1
|
Chen X, Lin W, Tortorella MD. Towards advanced regenerative therapeutics to tackle cardio-cerebrovascular diseases. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100520. [PMID: 40230658 PMCID: PMC11995107 DOI: 10.1016/j.ahjo.2025.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
The development of vascularized organoids as novel modelling tools of the human cardio-cerebrovascular system for preclinical research has become an essential platform for studying human vascularized tissues/organs for development of personalized therapeutics during recent decades. Organ-on-chip technology is promising for investigating physiological in vitro responses in drug screening development and advanced disease models. Vascularized tissue/organ-on-a-chip benefits every step of drug discovery pipeline as a screening tool with close human genome relevance to investigate human systems biology. Simultaneously, cardio-cerebrovascular-on-chip-integrated microfluidic system serves as an alternative to preclinical animal research for studying (patho-)physiological processes of human blood vessels during embryonic development and cardio-cerebrovascular disease. Integrated with next-generation techniques, such as three-dimensional bioprinting of both cells and matrix, may enable vascularized organoid-on-chip-based novel drug development as personalized therapeutics.
Collapse
Affiliation(s)
- Xi Chen
- Cardiovascular Research Institute & Department of Physiology, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Weiping Lin
- Barts and The London School of Medicine and Dentistry, Queen Mary University, London, UK
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
| | - Micky Daniel Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, CAS, Hong Kong SAR China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Ohuchi K, Watanabe K, Izutsu M, Mishima A, Murata J, Kurita H, Hozumi I, Hayashi Y, Inden M. Type III sodium-dependent inorganic phosphate transporters are required for the phenotypes in human brain microvascular endothelial cells. Exp Cell Res 2025; 448:114556. [PMID: 40221005 DOI: 10.1016/j.yexcr.2025.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Inorganic phosphate (Pi) homeostasis in the brain is critical for the development of primary brain calcification (PBC). In the brains of patients with PBC, calcification occurs in the cerebral small vessels, and it is primarily caused by mutated SLC20A2, a gene that encodes a type III Pi transporter. A previous study founded that the SLC20 family, which includes SLC20A1 and SLC20A2, contributes to Pi homeostasis in the central nervous system. However, the impact of these Pi transporters on the brain vessel phenotype remains unknown. Thus, in this study, we aimed to investigate the effect of SLC20A1 or SLC20A2 depletion on the phenotype of human brain microvascular endothelial cells (hBMECs). We assessed the primary phenotypes of vascular endothelial cells, such as proliferation, tube formation, and VE-cadherin expression. The results showed that hBMECs silenced for SLC20A1 or SLC20A2 had decreased proliferative and angiogenic ability, as well as VE-cadherin expression. The intracellular Pi concentration ([Pi]i) remained constant in SLC20A1-silenced hBMECs whereas it increased in SLC20A2-silenced cells. Tube formation ability was no change even at 3 mM, a concentration higher than [Pi]i which was increased in SLC20A2-silenced hBMECs. Thus, increased [Pi]i in SLC20A2-silenced hBMECs may have a small impact on phenotypic changes. In conclusion, abnormalities in Pi homeostasis caused by SLC20A2 depletion were suggested to play a minor role in PBC endothelial pathology.
Collapse
Affiliation(s)
- Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan.
| | - Ku Watanabe
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Mutsuko Izutsu
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Ayane Mishima
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Junya Murata
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan
| | - Yuichi Hayashi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan; Department of Clinical Pathophysiology and Functional Morphology, Faculty of Nursing Science, Tsuruga Nursing University, 78-2-1 Kizaki, Tsuruga, 914-0814, Fukui, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu, 501-1196, Gifu, Japan.
| |
Collapse
|
3
|
Staples SCR, Yin H, Sutherland FSK, Prescott EK, Tinney D, Hamilton DW, Goldman D, Poepping TL, Ellis CG, Pickering JG. Intussusceptive angiogenesis-on-a-chip: Evidence for transluminal vascular bridging by endothelial delamination. Proc Natl Acad Sci U S A 2025; 122:e2423700122. [PMID: 40244661 DOI: 10.1073/pnas.2423700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Intussusceptive angiogenesis is an increasingly recognized vessel duplication process that generates and reshapes microvascular beds. However, the mechanism by which a vessel splits into two is poorly understood. Particularly vexing is formation of the hallmark transluminal endothelial cell bridge. How an endothelial cell comes to cross a flowing lumen rather than line it is enigmatic. To elucidate this, we used a microvessel-on-a-chip strategy, creating a microconduit coherently lined with flow-sensitive endothelial cells but in which transluminal bridges also formed. Bridge morphologies ranged from filamentous strand to multicellular columns with a central extracellular matrix-containing core. These bridge architectures were found to recapitulate those in microvessels in embryos, tumors, diseased organs, and the dermis of patients with limb-threatening ischemia. Time-lapse, multiplane, three-dimensional (3D) microscopy of the microphysiologic conduit revealed that bridges arose from endothelial cells oriented orthogonal to flow that partially released from the wall while retaining attachments at the ends. This delamination process was blocked by hyperactivation of Rho and augmented by interventions that weaken cell-substrate interactions, including inhibiting nonmuscle myosin II and blocking α5ß1 integrin. Thus, endothelial cells can leave their monolayer and transect a flowing lumen through controlled delamination. This previously unrecognized lumen entry program could explain the launch of intussusceptive angiogenesis and opens a framework for intervening.
Collapse
Affiliation(s)
- Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Frances S K Sutherland
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Emma K Prescott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Dylan Tinney
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Tamie L Poepping
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Christopher G Ellis
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
- London Health Sciences Centre, London, ON N6A 5A5, Canada
| |
Collapse
|
4
|
Lai L, Wu H, Peng L, Zhang Z, Wu X, Zheng S, Su Z, Chu H. GelMA@LNP/AST Promotes eNOS-Dependent Angiogenesis Through Autophagy Activation for the Treatment of Hind Limb Ischemia. Int J Nanomedicine 2025; 20:1821-1841. [PMID: 39958322 PMCID: PMC11829644 DOI: 10.2147/ijn.s499478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/28/2025] [Indexed: 02/18/2025] Open
Abstract
Purpose Limb ischemia is a refractory disease characterized by insufficient angiogenesis and tissue necrosis. Currently, the primary clinical treatment method is surgical intervention; however, the prognosis for patients with severe limb ischemia remains unsatisfactory. Although some studies have evaluated the effects of using bioactive factors to promote neovascularization and tissue repair, the clinical outcomes have not met expectations, possibly due to the difficulties in maintaining biological activity and avoiding potential side effects. Traditional Chinese medicine, specifically astilbin (AST), is a potential therapeutic agent in promoting tissue regeneration. However, there have been no reports on its efficacy in treating limb ischemia through promoting angiogenesis. Materials and Methods In this study, we prepared AST-loaded lignin nanoparticles (LNP/AST) with sustained-release functionality, which were mixed with GelMA hydrogel (GelMA@LNP/AST). The angiogenic effects were evaluated in a mouse model of hind limb ischemia. To further investigate the mechanism of angiogenesis, human endothelial cell line EA.hy926 was exposed to different concentrations of AST. The effects of AST on cell migration and angiogenesis were studied using wound healing assays and angiogenesis assays. The changes in angiogenesis markers, autophagy markers, and eNOS levels were detected using qPCR and Western blotting. 3-MA was used to assess the role of autophagy in the activation of eNOS mediated by AST and its subsequent angiogenic effects. Results GelMA@LNP/AST significantly promoted blood flow recovery in mice with hind limb ischemia. This effect was mainly attributed to the enhanced migration and angiogenic capabilities of endothelial cells mediated by AST. A potential underlying mechanism could be that the autophagy induced by AST increases eNOS activity. Conclusion GelMA@LNP/AST enables complete revascularization in female mice after hind limb ischemia, thereby achieving limb preservation and restoring motor function. Given the good therapeutic potential of the GelMA@LNP/AST in revascularization, it may become an effective strategy for successfully salvaging limbs in cases of limb ischemia.
Collapse
Affiliation(s)
- Lingzhi Lai
- Maoming People’s Hospital, Maoming, Guangdong, People’s Republic of China
| | - Hao Wu
- Maoming People’s Hospital, Maoming, Guangdong, People’s Republic of China
| | - Liang Peng
- The First People’s Hospital of Guiyang, Guiyang, Guizhou, People’s Republic of China
| | - Zhen Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Xinfan Wu
- Maoming People’s Hospital, Maoming, Guangdong, People’s Republic of China
| | - Shuo Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zekang Su
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Hongxing Chu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
6
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
7
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Kaden T, Alonso-Roman R, Akbarimoghaddam P, Mosig AS, Graf K, Raasch M, Hoffmann B, Figge MT, Hube B, Gresnigt MS. Modeling of intravenous caspofungin administration using an intestine-on-chip reveals altered Candida albicans microcolonies and pathogenicity. Biomaterials 2024; 307:122525. [PMID: 38489910 DOI: 10.1016/j.biomaterials.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Candida albicans is a commensal yeast of the human intestinal microbiota that, under predisposing conditions, can become pathogenic and cause life-threatening systemic infections (candidiasis). Fungal-host interactions during candidiasis are commonly studied using conventional 2D in vitro models, which have provided critical insights into the pathogenicity. However, microphysiological models with a higher biological complexity may be more suitable to mimic in vivo-like infection processes and antifungal drug efficacy. Therefore, a 3D intestine-on-chip model was used to investigate fungal-host interactions during the onset of invasive candidiasis and evaluate antifungal treatment under clinically relevant conditions. By combining microbiological and image-based analyses we quantified infection processes such as invasiveness and fungal translocation across the epithelial barrier. Additionally, we obtained novel insights into fungal microcolony morphology and association with the tissue. Our results demonstrate that C. albicans microcolonies induce injury to the epithelial tissue by disrupting apical cell-cell contacts and causing inflammation. Caspofungin treatment effectively reduced the fungal biomass and induced substantial alterations in microcolony morphology during infection with a wild-type strain. However, caspofungin showed limited effects after infection with an echinocandin-resistant clinical isolate. Collectively, this organ-on-chip model can be leveraged for in-depth characterization of pathogen-host interactions and alterations due to antimicrobial treatment.
Collapse
Affiliation(s)
- Tim Kaden
- Dynamic42 GmbH, Jena, Germany; Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Raquel Alonso-Roman
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Bianca Hoffmann
- Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany
| | - Marc T Figge
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Applied Systems Biology, HKI-Center for Systems Biology of Infection, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
| | - Mark S Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Jena, Germany.
| |
Collapse
|