium, significantly inhibited Cab growth in vitro and reduced the disease index by 33.4-47.7 % when it was reapplied to the leaf surface, suggesting its role in enhancing disease resistance. This study is the first to report that C. americae-borealis causes anthracnose in red clover in China, and demonstrates the potential of the beneficial bacterium J2 in enhancing disease resistance, providing insights into disease resistance mechanisms and the role of the phyllosphere microbiome in pathogen challenge.
Collapse
Affiliation(s)
- Meiqi Mu
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Muzhapaer Tuluhong
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Jiang
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Minghao Yang
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xi Long
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Wang
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanting Nie
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Siwen Zhao
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Wu
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jun Hong
- National Animal Husbandry Services, Beijing 100125, China
| | - Fang Liu
- National Animal Husbandry Services, Beijing 100125, China
| | - Guowen Cui
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- The Key Laboratory of Forage Germplasm Resources and Breeding of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Delgado-Baquerizo M, Singh BK, Liu YR, Sáez-Sandino T, Coleine C, Muñoz-Rojas M, Bastida F, Trivedi P. Integrating ecological and evolutionary frameworks for SynCom success. THE NEW PHYTOLOGIST 2025; 246:1922-1933. [PMID: 40177999 DOI: 10.1111/nph.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Use of synthetic microbial communities (SynComs) is a promising approach that harnesses nature-based solutions to support soil fertility and food security, mitigate climate change impacts, and restore terrestrial ecosystems. Several microbial products are in the market, and many others are at different stages of development and commercialization. Yet, we are still far from being able to fully harness the potential and successful applications of such biotechnological tools. The limited field efficiency and efficacy of SynComs have significantly constrained commercial opportunities, resulting in market growth falling below expectations. To overcome these challenges and manage expectations, it is critical to address current limitations, failures, and potential environmental consequences of SynComs. In this Viewpoint, we explore how using multiple eco-evolutionary theories can inform SynCom design and success. We further discuss the current status of SynComs and identify the next steps needed to develop and deploy the next generation of tools to boost their ability to support multiple ecosystem services, including food security and environmental sustainability.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW, Australia
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, NSW, Australia
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy
| | - Miriam Muñoz-Rojas
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Felipe Bastida
- CEBAS-CSIC, Campus Universitario de Espinardo, E-30100, Murcia, Spain
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, 80523, CO, USA
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
3
|
Chi Y, Ma X, Chu S, You Y, Chen X, Wang J, Wang R, Zhang X, Zhang D, Zhao T, Zhang D, Zhou P. Nitrogen cycle induced by plant growth-promoting rhizobacteria drives "microbial partners" to enhance cadmium phytoremediation. MICROBIOME 2025; 13:113. [PMID: 40329393 PMCID: PMC12054286 DOI: 10.1186/s40168-025-02113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Using plant growth-promoting rhizobacteria (PGPR) combined with hyperaccumulator is an ecologically viable way to remediate cadmium (Cd) pollution in agricultural soil. Despite recent advances in elucidating PGPR-enhanced phytoremediation, the response of plant-associated microbiota to PGPR remains unclear. RESULTS Here, we found that the effective colonization of PGPR reshaped the rhizosphere nutrient microenvironment, especially driving the nitrogen cycle, primarily mediated by soil nitrate reductase (S-NR). Elevated S-NR activity mobilized amino acid metabolism and synthesis pathways in the rhizosphere, subsequently driving a shift in life history strategies of the rhizosphere microbiota, and enriching specific rare taxa. The reconstructed synthetic community (SynCom3) confirmed that the inclusion of two crucial collaborators (Lysobacter and Microbacterium) could efficiently foster the colonization of PGPR and aid PGPR in executing phytoremediation enhancement. Finally, the multi-omics analysis highlighted the critical roles of phenylpropanoid biosynthesis and tryptophan metabolism pathways in inducing SynCom3 reorganization and PGPR-enhanced phytoremediation. CONCLUSIONS Our results underscore the significance of the rhizosphere microenvironment modification by PGPR for its colonization and efficacy, and highlight the collaborative role of rare microbiota in the context of PGPR-enhanced phytoremediation. Video Abstract.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yimin You
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agricultural University, Changchun, 130118, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ting Zhao
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiaotong University; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education; Bor S. Luh Food Safety Research Center; Yunnan Dali Research Institute, Shanghai Jiaotong University, Shanghai, 200240, China.
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010000, China.
| |
Collapse
|
4
|
Liu S, Wu J, Cheng Z, Wang H, Jin Z, Zhang X, Zhang D, Xie J. Microbe-mediated stress resistance in plants: the roles played by core and stress-specific microbiota. MICROBIOME 2025; 13:111. [PMID: 40320520 PMCID: PMC12051278 DOI: 10.1186/s40168-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Plants in natural surroundings frequently encounter diverse forms of stress, and microbes are known to play a crucial role in assisting plants to withstand these challenges. However, the mining and utilization of plant-associated stress-resistant microbial sub-communities from the complex microbiome remains largely elusive. RESULTS This study was based on the microbial communities over 13 weeks under four treatments (control, drought, salt, and disease) to define the shared core microbiota and stress-specific microbiota. Through co-occurrence network analysis, the dynamic change networks of microbial communities under the four treatments were constructed, revealing distinct change trajectories corresponding to different treatments. Moreover, by simulating species extinction, the impact of the selective removal of microbes on network robustness was quantitatively assessed. It was found that under varying environmental conditions, core microbiota made significant potential contributions to the maintenance of network stability. Our assessment utilizing null and neutral models indicated that the assembly of stress-specific microbiota was predominantly driven by deterministic processes, whereas the assembly of core microbiota was governed by stochastic processes. We also identified the microbiome features from functional perspectives: the shared microbiota tended to enhance the ability of organisms to withstand multiple types of environmental stresses and stress-specific microbial communities were associated with the diverse mechanisms of mitigating specific stresses. Using a culturomic approach, 781 bacterial strains were isolated, and nine strains were selected to construct different SynComs. These experiments confirmed that communities containing stress-specific microbes effectively assist plants in coping with environmental stresses. CONCLUSIONS Collectively, we not only systematically revealed the dynamics variation patterns of rhizosphere microbiome under various stresses, but also sought constancy from the changes, identified the potential contributions of core microbiota and stress-specific microbiota to plant stress tolerance, and ultimately aimed at the beneficial microbial inoculation strategies for plants. Our research provides novel insights into understanding the microbe-mediated stress resistance process in plants. Video Abstract.
Collapse
Grants
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2020132607 Forestry and Grassland Science and Technology Innovation Youth Top Talent Project of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 2022YFD2201600, 2022YFD2200602, 2023YFD2200203 Fundamental Research Funds for the National Key R&D Program of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- 32371906, 32022057 Project of the National Natural Science Foundation of China
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- No. B20050 The 111 Project
- Fundamental Research Funds for the National Key R&D Program of China
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhen Cheng
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Haofei Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China.
| |
Collapse
|
5
|
Ma J, Peng Q, Chen S, Liu Z, Zhang W, Zhang C, Du X, Sun S, Peng W, Lei Z, Zhang L, Su P, Zhang D, Liu Y. Microbiome Migration from Soil to Leaves in Maize and Rice. Microorganisms 2025; 13:947. [PMID: 40284783 PMCID: PMC12029745 DOI: 10.3390/microorganisms13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The interactions between plants and microbes are essential for enhancing crop productivity. However, the mechanisms underlying host-specific microbiome migration and functional assembly remain poorly understood. In this study, microbiome migration from soil to leaves in rice (Oryza sativa) and maize (Zea mays) was analyzed through 16S rRNA sequencing and phenotypic assessments. When we used the same soil microbiome source to grow rice and maize, microbiota and functional traits were specifically enriched by maize in its phyllosphere and rhizosphere. This indicated that plants can selectively assemble microbiomes from a shared microbiota source. Therefore, 22 strains were isolated from the phyllospheres of rice and maize and used to construct a synthetic microbial community (SynCom). When the soil for rice and maize growth was inoculated with the SynCom, strains belonging to Bacillus were enriched in the maize phyllosphere compared to the rice phyllosphere. Additionally, a strain belonging to Rhizobium was enriched in the maize rhizosphere compared to the rice rhizosphere. These results suggest that plant species influence the migration of microbiota within their respective compartments. Compared with mock inoculation, SynCom inoculation significantly enhanced plant growth. When we compared the microbiomes, strains belonging to Achromobacter, which were assembled by both rice and maize, played a role in enhancing plant growth. Our findings underscore the importance of microbial migration dynamics and functional assembly in leveraging plant-microbe interactions for sustainable agriculture.
Collapse
Affiliation(s)
- Jiejia Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Qianze Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Silu Chen
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Zhuoxin Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weixing Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Chi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Xiaohua Du
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Shue Sun
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Weiye Peng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Ziling Lei
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Limei Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Pin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410082, China; (J.M.); (S.C.); (Z.L.); (Z.L.); (D.Z.)
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Academy of Agricultural Sciences, Changsha 410125, China; (Q.P.); (W.Z.); (W.P.); (L.Z.)
| |
Collapse
|
6
|
Yuan W, Qin Y, Zhang W, Zhou W, Feng G, Zhu H, Yao Q. Weather parameters and biotic factors synergistically shape the phyllosphere microbiome of pomelo ( Citrus maxima (Burm.) Merr.) across annual cycle. FRONTIERS IN PLANT SCIENCE 2025; 16:1532188. [PMID: 40247948 PMCID: PMC12003388 DOI: 10.3389/fpls.2025.1532188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Phyllosphere microbiome plays important roles in crop adaptation to the changing environments. Perennial woody crops undergo annual cycles with the changing weather parameters and the biological factors, which might shape the phyllosphere microbial community. In this study, we aimed to investigate the dynamics of phyllosphere microbiome of pomelo (Citrus maxima (Burm.) Merr.), an economically important horticultural crops worldwide, and to compare the respective contribution of the weather parameters and the biotic factors to the microbial community assembly, with special focus on the amino acids in leaves. Hi-Seq analysis revealed that both bacterial and fungal communities showed annual cycle dynamics, and the bacterial community in summer was much different from those in other seasons probably due to high temperature and precipitation. However, contribution of the biotic factors (e.g., leaf traits) (12%-29%) to microbial community assembly was higher than that of the weather parameters (4%-15%). Redundancy analysis indicated that the leaf amino acids significantly affected bacterial community while sugars significantly affected fungal community, highlighting the differential patterns of bacterial and fungal community as affected by the biotic factors. Finally, structure equation model showed that the weather parameters influenced microbial community colonizing pomelo leaves both in a direct way and in an indirect way via leaf traits (mainly amino acids). These results demonstrate the primary role of weather parameters and the key role of leaf amino acids in shaping phyllosphere microbiome.
Collapse
Affiliation(s)
- Weina Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yongqiang Qin
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wenqian Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guangda Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Wang Q, Veley KM, Johnson JMB, Sumner J, van Erven G, Kabel MA, Dhungana S, Berry J, Boyher A, Braun DM, Vermerris W, Bart RS. Three Xanthomonas Cell Wall Degrading Enzymes and Sorghum Brown midrib12 Contribute to Virulence and Resistance in the Bacterial Leaf Streak Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI05240051R. [PMID: 39928577 DOI: 10.1094/mpmi-05-24-0051-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
With an increasing demand for renewable fuels, bioenergy crops are being developed with high sugar content and altered cell walls to improve processing efficiency. These traits may have unintended consequences for plant disease resistance. Xanthomonas vasicola pv. holcicola (Xvh), the causal agent of sorghum bacterial leaf streak, is a widespread bacterial pathogen. Here, we show that Xvh expresses several bacterial cell wall degrading enzymes (CWDEs) during sorghum infection, and these are required for full virulence. In tolerant sorghum, Xvh infection results in the induction of a key enzyme in monolignol biosynthesis, Brown midrib12 (Bmr12), but this did not affect lignin content nor composition. Mutation of Bmr12 rendered the tolerant genotype susceptible. Bmr12 encodes caffeic acid O-methyltransferase (COMT), an enzyme that generates sinapaldehyde as its major product. Growth inhibition of Xvh in the presence of sinapaldehyde was observed in vitro. We conclude that mutations that alter the components of the sorghum cell wall can reduce sorghum resistance to Xvh and that Xvh CWDEs contribute to bacterial virulence. Given the enhanced bioprocessing characteristics of bmr12 sorghum, these results provide a cautionary tale for current and future efforts aimed at developing dedicated bioenergy crops. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Qi Wang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | - Kira M Veley
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | | | - Josh Sumner
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University and Research, 6708 WG, Wageningen, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University and Research, 6708 WG, Wageningen, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, 6708 WG, Wageningen, The Netherlands
| | | | - Jeffrey Berry
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | - Adam Boyher
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| | | | - Wilfred Vermerris
- UF Genetics Institute and Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, U.S.A
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, St. Louis, MO 63132, U.S.A
| |
Collapse
|
8
|
Mukherjee A, Han L, Mukhopadhyay S, Kopriva S, Swarup S. Sulfur traits in the plant microbiome: implications for sustainable agriculture. Trends Microbiol 2025:S0966-842X(25)00033-2. [PMID: 40074579 DOI: 10.1016/j.tim.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Owing to its biochemical flexibility, sulfur (S) is uniquely poised to fulfill versatile roles in plant-microbe interactions - impacting their metabolism with significant consequences for plant health and the global S cycle. We present evidence that the diversity of S-metabolic genes in plant-associated microbiomes (phytobiomes) is underappreciated, and plant niches are hotspots of bacterial S-metabolism with implications for S emissions. Building upon emerging findings, we posit that coordination of S-metabolism between plants and phytobiomes is a common mechanism for plant-microbe homeostasis and agriculturally beneficial microbial services. Finally, we summarize strategies to harness S-metabolic traits of plants and phytobiomes to sustainably enhance agricultural productivity under the stresses associated with climate change.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Li Han
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sourav Mukhopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
9
|
Zeng Q, Hu HW, Ge AH, Xiong C, Zhai CC, Duan GL, Han LL, Huang SY, Zhang LM. Plant-microbiome interactions and their impacts on plant adaptation to climate change. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:826-844. [PMID: 39981843 DOI: 10.1111/jipb.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Plants have co-evolved with a wide range of microbial communities over hundreds of millions of years, this has drastically influenced their adaptation to biotic and abiotic stress. The rapid development of multi-omics approaches has greatly improved our understanding of the diversity, composition, and functions of plant microbiomes, but how global climate change affects the assembly of plant microbiomes and their roles in regulating host plant adaptation to changing environmental conditions is not fully known. In this review, we summarize recent advancements in the community assembly of plant microbiomes, and their responses to climate change factors such as elevated CO2 levels, warming, and drought. We further delineate the research trends and hotspots in plant-microbiome interactions in the context of climate change, and summarize the key mechanisms by which plant microbiomes influence plant adaptation to the changing climate. We propose that future research is urgently needed to unravel the impact of key plant genes and signal molecules modulated by climate change on microbial communities, to elucidate the evolutionary response of plant-microbe interactions at the community level, and to engineer synthetic microbial communities to mitigate the effects of climate change on plant fitness.
Collapse
Affiliation(s)
- Qing Zeng
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - An-Hui Ge
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chang-Chun Zhai
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Gui-Lan Duan
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li-Li Han
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si-Yun Huang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Chao S, Zhang Y, Hu Y, Chen Y, Li P, Sun Y, Song L, Hu Y, Wang H, Wu J, Lv B. Transgenic Maize of ZmMYB3R Shapes Microbiome on Adaxial and Abaxial Surface of Leaves to Promote Disease Resistance. Microorganisms 2025; 13:362. [PMID: 40005729 PMCID: PMC11858687 DOI: 10.3390/microorganisms13020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The phyllosphere is one of the largest habitats for microorganisms, and host genetic factors play an important role during the interaction between microorganisms and the phyllosphere. Therefore, the transgene may also lead to changes in the maize phyllosphere. ZmMYB3R was identified as a drought-tolerant gene in Arabisopsis. Here, we employed metagenomic sequencing to analyze the microbiome of the adaxial and abaxial leaf surfaces on ZmMYB3R-overexpressing (OE) and wild-type (WT)·maize, aiming to dissect the possible associations between ZmMYB3R and changes in phyllosphere microbiome functioning. Our results revealed that overexpressing ZmMYB3R altered the alpha and beta diversity of the phyllosphere microbiome. In OE plants, more beneficial microbes accumulated on the phyllosphere, while pathogenic ones diminished, especially on the abaxial surface of ZmMYB3R leaves. Further analysis of disease resistance-related metabolic pathways and abundances of disease resistance genes revealed significant differences between OE and WT. The inoculation experiment between OE and WT proved that ZmMYB3R increased the disease resistance of maize. In conclusion, the results reveal that transgenes affect the phyllosphere microbiome, and ZmMYB3R might alter leaf disease resistance by reshaping the phyllosphere microbiome structure. These findings help us understand how ZmMYB3R regulates leaf disease resistance and may facilitate the development of disease control by harnessing beneficial microbial communities.
Collapse
Affiliation(s)
- Shengqian Chao
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yin Zhang
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yue Hu
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
| | - Yifan Chen
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Peng Li
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yu Sun
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Lili Song
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
| | - Yingxiong Hu
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| | - Hui Wang
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Beibei Lv
- Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.C.); (Y.Z.); (Y.H.); (Y.C.); (P.L.); (Y.S.); (L.S.)
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
- Shanghai Professional Technology Service Platform of Agricultural Biosafety Evaluation and Testing, Shanghai 201106, China
- CIMMYT—China Specialty Maize Research Center, Shanghai 201403, China; (Y.H.); (H.W.)
| |
Collapse
|
11
|
O'Rourke JA, Vincent SA, Williams IEI, Gascoyne EL, Devlin PF. Phytochrome-mediated shade avoidance responses impact the structure and composition of the bacterial phyllosphere microbiome of Arabidopsis. ENVIRONMENTAL MICROBIOME 2025; 20:20. [PMID: 39915883 PMCID: PMC11800596 DOI: 10.1186/s40793-025-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
The shade avoidance response triggers a dramatic promotion of elongation growth, accompanied by a significant reprogramming of metabolic pathways as plants seek to prevent overtopping and adapt to vegetative shade. Here we demonstrate that simulated vegetative shade results in significant changes in the structure and composition of the phyllosphere bacterial microbiome. Our study uncovered significant shifts in the diversity, occurrence, abundance and activity of bacteria within the phyllosphere microbiome. A comparison of responses in both wild-type plants and phytochrome mutants, which inherently exhibit a shade-avoidance phenotype, revealed both indirect responses to host plant physiology and direct responses to light among the microbiota. Hierarchical clustering of response patterns further suggested that over a third of the taxa constituting the core phyllosphere microbiome in our assay show some degree of response to vegetative shade. Bacteria that increased in abundance on plants with a shade-avoidance phenotype corresponded to genera associated with beneficial traits such as enhanced disease resistance and growth promotion. Our findings suggests that plants manipulate their phyllosphere microbiome under shade conditions as a strategy to optimise fitness when competing for light. We discuss the implications of our findings in terms of furthering our understanding of plant-microbe signalling in the shaping of the phyllosphere microbiome and the possibility of manipulating the phyllosphere microbiome for plant health in an agricultural setting at high planting densities.
Collapse
Affiliation(s)
- James A O'Rourke
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Stacey A Vincent
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Isabel E I Williams
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Eleanor L Gascoyne
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul F Devlin
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
12
|
Misu IJ, Kayess MO, Siddiqui MN, Gupta DR, Islam MN, Islam T. Microbiome Engineering for Sustainable Rice Production: Strategies for Biofertilization, Stress Tolerance, and Climate Resilience. Microorganisms 2025; 13:233. [PMID: 40005600 PMCID: PMC11857137 DOI: 10.3390/microorganisms13020233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The plant microbiome, found in the rhizosphere, phyllosphere, and endosphere, is essential for nutrient acquisition, stress tolerance, and the overall health of plants. This review aims to update our knowledge of and critically discuss the diversity and functional roles of the rice microbiome, as well as microbiome engineering strategies to enhance biofertilization and stress resilience. Rice hosts various microorganisms that affect nutrient cycling, growth promotion, and resistance to stresses. Microorganisms carry out these functions through nitrogen fixation, phytohormone and metabolite production, enhanced nutrient solubilization and uptake, and regulation of host gene expression. Recent research on molecular biology has elucidated the complex interactions within rice microbiomes and the signalling mechanisms that establish beneficial microbial communities, which are crucial for sustainable rice production and environmental health. Crucial factors for the successful commercialization of microbial agents in rice production include soil properties, practical environmental field conditions, and plant genotype. Advances in microbiome engineering, from traditional inoculants to synthetic biology, optimize nutrient availability and enhance resilience to abiotic stresses like drought. Climate change intensifies these challenges, but microbiome innovations and microbiome-shaping genes (M genes) offer promising solutions for crop resilience. This review also discusses the environmental and agronomic implications of microbiome engineering, emphasizing the need for further exploration of M genes for breeding disease resistance traits. Ultimately, we provide an update to the current findings on microbiome engineering in rice, highlighting pathways to enhance crop productivity sustainably while minimizing environmental impacts.
Collapse
Affiliation(s)
- Israt Jahan Misu
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - Md. Omar Kayess
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| | - M. Nazrul Islam
- Centre for Plant and Soil Health, Regenerative Agri-Science Canada Inc., Winnipeg, MB R3T 5L2, Canada
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (I.J.M.); (M.O.K.); (D.R.G.)
| |
Collapse
|
13
|
Yang CX, Chen SJ, Hong XY, Wang LZ, Wu HM, Tang YY, Gao YY, Hao GF. Plant exudates-driven microbiome recruitment and assembly facilitates plant health management. FEMS Microbiol Rev 2025; 49:fuaf008. [PMID: 40158196 PMCID: PMC12007450 DOI: 10.1093/femsre/fuaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025] Open
Abstract
Plant-microbiome symbiotic interactions play a crucial role in regulating plant health and productivity. To establish symbiotic relationships, the plant secretes a variety of substances to facilitate microbial community recruitment and assembly. In recent years, important progress has been made in studying how plant exudates attract beneficial microorganisms and regulate plant health. However, the mechanisms of plant exudates-mediated microbial community recruitment and assembly and their effects on plant health are no comprehensive review. Here, we summarize the interaction mechanisms among plant exudates, microbial community recruitment and assembly, and plant health. First, we systematically evaluate the type and distribution of plant exudates, as well as their role in microbiome recruitment and assembly. Second, we summarize the mechanisms of plant exudates in terms of microbiome recruitment, diversity regulation and chemotaxis. Finally, we list some typical examples for elucidating the importance of plant exudates in promoting plant health and development. This review contributes to utilizing plant exudate or beneficial microbiome resources to manage plant health and productivity.
Collapse
Affiliation(s)
- Chang-Xin Yang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Shi-Jie Chen
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Xiao-Yu Hong
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Lv-Zhuang Wang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Hai-Ming Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, PR China
| | - Yang-Yang Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yang-Yang Gao
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
14
|
Zancarini A, Le Signor C, Terrat S, Aubert J, Salon C, Munier-Jolain N, Mougel C. Medicago truncatula genotype drives the plant nutritional strategy and its associated rhizosphere bacterial communities. THE NEW PHYTOLOGIST 2025; 245:767-784. [PMID: 39610111 DOI: 10.1111/nph.20272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Harnessing the plant microbiome through plant genetics is of increasing interest to those seeking to improve plant nutrition and health. While genome-wide association studies (GWAS) have been conducted to identify plant genes driving the plant microbiome, more multidisciplinary studies are required to assess the relationships among plant genetics, plant microbiome and plant fitness. Using a metabarcoding approach, we characterized the rhizosphere bacterial communities of a core collection of 155 Medicago truncatula genotypes along with the plant phenotype and investigated the plant genetic effects through GWAS. The different genotypes within the M. truncatula core collection showed contrasting growth and nutritional strategies but few loci were associated with these ecophysiological traits. To go further, we described its associated rhizosphere bacterial communities, dominated by Proteobacteria, Actinobacteria and Bacteroidetes, and defined a core rhizosphere bacterial community. Next, the occurrences of bacterial candidates predicting plant ecophysiological traits of interest were identified using random forest analyses. Some of them were heritable and plant loci were identified, pinpointing genes related to response to hormone stimulus, systemic acquired resistance, response to stress, nutrient starvation or transport, and root development. Together, these results suggest that plant genetics can affect plant growth and nutritional strategies by harnessing keystone bacteria in a well-connected interaction network.
Collapse
Affiliation(s)
- Anouk Zancarini
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christine Le Signor
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Julie Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Nathalie Munier-Jolain
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christophe Mougel
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
15
|
Chesneau G, Herpell J, Garrido-Oter R, Hacquard S. From synthetic communities to synthetic ecosystems: exploring causalities in plant-microbe-environment interactions. THE NEW PHYTOLOGIST 2025; 245:496-502. [PMID: 39501565 DOI: 10.1111/nph.20250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024]
Abstract
The plant microbiota research field has rapidly shifted from efforts aimed at gaining a descriptive understanding of microbiota composition to a focus on acquiring mechanistic insights into microbiota functions and assembly rules. This evolution was driven by our ability to establish comprehensive collections of plant-associated microbes and to reconstruct meaningful microbial synthetic communities (SynComs). We argue that this powerful deconstruction-reconstruction strategy can be used to reconstitute increasingly complex synthetic ecosystems (SynEcos) and mechanistically understand high-level biological organization. The transitioning from simple to more advanced, fully tractable and programmable gnotobiotic SynEcos is ongoing and aims at rationally simplifying natural ecosystems by engineering them. Such reconstitution ecology approaches represent an untapped strategy for bridging the gap between ecology and functional biology and for unraveling plant-microbiota-environment mechanisms that modulate ecosystem health, assembly, and functioning.
Collapse
Affiliation(s)
- Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Johannes Herpell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Rubén Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
16
|
Danso Ofori A, Su W, Zheng T, Datsomor O, Titriku JK, Xiang X, Kandhro AG, Ahmed MI, Mawuli EW, Awuah RT, Zheng A. Roles of Phyllosphere Microbes in Rice Health and Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3268. [PMID: 39683062 DOI: 10.3390/plants13233268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
The phyllosphere, comprising the aerial portions of plants, is a vibrant ecosystem teeming with diverse microorganisms crucial for plant health and productivity. This review examines the functional roles of phyllosphere microorganisms in rice (Oryza sativa), focusing on their importance in nutrient uptake, disease resistance, and growth promotion. The molecular mechanisms underlying these interactions are explored along with their potential applications in enhancing sustainable rice production. The symbiotic relationships between rice plants and their associated microorganisms are highlighted, offering insights into improved agricultural practices. Furthermore, this review addresses the challenges and future developments in translating laboratory findings into practical applications. By synthesizing current research, this comprehensive analysis serves as a valuable resource for leveraging phyllosphere microbes in rice farming and related fields.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Su
- Renshou County Agricultural and Rural Bureau, Meishan 620500, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Osmond Datsomor
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Edzesi Wisdom Mawuli
- Plant Improvement and Productivity Division, Biotechnology Unit, Council for Scientific and Industrial Research, Fumesua, Kumasi P.O. Box UP 63, Ghana
| | - Richard Tuyee Awuah
- Crop and Soil Science Department, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), PMB KNUST, Kumasi P.O. Box UP 1279, Ghana
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Feng Z, Liang Q, Yao Q, Bai Y, Zhu H. The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions. ENVIRONMENTAL MICROBIOME 2024; 19:91. [PMID: 39550594 PMCID: PMC11569615 DOI: 10.1186/s40793-024-00638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Root exudates serve as a bridge connecting plant roots and rhizosphere microbes, playing a key role in influencing the assembly and function of the rhizobiome. Recent studies have fully elucidated the role of root exudates in recruiting rhizosphere microbes to enhance plant performance, particularly in terms of plant resistance to soil-borne pathogens; however, it should be noted that the composition and amount of root exudates are primarily quantitative traits regulated by a large number of genes in plants. As a result, there are knowledge gaps in understanding the contribution of the rhizobiome to soil-borne plant disease resistance and the ternary link of plant genes, root exudates, and disease resistance-associated microbes. Advancements in technologies such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) offer opportunities for the identification of genes associated with quantitative traits. In the present review, we summarize recent studies on the interactions of plant and rhizosphere microbes through root exudates to enhance soil-borne plant disease resistance and also highlight methods for quantifying the contribution of the rhizobiome to plant disease resistance and identifying the genes responsible for recruiting disease resistance-associated microbes through root exudates.
Collapse
Affiliation(s)
- Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qiuhong Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Bai
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
18
|
Lobato C, de Freitas JM, Habich D, Kögl I, Berg G, Cernava T. Wild again: recovery of a beneficial Cannabis seed endophyte from low domestication genotypes. MICROBIOME 2024; 12:239. [PMID: 39548475 PMCID: PMC11568533 DOI: 10.1186/s40168-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Beyond carrying the plant embryo, seeds harbour intricate microbial communities whose transmission across successive plant generations can significantly influence the ecological and evolutionary dynamics of plant-microbe symbioses. The process of plant domestication has potential repercussions in genes involved in plant-microbiome interactions. However, the extent to which breeding can impact the seed microbiome is sparsely explored. Cannabis is a high-value crop but sparsely subjected to agricultural innovations established in other crop species during the last century. Here, we conduct a large-scale analysis of the bacterial seed microbiome of Cannabis across different domestication grades and investigate the potential of seed-associated endophytes as plant growth-promoting agents under both controlled and field conditions. RESULTS Analysis of Cannabis seed endophyte composition and diversity across 46 plant genotypes revealed 813 different bacterial genera with a predominance of Gammaproteobacteria, Bacilli, Actinobacteria and Alphaproteobacteria but a genotype-specific microbiome. The assessment of domestication and breeding on microbial assembly revealed a higher bacterial diversity in low domestication genotypes (Shannon index, H': 1.21 vs. 1.05) and a higher homogeneity in bacterial composition caused by line development. Further, a seed bacterial isolate (Bacillus frigoritolerans C1141) associated with low domestication genotypes, and with genes associated with bio-fertilization, bioremediation and phytohormone production, increased plant growth by 42.3% at the time of harvest, under field conditions. CONCLUSION This study addresses critical knowledge gaps related to the assembly of the Cannabis seed-endophytic microbiome. It reveals that Cannabis breeding is linked to alterations of seed microbial communities, which potentially led to the loss of bacteria with functional significance. These results highlight the importance of preserving seed microbiomes in plant breeding to support sustainable plant health and growth enhancement in Cannabis. Video Abstract.
Collapse
Affiliation(s)
- Carolina Lobato
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - João Machado de Freitas
- Institute for Signal Processing and Speech Communication, Graz University of Technology, Inffeldgasse 16C/EG, Graz, 8010, Austria
| | - Daniel Habich
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Isabella Kögl
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 1446, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, 14476, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, Highfield Campus, Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
Ahmed A, Liu Y, He P, He P, Wu Y, Munir S, He Y. Bacillus quorum quenching shapes the citrus mycobiome through interkingdom signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177074. [PMID: 39454793 DOI: 10.1016/j.scitotenv.2024.177074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Microbiomes are sustained through infinite yet mutually interacting microbial communities, with bacteria and fungi serving as the major constituents. In recent times, microbial interventions have become popular for microbiome manipulation to achieve sustainable goals. Whether and how the introduced biocontrol agent drives fungal microbial assemblages (mycobiome) and the role of interkingdom signaling in shaping the microbiome structure and function remain poorly understood. Here, we implemented wild-type (WT) Bacillus subtilis L1-21 and its quorum quenching (QQ) mutants (L1-21Δytnp, and L1-21Δyxel) individually and as consortia to explore the enrichment patterns of key mycobiome members in Huanglongbing (HLB) infected citrus compartments including leaf endosphere, root endosphere, and rhizosphere soil. The application of WT and its QQ mutants produced differential mycobiome enrichment across citrus compartments. Our findings reveal that application of WT B. subtilis enriched beneficial fungi such as Trichoderma (15.82 %) in leaf endosphere. In contrast, pathogenic fungi Fusarium (47.5 %) and Gibberella (0.47 %) involved in citrus root decline were adundant in the L1-21Δytnp treated root endosphere while Nigrospora (11 %) was predominant in L1-21Δyxel treated leaf endosphere, affirming the role of bacterial quorum sensing (QS) molecules in shaping the fungal community composition. In general, based on the fungal functional prediction, fungal pathogens were highly abundant in mutant-treated plants, particularly in leaf endosphere (L1-21Δytnp: 25 %; L1-21Δyxel: 36.35 %) compared to WT (20.93%). Additionally, some fungal members exhibited strong compartment specificity and both mutants induced distinct mycobiome shifts in rhizosphere soil, leaf, and root endopshere. In conclusion, B. subtilis QQ modifies bacterial QS networks facilitating beneficial fungi to establish, while loss of QQ leads to enrichment of pathogenic fungal groups. Our study provides a direct link of perception and regulation of mycobiome through bacterial-based QS and QQ system, and its association with disease outcomes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yinglong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
20
|
Zheng W, Wang N, Qian G, Qian X, Liu W, Huang L. Cross-niche protection of kiwi plant against above-ground canker disease by beneficial rhizosphere Flavobacterium. Commun Biol 2024; 7:1458. [PMID: 39511396 PMCID: PMC11543660 DOI: 10.1038/s42003-024-07208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Beneficial rhizosphere microorganisms are widely employed to shield crops from underground pathogen infections. In this study, we challenge this conventional idea by employing rhizosphere soil bacteria to safeguard kiwi plants against the above-ground canker, caused by Pseudomonas syringae pv. actinidiae (Psa). Microbiome comparisons were conducted in different resistant cultivars Actinidia chinensis var. deliciosa 'Hayward' and A. chinensis var. chinensis 'Hongyang'. Our findings reveal the most notable disparity in the rhizosphere soil microbiome, with the Flavobacterium significantly enriched in the rhizosphere soil of more resistant cultivar, 'Hayward'. We isolated Flavobacterium isolates and observed their efficacy in preventing Psa infection, which is further confirmed in field trial by using a representative strain Flavobacterium soyae F55. Furthermore, undescribed gene clusters responsible for antimicrobial metabolite biosynthesis were identified in F. soyae F55, and F. soyae F55 growth was evidently promoted by the root exudates of 'Hayward'. The results underscore the potential of beneficial rhizosphere soil bacteria in protection against above-ground disease.
Collapse
Affiliation(s)
- Wei Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, China.
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
21
|
Fan X, Matsumoto H, Xu H, Fang H, Pan Q, Lv T, Zhan C, Feng X, Liu X, Su D, Fan M, Ma Z, Berg G, Li S, Cernava T, Wang M. Aspergillus cvjetkovicii protects against phytopathogens through interspecies chemical signalling in the phyllosphere. Nat Microbiol 2024; 9:2862-2876. [PMID: 39103572 DOI: 10.1038/s41564-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Resident microbiota produces small molecules that influence the chemical microenvironments on leaves, but its signalling roles in pathogen defence are not yet well understood. Here we show that Aspergillus cvjetkovicii, enriched in rice leaf microbiota, subverts Rhizoctonia solani infections via small-molecule-mediated interspecies signalling. 2,4-Di-tert-butylphenol (2,4-DTBP), identified as a key signalling molecule within the Aspergillus-enriched microbiota, effectively neutralizes reactive oxygen species-dependent pathogenicity by switching off bZIP-activated AMT1 transcription in R. solani. Exogenous application of A. cvjetkovicii and 2,4-DTBP demonstrated varying degrees of protective effects against R. solani infection in diverse crops, including cucumber, maize, soybean and tomato. In rice field experiments, they reduced the R. solani-caused disease index to 19.7-32.2%, compared with 67.2-82.6% in the control group. Moreover, 2,4-DTBP showed activity against other rice phytopathogens, such as Fusarium fujikuroi. These findings reveal a defensive strategy against phytopathogens in the phyllosphere, highlighting the potential of symbiotic microbiota-driven neutralization of pathogenicity.
Collapse
Affiliation(s)
- Xiaoyan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haruna Matsumoto
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Haorong Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Hongda Fang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Qianqian Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Tianxing Lv
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Chengfang Zhan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Xiaoyu Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia, Australia
| | - Danrui Su
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Mengyuan Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
22
|
Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R. Community standards and future opportunities for synthetic communities in plant-microbiota research. Nat Microbiol 2024; 9:2774-2784. [PMID: 39478084 DOI: 10.1038/s41564-024-01833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Harnessing beneficial microorganisms is seen as a promising approach to enhance sustainable agriculture production. Synthetic communities (SynComs) are increasingly being used to study relevant microbial activities and interactions with the plant host. Yet, the lack of community standards limits the efficiency and progress in this important area of research. To address this gap, we recommend three actions: (1) defining reference SynComs; (2) establishing community standards, protocols and benchmark data for constructing and using SynComs; and (3) creating an infrastructure for sharing strains and data. We also outline opportunities to develop SynCom research through technical advances, linking to field studies, and filling taxonomic blind spots to move towards fully representative SynComs.
Collapse
Affiliation(s)
- Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- DOE Joint Genome Institute, Berkeley, CA, USA.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Marta Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ákos T Kovács
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Dorota M Krzyżanowska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Gdańsk, Poland
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - George Lund
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | - Lars Jelsbak
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Wippel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Caja Dinesen
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jessica A Ferrarezi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Malek Marian
- Center for Agriculture Food Environment, University of Trento, San Michele all'Adige, Trento, Italy
| | - Adele Pioppi
- Institute of Biology, Leiden University, Leiden, The Netherlands
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xinming Xu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Tonni Andersen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul Schulze-Lefert
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | | | - Ruben Garrido-Oter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Earlham Institute, Norwich Research Park, Norwich, UK.
| |
Collapse
|
23
|
Yang M, Song Y, Ma H, Li Z, Ding J, Yin T, Niu K, Sun S, Qi J, Lu G, Fazal A, Yang Y, Wen Z. Unveiling the hidden world: How arbuscular mycorrhizal fungi and its regulated core fungi modify the composition and metabolism of soybean rhizosphere microbiome. ENVIRONMENTAL MICROBIOME 2024; 19:78. [PMID: 39439005 PMCID: PMC11494790 DOI: 10.1186/s40793-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The symbiosis between arbuscular mycorrhizal fungi (AMF) and plants often stimulates plant growth, increases agricultural yield, reduces costs, thereby providing significant economic benefits. AMF can also benefit plants through affecting the rhizosphere microbial community, but the underlying mechanisms remain unclear. Using Rhizophagus intraradices as a model AMF species, we assessed how AMF influences the bacterial composition and functional diversity through 16 S rRNA gene sequencing and non-targeted metabolomics analysis in the rhizosphere of aluminum-sensitive soybean that were inoculated with pathogenic fungus Nigrospora oryzae and phosphorus-solubilizing fungus Talaromyces verruculosus in an acidic soil. RESULTS The inoculation of R. intraradices, N. oryzae and T. verruculosus didn't have a significant influence on the levels of soil C, N, and P, or various plant characteristics such as seed weight, crude fat and protein content. However, their inoculation affected the structure, function and nutrient dynamics of the resident bacterial community. The co-inoculation of T. verruculosus and R. intraradices increased the relative abundance of Pseudomonas psychrotolerans, which was capable of N-fixing and was related to cry-for-help theory (plants signal for beneficial microbes when under stress), within the rhizosphere. R. intraradices increased the expression of metabolic pathways associated with the synthesis of unsaturated fatty acids, which was known to enhance plant resistance under adverse environmental conditions. The inoculation of N. oryzae stimulated the stress response inside the soil environment by enriching the polyene macrolide antifungal antibiotic-producing bacterial genus Streptomyces in the root endosphere and upregulating two antibacterial activity metabolic pathways associated with steroid biosynthesis pathways in the rhizosphere. Although inoculation of pathogenic fungus N. oryzae enriched Bradyrhizobium and increased soil urease activity, it had no significant effects on biomass and N content of soybean. Lastly, the host niches exhibited differences in the composition of the bacterial community, with most N-fixing bacteria accumulating in the endosphere and Rhizobium vallis only detected in the endosphere. CONCLUSIONS Our findings demonstrate that intricate interactions between AMF, associated core fungi, and the soybean root-associated ecological niches co-mediate the regulation of soybean growth, the dynamics of rhizosphere soil nutrients, and the composition, function, and metabolisms of the root-associated microbiome in an acidic soil.
Collapse
Affiliation(s)
- Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhang Song
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hanke Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiawei Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Kechang Niu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Kouzai Y, Sagehashi Y, Watanabe R, Kajiwara H, Suzuki N, Ono H, Naito K, Akimoto-Tomiyama C. BglaTNB6, a tailocin produced by a plant-associated nonpathogenic bacterium, prevents rice seed-borne bacterial diseases. PLoS Pathog 2024; 20:e1012645. [PMID: 39423232 PMCID: PMC11524443 DOI: 10.1371/journal.ppat.1012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Rice seed-borne diseases caused by the bacterial pathogens Burkholderia glumae and B. plantarii pose a major threat to rice production worldwide. To manage these diseases in a sustainable manner, a biocontrol strategy is crucial. In this study, we showed that B. gladioli NB6 (NB6), a nonpathogenic bacterium, strongly protects rice from infection caused by the above-mentioned pathogens. NB6 was isolated from the indica rice cultivar Nona Bokra seedlings, which possesses genetic resistance to B. glumae. We discovered that cell suspensions of NB6 and its culture filtrate suppressed the disease symptoms caused by B. glumae and B. plantarii in rice seedlings, which indicated that NB6 secretes a plant-protective substance extracellularly. Through purification and mass spectrometry analysis of the culture filtrate, combined with transmission electron microscopy and mutant analysis, the substance was identified as a tailocin and named BglaTNB6. Tailocins are bacteriotoxic multiprotein structures morphologically similar to headless phage tails. BglaTNB6 exhibited antibacterial activity against several Burkholderia species, including B. glumae, B. plantarii, and B. gladioli, suggesting it can prevent pathogen infection. Interestingly, BglaTNB6 greatly contributed only to the biocontrol activity of NB6 cell suspensions against B. plantarii, and not against B. glumae. BglaTNB6 was shown to be encoded by a prophage locus lacking genes for phage head proteins, and a B. gladioli strain with the coded BglaTNB6-like locus equipped with phage head proteins failed to prevent rice seedlings from being infected with B. plantarii. These results suggested that BglaTNB6 may enhance the competitiveness of NB6 against a specific range of bacteria. Our study also highlights the potential of tailocin-producing endophytes for managing crop bacterial diseases.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sagehashi
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Riku Watanabe
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hideyuki Kajiwara
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Suzuki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ono
- Bioactive Chemical Analysis Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Plant Resources Unit, Research Center of Genetic Resources, NARO, Tsukuba, Ibaraki, Japan
| | - Chiharu Akimoto-Tomiyama
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
25
|
Shi R, Liu W, Liu J, Li X, Zeb A, Wang Q, Wang J, Sun Y. Earthworms Enhance Crop Resistance to Insects Under Microplastic Stress by Mobilizing Physical and Chemical Defenses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16282-16290. [PMID: 39236339 DOI: 10.1021/acs.est.4c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
To assess the ecological risk of microplastics (MPs) in agricultural systems, it is critical to simultaneously focus on MP-mediated single-organism response and different trophic-level organism interaction. Herein, we placed earthworms in soils contaminated with different concentrations (0.02% and 0.2% w/w) of polyethylene (PE) and polypropylene (PP) MPs to investigate the effect of earthworms on tomato against Helicoverpa armigera (H. armigera) under MPs stress. We found that earthworms alleviated the inhibitory effects of MPs stress on tomato growth and disrupted H. armigera growth. Compared to individual MPs exposure, earthworm incorporation significantly increased the silicon and lignin content in herbivore-damaged tomato leaves by 19.1% and 57.6%, respectively. Metabolites involved in chemical defense (chlorogenic acid) and phytohormones (jasmonic acid) were also activated by earthworm incorporation. Furthermore, earthworms effectively reduced oxidative damage induced by H. armigera via promoting antioxidant metabolism. Overall, our results suggest that utilizing earthworms to regulate above- and below-ground interactions could be a promising strategy for promoting green agriculture.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, Tianjin, MARA 300191, China
| |
Collapse
|
26
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
27
|
Duflos R, Vailleau F, Roux F. Toward Ecologically Relevant Genetics of Interactions Between Host Plants and Plant Growth-Promoting Bacteria. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300210. [PMID: 39552649 PMCID: PMC11561803 DOI: 10.1002/ggn2.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Indexed: 11/19/2024]
Abstract
The social movement to reduce reliance on pesticides and synthesized fertilizers and the growing global demand for sustainable food supplies require the development of eco-friendly and sustainable agricultural practices. In line, plant growth-promoting bacteria (PGPB) can participate in creating innovative agroecological systems. While the effectiveness of PGPB is highly influenced by abiotic conditions and microbe-microbe interactions, beneficial plant-PGPB interactions can also highly depend on both host and PGPB genotype. Here, the state of the art on the extent of natural genetic variation of plant-PGPB interactions and the underlying genetic architecture, in particular in Arabidopsis thaliana is reviewed. Extensive natural plant genetic variation in response to PGPB is associated with a polygenic architecture and genetic pathways rarely mentioned as being involved in the response to PGPB. To date, natural genetic variation within PGPB is little explored, which may in turn allow the identification of new genetic pathways underlying benefits to plants. Accordingly, several avenues to better understand the genomic and molecular landscape of plant-PGPB interactions are introduced. Finally, the need for establishing thorough functional studies of candidate genes underlying Quantitative Trait Loci and estimating the extent of genotype-by-genotype-by-environment interactions within the context of realistic (agro-)ecological conditions is advocated.
Collapse
Affiliation(s)
- Rémi Duflos
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| | | | - Fabrice Roux
- LIPMEINRAECNRSUniversité de ToulouseCastanet‐Tolosan31326France
| |
Collapse
|
28
|
Cernava T. Coming of age for Microbiome gene breeding in plants. Nat Commun 2024; 15:6623. [PMID: 39103326 DOI: 10.1038/s41467-024-50700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
The plant microbiota can complement host functioning, leading to improved growth and health under unfavorable conditions. Microbiome engineering could therefore become a transformative technique for crop production. Microbiome genes, abbreviated as M genes, provide valuable targets for shaping plant-associated microbial communities.
Collapse
Affiliation(s)
- Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
29
|
Lv M, Shi W, Li M, Zhou B, Liu Y, Gao Z. Ms gene and Mr gene: Microbial-mediated spatiotemporal communication between plants. IMETA 2024; 3:e210. [PMID: 39135693 PMCID: PMC11316919 DOI: 10.1002/imt2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 08/15/2024]
Abstract
Within dynamic agroecosystems, microbes can act as key intermediaries, facilitating spatiotemporal communication among plants. Future research could categorize key plant genes involved in plant-microbe interactions into microbiome-shaping genes (Ms genes) and microbiome-responsive genes (Mr genes), potentially leading to the construction of spatiotemporal molecular networks with microbes as intermediaries.
Collapse
Affiliation(s)
- Ming‐Hao Lv
- College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Wen‐Chong Shi
- College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Ming‐Cong Li
- College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Bo Zhou
- College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Yong‐Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Zheng Gao
- College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| |
Collapse
|
30
|
Sun X, Jiang C, Guo Y, Li C, Zhao W, Nie F, Liu Q. Suppression of OsSAUR2 gene expression immobilizes soil arsenic bioavailability by modulating root exudation and rhizosphere microbial assembly in rice. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134587. [PMID: 38772107 DOI: 10.1016/j.jhazmat.2024.134587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.
Collapse
Affiliation(s)
- Xueyang Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Cheng Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Yao Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Chunyan Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Fanhao Nie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, People's Republic of China.
| |
Collapse
|
31
|
Michl K, David C, Dumont B, Mårtensson LMD, Rasche F, Berg G, Cernava T. Determining the footprint of breeding in the seed microbiome of a perennial cereal. ENVIRONMENTAL MICROBIOME 2024; 19:40. [PMID: 38886863 PMCID: PMC11184768 DOI: 10.1186/s40793-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Seed endophytes have a significant impact on plant health and fitness. They can be inherited and passed on to the next plant generation. However, the impact of breeding on their composition in seeds is less understood. Here, we studied the indigenous seed microbiome of a recently domesticated perennial grain crop (Intermediate wheatgrass, Thinopyrum intermedium L.) that promises great potential for harnessing microorganisms to enhance crop performance by a multiphasic approach, including amplicon and strain libraries, as well as molecular and physiological assays. RESULTS Intermediate wheatgrass seeds harvested from four field sites in Europe over three consecutive years were dominated by Proteobacteria (88%), followed by Firmicutes (10%). Pantoea was the most abundant genus and Pantoea agglomerans was identified as the only core taxon present in all samples. While bacterial diversity and species richness were similar across all accessions, the relative abundance varied especially in terms of low abundant and rare taxa. Seeds from four different breeding cycles (TLI C3, C5, C704, C801) showed significant differences in bacterial community composition and abundance. We found a decrease in the relative abundance of the functional genes nirK and nifH as well as a drop in bacterial diversity and richness. This was associated with a loss of amplicon sequence variants (ASVs) in Actinobacteria, Alphaproteobacteria, and Bacilli, which could be partially compensated in offspring seeds, which have been cultivated at a new site. Interestingly, only a subset assigned to potentially beneficial bacteria, e.g. Pantoea, Kosakonia, and Pseudomonas, was transmitted to the next plant generation or shared with offspring seeds. CONCLUSION Overall, this study advances our understanding of the assembly and transmission of endophytic seed microorganisms in perennial intermediate wheatgrass and highlights the importance of considering the plant microbiome in future breeding programs.
Collapse
Affiliation(s)
- Kristina Michl
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
| | - Christophe David
- Department of Agroecosystems, Environment and Production, ISARA, 23 rue Jean Baldassini, Lyon Cedex 07, 69364, France
| | - Benjamin Dumont
- Plant Sciences Axis, Crop Science lab, ULiege - Gembloux Agro-Bio Tech, Gembloux, B- 5030, Belgium
| | | | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, 70593, Stuttgart, Germany
- International Institute of Tropical Agriculture, P.O. Box 30772-00100, Nairobi, Kenya
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria
- Leibnitz-Institute for Agricultural Engineering, 14469, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8010, Austria.
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO171BJ, UK.
| |
Collapse
|
32
|
Barone GD, Zhou Y, Wang H, Xu S, Ma Z, Cernava T, Chen Y. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity. J Zhejiang Univ Sci B 2024; 25:1-16. [PMID: 38773879 DOI: 10.1631/jzus.b2300914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 05/24/2024]
Abstract
Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals. To harness such functions, a detailed understanding of plant‒microbe and microbe‒microbe interactions is necessary. Among interactions within the plant microbiota, those between bacteria are the most common ones; they are not only of ecological importance but also essential for maintaining the health and productivity of the host plants. This review focuses on recent literature in this field and highlights various consequences of bacteria‒bacteria interactions under different agricultural settings. In addition, the molecular and genetic backgrounds of bacteria that facilitate such interactions are emphasized. Representative examples of commonly found bacterial metabolites with bioactive properties, as well as their modes of action, are given. Integrating our understanding of various binary interactions into complex models that encompass the entire microbiota will benefit future developments in agriculture and beyond, which could be further facilitated by artificial intelligence-based technologies.
Collapse
Affiliation(s)
| | - Yaqi Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK.
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
33
|
Hu D, Zhao Y, Zhu L, Li X, Zhang J, Cui X, Li W, Hao D, Yang Z, Wu F, Dong S, Su X, Huang F, Yu D. Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:96. [PMID: 38589730 DOI: 10.1007/s00122-024-04607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024]
Abstract
KEY MESSAGE A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.
Collapse
Affiliation(s)
- Dezhou Hu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yajun Zhao
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixun Zhu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, School of Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xuan Cui
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlong Li
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226012, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Wu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shupeng Dong
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyue Su
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Zhang J, Wang Q, Yu H, Lin L, Zhang Z, Song Y. Metagenomic insights into protein degradation mechanisms in natural fermentation of cassava leaves. BIORESOURCE TECHNOLOGY 2024; 396:130433. [PMID: 38342281 DOI: 10.1016/j.biortech.2024.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Cassava (Manihot esculenta Crantz) leaves, the primary by-product of cassava processing, constitute a significant protein source, accounting for 18 to 38 percent on a dry weight basis. Despite their nutritional value, a substantial portion of these leaves is often discarded post-harvest, resulting in notable resource waste. This study employs metagenomic technology to investigate the protein degradation mechanism in cassava leaves, aiming to provide a technical reference for value-added of this by-product. Following a 36-hour period of natural fermentation, the protein degradation rate reached 58%, a phenomenon intricately linked to both the microbial community structure and its functional properties. Notably, Lactococcus and Enterobacter, recognized for their abundant protease activity, were predominant. Metagenomically assembled genomes further revealed Lactococcus's substantial role in producing flavors and active compounds, including amino acids and peptides. This study offers novel perspectives to the foodization and high-value utilization of cassava by-products, emphasizing the sustainable exploitation of biomass resources.
Collapse
Affiliation(s)
- Jinquan Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China; College of Horticulture, Hunan Agricultural University, Hunan Province, Changsha 410000, China
| | - Qinfei Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China
| | - Houmei Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China
| | - Liming Lin
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China
| | - Zhenwen Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan Province, Haikou 571101, China.
| | - Yong Song
- College of Horticulture, Hunan Agricultural University, Hunan Province, Changsha 410000, China.
| |
Collapse
|
35
|
Zhan C, Wang M. Disease resistance through M genes. NATURE PLANTS 2024; 10:352-353. [PMID: 38409293 DOI: 10.1038/s41477-024-01644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Affiliation(s)
- Chengfang Zhan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology & Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengcen Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Rice Biology & Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
36
|
Ma QH. Lignin Biosynthesis and Its Diversified Roles in Disease Resistance. Genes (Basel) 2024; 15:295. [PMID: 38540353 PMCID: PMC10969841 DOI: 10.3390/genes15030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Lignin is complex, three-dimensional biopolymer existing in plant cell wall. Lignin biosynthesis is increasingly highlighted because it is closely related to the wide applications in agriculture and industry productions, including in pulping process, forage digestibility, bio-fuel, and carbon sequestration. The functions of lignin in planta have also attracted more attentions recently, particularly in plant defense response against different pathogens. In this brief review, the progress in lignin biosynthesis is discussed, and the lignin's roles in disease resistance are thoroughly elucidated. This issue will help in developing broad-spectrum resistant crops in agriculture.
Collapse
Affiliation(s)
- Qing-Hu Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|