1
|
Kania A, Kiełbiński M, Siwiec M, Hess G. Knockout of 5-HT 7 receptor in the mouse mildly modifies the structure and function of dorsal raphe neurons. Brain Res 2025; 1859:149655. [PMID: 40274177 DOI: 10.1016/j.brainres.2025.149655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
The serotonin (5-HT) type 7 receptor (5-HT7R) mediates numerous physiological actions of 5-HT in the brain. Mice with a targeted disruption of the 5-HT7R-coding gene are characterized by an altered behavioral phenotype. Modifications of the serotonergic modulation of brain development and of the activity of the 5-HT system in adulthood that are related to ablation of functional 5-HT7Rs might, potentially, underlie the behavioral phenotype described in the literature. The present study was aimed at finding the consequences of 5-HT7R deficiency for the structure and function of single 5-HT neurons of the midline region of the dorsal raphe nucleus (DRN). It was found that while the amplitude of spontaneous excitatory postsynaptic currents recorded from tryptophan hydroxylase-immunoreactive DRN neurons was elevated in 5-HT7R-deficient animals, the excitability of these cells was mildly reduced. A lack of 5-HT7Rs was accompanied by a minor modification of DRN 5-HT neuron morphology. Our findings support the hypothesis that ablation of the 5-HT7R results in an alteration of the function of mouse DRN projection neurons. Further experiments are needed to fully elucidate the effects of the knockout of the 5-HT7R coding gene on the brain 5-HT system.
Collapse
Affiliation(s)
- Agnieszka Kania
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Str., 31-343 Kraków, Poland.
| | - Michał Kiełbiński
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Str., 31-343 Kraków, Poland.
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Str., 31-343 Kraków, Poland.
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Kraków, Poland.
| |
Collapse
|
2
|
Yacoub M, Iqbal F, Khan Z, Syeda A, Lijnse T, Syed NI. Neuronal growth patterns and synapse formation are mediated by distinct activity-dependent mechanisms. Sci Rep 2025; 15:17338. [PMID: 40389417 PMCID: PMC12089460 DOI: 10.1038/s41598-025-00806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
All brain functions in animals rely upon neuronal connectivity that is established during early development. Although the activity-dependent mechanisms are deemed important for brain development and adult synaptic plasticity, the precise cellular and molecular mechanisms remain however, largely unknown. This lack of fundamental knowledge regarding developmental neuronal assembly owes its existence to the complexity of the mammalian brain as cell-cell interactions between individual neurons cannot be investigated directly. Here, we used individually identified synaptic partners from Lymnaea stagnalis to interrogate the role of neuronal activity patterns over an extended time period during various growth time points and synaptogenesis. Using intracellular recordings, microelectrode arrays, and time-lapse imaging, we identified unique patterns of activity throughout neurite outgrowth and synapse formation. Perturbation of voltage-gated Ca2+ channels compromised neuronal growth patterns which also invoked a protein kinase A mediated pathway. Our findings underscore the importance of unique activity patterns in regulating neuronal growth, neurite branching, and synapse formation, and identify the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Matthew Yacoub
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Fahad Iqbal
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zainab Khan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Atika Syeda
- HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Thomas Lijnse
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD Centre for Biomedical Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Naweed I Syed
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, University of Calgary, 3330-Hospital Drive, NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
3
|
Agnorelli C, Spriggs M, Godfrey K, Sawicka G, Bohl B, Douglass H, Fagiolini A, Parastoo H, Carhart-Harris R, Nutt D, Erritzoe D. Neuroplasticity and psychedelics: A comprehensive examination of classic and non-classic compounds in pre and clinical models. Neurosci Biobehav Rev 2025; 172:106132. [PMID: 40185376 DOI: 10.1016/j.neubiorev.2025.106132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Neuroplasticity, the ability of the nervous system to adapt throughout an organism's lifespan, offers potential as both a biomarker and treatment target for neuropsychiatric conditions. Psychedelics, a burgeoning category of drugs, are increasingly prominent in psychiatric research, prompting inquiries into their mechanisms of action. Distinguishing themselves from traditional medications, psychedelics demonstrate rapid and enduring therapeutic effects after a single or few administrations, believed to stem from their neuroplasticity-enhancing properties. This review examines how classic psychedelics (e.g., LSD, psilocybin, N,N-DMT) and non-classic psychedelics (e.g., ketamine, MDMA) influence neuroplasticity. Drawing from preclinical and clinical studies, we explore the molecular, structural, and functional changes triggered by these agents. Animal studies suggest psychedelics induce heightened sensitivity of the nervous system to environmental stimuli (meta-plasticity), re-opening developmental windows for long-term structural changes (hyper-plasticity), with implications for mood and behavior. Translating these findings to humans faces challenges due to limitations in current imaging techniques. Nonetheless, promising new directions for human research are emerging, including the employment of novel positron-emission tomography (PET) radioligands, non-invasive brain stimulation methods, and multimodal approaches. By elucidating the interplay between psychedelics and neuroplasticity, this review informs the development of targeted interventions for neuropsychiatric disorders and advances understanding of psychedelics' therapeutic potential.
Collapse
Affiliation(s)
- Claudio Agnorelli
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK; Unit of Psychiatry, Department of Molecular and Developmental Medicine, University of Siena, Italy.
| | - Meg Spriggs
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Kate Godfrey
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Gabriela Sawicka
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Bettina Bohl
- Department of Bioengineering, Imperial College of London, UK
| | - Hannah Douglass
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - Andrea Fagiolini
- Unit of Psychiatry, Department of Molecular and Developmental Medicine, University of Siena, Italy
| | | | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK; Departments of Neurology and Psychiatry, Carhart-Harris Lab, University of California San Francisco, San Francisco, CA, USA
| | - David Nutt
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Division of Psychiatry, Department of Brain Science, Imperial College of London, UK
| |
Collapse
|
4
|
Trajano IP, Costa LHA, Passaglia P, Santos WS, Dos Santos JR, Alberici LC, Branco LGS. Fluoxetine mitigates hypothermia and inflammatory responses in lipopolysaccharide-induced systemic inflammation: Insights into serotonergic and hypothalamic thermoregulatory mechanisms. Cytokine 2025; 189:156909. [PMID: 40058091 DOI: 10.1016/j.cyto.2025.156909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/28/2025] [Accepted: 03/03/2025] [Indexed: 03/18/2025]
Abstract
An abnormally elevated mortality rate is evident in cases of sepsis. To study specific mechanisms of sepsis experimentally, lipopolysaccharide (LPS) systemically administered has been used as a model, in which an exaggerated immune response, neurochemistry settings, and fever following hypothermia take place. Notably, systemic inflammation (SI) can modulate the central serotonergic pathways and being influenced by it. This influence extends to the hypothalamus, which holds a hierarchical significance in the control of body temperature (Tb). This study investigates the potential impact of orally administered fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI) given orally for 7 days before on LPS-induced SI (1.5 mg/kg, i.v.) in rats. The assessment involved monitoring Tb, heat loss index (HLI), along non-shivering thermogenesis assessed by oxygen consumption. Cytokine levels in the spleen and blood, along with nitric oxide (NO), and prostaglandins (PGs) E2 and D2, levels were also measured. The findings reveal increased plasma NO, cytokines in plasma and spleen, and hypothalamus PGE2 levels during SI. Interestingly, FLX mitigated LPS-induced hypothermia, accompanied by a reduction in plasma and splenic NO, interleukins (IL) 6, and 10. Additionally, the results align with the hypothesis that hypothermia, blunted by FLX, develops in fact in a regulated form, as an adaptive strategy.
Collapse
Affiliation(s)
- Isis P Trajano
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Luis Henrique Angenendt Costa
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrícia Passaglia
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wanderson S Santos
- Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonathas Rodrigo Dos Santos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Oral and Basic Biology, School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Chen X, Kim Y, Kawaguchi D. Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress. Front Neural Circuits 2025; 19:1568610. [PMID: 40206866 PMCID: PMC11979153 DOI: 10.3389/fncir.2025.1568610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, is a multimodal association cortex essential for higher-order brain functions, including decision-making, attentional control, memory processing, and regulation of social behavior. Structural, circuit-level, and functional abnormalities in the PFC are often associated with neurodevelopmental disorders. Here, we review recent findings on the postnatal development of the PFC, with a particular emphasis on rodent studies, to elucidate how its structural and circuit properties are established during critical developmental windows and how these processes influence adult behaviors. Recent evidence also highlights the lasting effects of early life stress on the PFC structure, connectivity, and function. We explore potential mechanisms underlying these stress-induced alterations, with a focus on epigenetic regulation and its implications for PFC maturation and neurodevelopmental disorders. By integrating these insights, this review provides an overview of the developmental processes shaping the PFC and their implications for brain health and disease.
Collapse
Affiliation(s)
| | | | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Wu L, Hong Z, Wang S, Huang J, Liu J. Sex differences of negative emotions in adults and infants along the prefrontal-amygdaloid brain pathway. Neuroimage 2024; 304:120948. [PMID: 39571642 DOI: 10.1016/j.neuroimage.2024.120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The neural basis of sex-related differences in processing negative emotions remains poorly understood. The amygdala-related fiber pathways serve as the neuroanatomical foundation for emotion processing. However, the precise sex-related variations within these pathways remain largely elusive. Using diffusion magnetic resonance imaging data from 418 healthy individuals, we identified sex differences in white-matter microstructures of the striato-amygdaloid-prefrontal tracts, particularly the amygdala (Amy)-medial prefrontal cortex (mPFC) pathway. These differences were associated with various neurobiological factors, including pain-related negative emotions, pain sensitivity, neurotransmitter receptors, and gene expressions in the human brain. Our findings suggested that the Amy-mPFC pathway may serve as a neuroanatomical foundation for sex-specific negative emotion processing, driven by specific genetic and neurotransmitter profiles. Notably, we also found similar sex differences in this pathway in an infant imaging dataset, hinting at its developmental significance as a precursor to sex differences in adulthood. These findings underscore the importance of the striato-amygdaloid-prefrontal tracts in sex-related differences in processing negative emotions. This may enhance our understanding of sex-specific emotion regulation and potentially inform future research on strategies for preventing and diagnosing emotional regulation disorders across sexes.
Collapse
Affiliation(s)
- Leiming Wu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Zilong Hong
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Shujun Wang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jia Huang
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China
| | - Jixin Liu
- School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Borsdorf S, Zeug A, Wu Y, Mitroshina E, Vedunova M, Gaitonde SA, Bouvier M, Wehr MC, Labus J, Ponimaskin E. The cell adhesion molecule CD44 acts as a modulator of 5-HT7 receptor functions. Cell Commun Signal 2024; 22:563. [PMID: 39580460 PMCID: PMC11585102 DOI: 10.1186/s12964-024-01931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic. METHODS Using a quantitative FRET (Förster resonance energy transfer) approach, we determined the affinities for the formation of homo- and heteromeric complexes of 5-HT7R and CD44. The impact of heteromerization on 5-HT7R-mediated cAMP signaling was assessed using a cAMP responsive luciferase assay and a FRET-based cAMP biosensor under basal conditions as well as upon pharmacological modulation of the 5-HT7R and/or CD44 with specific ligands. We also investigated receptor-mediated G protein activation using BRET (bioluminescence resonance energy transfer)-based biosensors in both, homo- and heteromeric conditions. Finally, we analyzed expression profiles for 5-HT7R and CD44 in the brain during development. RESULTS We found that homo- and heteromerization of the 5-HT7R and CD44 occur at similar extent. Functionally, heteromerization increased 5-HT7R-mediated cAMP production under basal conditions. In contrast, agonist-mediated cAMP production was decreased in the presence of CD44. Mechanistically, this might be explained by increased Gαs and decreased GαoB activation by 5-HT7R/CD44 heteromers. Unexpectedly, treatment of the heteromeric complex with the CD44 ligand hyaluronic acid boosted constitutive 5-HT7R-mediated cAMP signaling and receptor-mediated transcription, suggesting the existence of a transactivation mechanism. CONCLUSIONS Interaction with the hyaluronan receptor CD44 modulates both the constitutive activity of 5-HT7R as well as its agonist-mediated signaling. Heteromerization also results in the transactivation of 5-HT7R-mediated signaling via CD44 ligand.
Collapse
Affiliation(s)
- Saskia Borsdorf
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Supriya A Gaitonde
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Systasy Bioscience GmbH, Planegg-Martinsried, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Mallick A, Tan HL, Epstein JM, Jing Ng CM, Cook OM, Gaudry Q, Dacks AM. Serotonin acts through multiple cellular targets during an olfactory critical period. iScience 2024; 27:111083. [PMID: 39524339 PMCID: PMC11550141 DOI: 10.1016/j.isci.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/11/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
Serotonin (5-HT) modulates early development during critical periods when experience drives heightened levels of plasticity in neurons. Here, we investigate the cellular mechanisms by which 5-HT modulates critical period plasticity (CPP) in the olfactory system of Drosophila. We first demonstrate that 5-HT is necessary for experience-dependent structural plasticity in response to chronic CO2 exposure and can re-open the critical period long after it normally closes. Knocking down 5-HT7 receptors in a subset of GABAergic local interneurons was sufficient to block CPP, as was knocking down GABA receptors expressed by CO2-sensing olfactory sensory neurons (OSNs). Furthermore, direct modulation of OSNs via 5-HT2B receptors in CO2-sensing OSNs and autoreceptor expression by serotonergic neurons was also required for CPP. Thus, 5-HT targets individual neuron types in the olfactory system via distinct receptors to enable sensory driven plasticity.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Leonhard Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | - Oliver Mason Cook
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Andrew M. Dacks
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Pizzella A, Penna E, Liu Y, Abate N, Lacivita E, Leopoldo M, Perrone-Capano C, Crispino M, Baudry M, Bi X. Alterations of synaptic plasticity in Angelman syndrome model mice are rescued by 5-HT7R stimulation. Prog Neurobiol 2024; 242:102684. [PMID: 39481590 DOI: 10.1016/j.pneurobio.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by motor disfunction, seizures, intellectual disability, speech deficits, and autism-like behavior, showing high comorbidity with Autism Spectrum Disorders (ASD). It is known that stimulation of the serotonin receptor 7 (5-HT7R) can rescue some of the behavioral and neuroplasticity dysfunctions in animal models of Fragile X and Rett syndrome, two pathologies associated with ASD. In view of these observations, we hypothesised that alterations of 5-HT7R signalling might also be involved in AS. To test this hypothesis, we stimulated 5-HT7R with the selective agonist LP-211 to investigate its possible beneficial effects on synaptic dysfunctions and altered behavior in the AS mice model. In mutant mice, we observed impairment of the synaptic machinery of protein synthesis, which was reversed by 5-HT7R activation. Moreover, stimulation of 5-HT7R was able to: i) enhance dendritic spine density in hippocampal neurons, which was reduced in AS mice; ii) restore impaired long-term potentiation (LTP) in hippocampal slices of the AS mice; iii) improve cognitive performance of the mutant animals subjected to the fear conditioning paradigm. Altogether, our results, showing beneficial effects of 5-HT7R stimulation in restoring molecular and cognitive deficits associated with AS, suggest that targeting 5-HT7R could be a promising therapeutic approach for the pathology.
Collapse
Affiliation(s)
- Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Eduardo Penna
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Yan Liu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| | - Natalia Abate
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | | | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, USA.
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, USA.
| |
Collapse
|
10
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
11
|
Allen SJ, Morishita H. Local and long-range input balance: A framework for investigating frontal cognitive circuit maturation in health and disease. SCIENCE ADVANCES 2024; 10:eadh3920. [PMID: 39292771 PMCID: PMC11409946 DOI: 10.1126/sciadv.adh3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Frontal cortical circuits undergo prolonged maturation across childhood and adolescence; however, it remains unknown what specific changes are occurring at the circuit level to establish adult cognitive function. With the recent advent of circuit dissection techniques, it is now feasible to examine circuit-specific changes in connectivity, activity, and function in animal models. Here, we propose that the balance of local and long-range inputs onto frontal cognitive circuits is an understudied metric of circuit maturation. This review highlights research on a frontal-sensory attention circuit that undergoes refinement of local/long-range connectivity, regulated by circuit activity and neuromodulatory signaling, and evaluates how this process may occur generally in the frontal cortex to support adult cognitive behavior. Notably, this balance can be bidirectionally disrupted through various mechanisms relevant to psychiatric disorders. Pharmacological or environmental interventions to normalize or reset the local and long-range balance could hold great therapeutic promise to prevent or rescue cognitive deficits.
Collapse
Affiliation(s)
- Samuel J. Allen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
12
|
Gao K, Chen Z, Zhang N, Jiang P. High throughput virtual screening and validation of Plant-Based EGFR L858R kinase inhibitors against Non-Small cell lung Cancer: An integrated approach Utilizing GC-MS, network Pharmacology, Docking, and molecular dynamics. Saudi Pharm J 2024; 32:102139. [PMID: 39139718 PMCID: PMC11318564 DOI: 10.1016/j.jsps.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Lung cancer ranks as the 2nd most common cancer globally. It's the most prevalent cancer in men and the 2nd most common in women. The prominent events in EGFR-mutated non-small-cell lung cancer (NSCLC) include the emergence of the L858R mutation within EGFR exon 21. Despite the promising efficacy of EGFR inhibitors in managing lung cancer, the development of acquired resistance poses a significant hurdle. In the current investigation, we focused on the screening of two phytochemicals, namely Dehydrocostus lactone and Mokkolactone, derived from the Saussurea lappa plant, as potential inhibitors targeting EGFR L858R mutant lung cancer. The chloroform and ethanol extract of the plant demonstrated anti-proliferative activity through the Resazurin chemosensitivity assay, exhibiting an IC50 value of 37.90 ± 0.29 µg/ml with selectivity index 2.4. Through a GC-MS study, we identified 11 phytochemicals for further insilico analysis. These compounds underwent ADMET assessment followed by drug likeliness analysis before being subjected to molecular docking against EGFR L858R, identified through protein-protein interaction network analysis. All phytochemicals exhibited binding energy scores ranging from -6.9 to -8.1 kcal/mol. Dehydrocostus lactone and Mokkolactone were specifically identified for their binding profile. Findings from 100 ns molecular dynamics simulations demonstrated their enhanced stability compared to the reference ligand DJK. This was evident in the root mean square deviation (RMSD) values, ranging from 0.23 ± 0.01 nm to 0.30 ± 0.05 nm, the radius of gyration values, from 1.71 ± 0.01 nm to 1.72 ± 0.01 nm, and the solvent accessible surface area values, from 155.39 ± 2.40 nm2 to 159.32 ± 2.14 nm2. Additionally, favourable characteristics were observed in terms of hydrogen bonding, principal component analysis, and free energy landscape analysis. Examination of their electronic structure via density functional theory revealed efficient properties, with the highest occupied molecular orbital-least unoccupied molecular orbital energy gap values ranging from -3.984 eV to -6.547 eV. Further, in vivo analysis is required to gain a more comprehensive understanding and efficacy of these identified phytochemicals against lung cancer.
Collapse
Affiliation(s)
- Kun Gao
- Thoracic Surgery Department, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang City, Hebei Province 050000, China
| | - Zujian Chen
- Thoracic Surgery Department, Linxi County People’s Hospital, Xingtai City Linxi County People’s Hospital New Campus 054900, China
| | - Na Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, No. 1,2 Jiankang Road, Shijiazhuang City, Hebei Province, Shijiazhuang 050000, China
| | - Pu Jiang
- Thoracic Surgery Department, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang City, Hebei Province 050000, China
| |
Collapse
|
13
|
Zhu HM, Wang B, Wang T, Shao J, Chen HR, Zhang C, Xu LH, Li JJ, Wang M, Xu DX, Meng XH. Prenatal exposure to fenvalerate causes depressive-like behavior in adulthood by inhibiting brain-derived 5-HT synthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124137. [PMID: 38740245 DOI: 10.1016/j.envpol.2024.124137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The developmental toxicity of fenvalerate, a representative pyrethroid insecticide, is well documented. The present study aimed to explore whether prenatal exposure to fenvalerate causes depression-like behavior in adulthood. Pregnant mice were orally administrated with either corn oil or fenvalerate (2 or 20 mg/kg) during pregnancy. Depressive-like behaviors were assessed by tail suspension test (TST), forced swim test (FST) and sucrose preference test (SPT). Immobility times in TST and FST were increased in offspring whose mothers were exposed to fenvalerate throughout pregnancy. By contrast, sugar preference index, as determined by SPT, was decreased in fenvalerate-exposed offspring. Prefrontal PSD95, a postsynaptic membrane marker, was downregulated in fenvalerate-exposed adulthood offspring. Fenvalerate-induced reduction of prefrontal PSD95 began at GD18 fetal period. Accordingly, prefrontal 5-HT, a neurotransmitter for synaptogenesis, was also reduced in fenvalerate-exposed GD18 fetuses. Tryptophan hydroxylase 2 (TPH2), a key enzyme for 5-HT synthesis, was downregulated in the midbrain of fenvalerate-exposed GD18 fetuses. Additional experiment showed that GRP78 and p-eIF2α, two endoplasmic reticulum stress-related proteins, were increased in the midbrain of fenvalerate-exposed fetal mice. The present results suggest that prenatal exposure to fenvalerate causes depressive-like behavior in adulthood, partially by inhibiting brain-derived 5-HT synthesis.
Collapse
Affiliation(s)
- Hui-Min Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Bo Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing Shao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui-Ru Chen
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chi Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Hua Xu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jing-Jing Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - De-Xiang Xu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiu-Hong Meng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health Across the Life Course/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Mallick A, Tan HL, Epstein JM, Gaudry Q, Dacks AM. Serotonin acts through multiple cellular targets during an olfactory critical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589413. [PMID: 38645269 PMCID: PMC11030346 DOI: 10.1101/2024.04.14.589413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Serotonin (5-HT) is known to modulate early development during critical periods when experience drives heightened levels of plasticity in neurons. Here, we take advantage of the genetically tractable olfactory system of Drosophila to investigate how 5-HT modulates critical period plasticity in the CO2 sensing circuit of fruit flies. Our study reveals that 5HT modulation of multiple neuronal targets is necessary for experience-dependent structural changes in an odor processing circuit. The olfactory CPP is known to involve local inhibitory networks and consistent with this we found that knocking down 5-HT7 receptors in a subset of GABAergic local interneurons was sufficient to block CPP, as was knocking down GABA receptors expressed by olfactory sensory neurons (OSNs). Additionally, direct modulation of OSNs via 5-HT2B expression in the cognate OSNs sensing CO2 is also essential for CPP. Furthermore, 5-HT1B expression by serotonergic neurons in the olfactory system is also required during the critical period. Our study reveals that 5-HT modulation of multiple neuronal targets is necessary for experience-dependent structural changes in an odor processing circuit.
Collapse
Affiliation(s)
- Ahana Mallick
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Leonhard Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Senior Author: These authors contributed equally
| | - Andrew M Dacks
- Departments of Biology and Neuroscience, West Virginia University, Morgantown, WV 26505, USA
- Senior Author: These authors contributed equally
| |
Collapse
|