1
|
Zhang M, Hu J, Zhang Y, Cao Y, Rensing C, Dong Q, Hou F, Zhang J. Roles of the soil microbiome in sustaining grassland ecosystem health on the Qinghai-Tibet Plateau. Microbiol Res 2025; 293:128078. [PMID: 39904001 DOI: 10.1016/j.micres.2025.128078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Soil microbes, as intermediaries in plant-soil interactions, are closely linked to plant health in grassland ecosystems. In recent years, varying degrees of degradation have been observed in the alpine grasslands of the Qinghai-Tibet Plateau (QTP). Addressing grassland degradation, particularly under the influence of climate change, poses a global challenge. Understanding the factors driving grassland degradation on the QTP and developing appropriate mitigation measures is essential for the future sustainability of this fragile ecosystem. In this review, we discuss the environmental and anthropogenic factors affecting grassland degradation and the corresponding impacts on soil microbe community structure. We summarize the current research on the microbiome of the QTP, in particular the effect of vegetation, climate change, grazing, and land use, respectively on the alpine grassland microbiome. The results of these studies indicate that microbially mediated soil bioprocesses are important drivers of grassland ecosystem functional recovery. Therefore, a thorough understanding of the spatial distribution characteristics of the soil microbiome in alpine grasslands is required, and this necessitates an integrated approach in which the interactions among climatic factors, vegetation characteristics, and human activities are evaluated. Additionally, we assess and summarise current technological developments and prospects for applying soil microbiome technologies in sustainable agriculture, including: (i) single-strain inoculation, and (ii) inoculation of synthetic microbial communities, (iii) microbial community transplantation. Grassland restoration projects should be carried out with the understanding that each restoration measure has a unique effect on the soil microbial activity. We propose that the sustainable development of alpine grassland ecosystems can be achieved by adopting advanced microbiome technologies and integrating microbe-based sustainable agricultural practices to maximise grassland biomass, increase soil carbon, and optimise soil nutrient cycling.
Collapse
Affiliation(s)
- Mingxu Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Jinpeng Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Yuewei Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Yanhua Cao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Quanmin Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China
| | - Fujiang Hou
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| | - Jinlin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Gołębiewski M, Sikora M, Mazur J, Szymańska S, Tyburski J, Hrynkiewicz K, Ulrich W. Random mechanisms govern bacterial succession in bioinoculated beet plants. Sci Rep 2025; 15:10734. [PMID: 40155607 PMCID: PMC11953351 DOI: 10.1038/s41598-025-92688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
Plant colonization by microbes is an example of succession, with its distinct phases differing in community structure and diversity. This process needs to be studied to improve bioinoculation strategies. Here, we show that, regardless of bioinoculation, soil type and plant genotype, bacteria colonize the rhizosphere and tissues of axenic beets in two phases associated with taproot development. Communities remained stable after five weeks of growth in soil. Time, soil type and genotype determined community structure both in the rhizosphere and in the endosphere. Inoculation changed the community structure, and members of Pseudomonadota and Bacillota were recruited by beets. Axenic beet colonization runs through phases similar to colonization of a glacier forefront, and bacteria are recruited mostly randomly. The transition from the early to late phase involves a decrease in the bacterial load in plant tissues, which may be linked to plant growth and the arrest of bacterial cell division. Therefore, early inoculation seems to be favourable. Five weeks of growth in soil enabled formation of stable bacterial communities in both the rhizosphere and the endosphere. The influence of inoculation seems to be indirect, probably due to microbe-microbe interactions.
Collapse
Affiliation(s)
- Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100, Torun, Poland.
| | - Marcin Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100, Torun, Poland
| | - Justyna Mazur
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wilenska 4, 87-100, Torun, Poland
| | - Sonia Szymańska
- Department of Microbiology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Jarosław Tyburski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| | - Werner Ulrich
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
3
|
Custódio V, Salas-González I, Gopaulchan D, Flis P, Amorós-Hernández R, Gao YQ, Jia X, Moreno Â, Carrera E, Marcon C, Hochholdinger F, Margarida Oliveira M, Salt DE, Castrillo G. Individual leaf microbiota tunes a genetic regulatory network to promote leaf growth. Cell Host Microbe 2025; 33:436-450.e15. [PMID: 40020663 DOI: 10.1016/j.chom.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/08/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025]
Abstract
In natural ecosystems, microbes have the ability to stably colonize plant leaves, overcoming the fluctuating environmental conditions that the leaves represent. How the phyllosphere microbiota influences the growth of individual leaves remains poorly understood. Here, we investigate the growth of Zea mays (maize/corn) leaves in plants grown in three soils with differing amounts of nutrients and water and identify a leaf-growth-promoting effect driven by the leaf microbiota, which we also validate in field studies. We built and used a bacterial strain collection for recolonization experiments to study the microbiota-mediated mechanisms involved in leaf growth promotion. We demonstrate that prevalent bacteria inhabiting young leaves promote individual leaf growth. Using transcriptomic analyses, we reveal a defense-related genetic network that integrates the beneficial effect of the phyllosphere microbiota into the leaf development program. We demonstrate that the individual leaf microbiota differentially represses this genetic network to modulate the growth-defense trade-off at single-leaf resolution.
Collapse
Affiliation(s)
- Valéria Custódio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Isai Salas-González
- Center for Genomics Sciences, Universidad Nacional Autónoma de México, Cuernavaca Campus, Morelos 62210, México
| | - David Gopaulchan
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Regla Amorós-Hernández
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Orgãos 84, Cabo Verde
| | - Yi-Qun Gao
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Xianqing Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sceinces, Northwest University, Xi'an 710069, China
| | - Ângela Moreno
- Instituto Nacional de Investigação e Desenvolvimento Agrário (INIDA), São Jorge dos Orgãos 84, Cabo Verde
| | - Esther Carrera
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) CSIC-UPV, Valencia 46022, Spain
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany; INRES, Institute of Crop Science and Resource Conservation, BonnMu:Reverse Genetic Resources, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - David E Salt
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough LE12 5RD, UK.
| |
Collapse
|
4
|
Mukherjee A, Han L, Mukhopadhyay S, Kopriva S, Swarup S. Sulfur traits in the plant microbiome: implications for sustainable agriculture. Trends Microbiol 2025:S0966-842X(25)00033-2. [PMID: 40074579 DOI: 10.1016/j.tim.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Owing to its biochemical flexibility, sulfur (S) is uniquely poised to fulfill versatile roles in plant-microbe interactions - impacting their metabolism with significant consequences for plant health and the global S cycle. We present evidence that the diversity of S-metabolic genes in plant-associated microbiomes (phytobiomes) is underappreciated, and plant niches are hotspots of bacterial S-metabolism with implications for S emissions. Building upon emerging findings, we posit that coordination of S-metabolism between plants and phytobiomes is a common mechanism for plant-microbe homeostasis and agriculturally beneficial microbial services. Finally, we summarize strategies to harness S-metabolic traits of plants and phytobiomes to sustainably enhance agricultural productivity under the stresses associated with climate change.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Li Han
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sourav Mukhopadhyay
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117456, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
5
|
Liu Y, Shi A, Chen Y, Xu Z, Liu Y, Yao Y, Wang Y, Jia B. Beneficial microorganisms: Regulating growth and defense for plant welfare. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:986-998. [PMID: 39704146 PMCID: PMC11869181 DOI: 10.1111/pbi.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Beneficial microorganisms (BMs) promote plant growth and enhance stress resistance. This review summarizes how BMs induce growth promotion by improving nutrient uptake, producing growth-promoting hormones and stimulating root development. How BMs enhance disease resistance and help protect plants from abiotic stresses has also been explored. Growth-defense trade-offs are known to affect the ability of plants to survive under unfavourable conditions. This review discusses studies demonstrating that BMs regulate growth-defense trade-offs through microbe-associated molecular patterns and multiple pathways, including the leucine-rich repeat receptor-like kinase pathway, abscisic acid signalling pathway and specific transcriptional factor regulation. This multifaceted relationship underscores the significance of BMs in sustainable agriculture. Finally, the need for integration of artificial intelligence to revolutionize biofertilizer research has been highlighted. This review also elucidates the cutting-edge advancements and potential of plant-microbe synergistic microbial agents.
Collapse
Affiliation(s)
- Yan Liu
- Xianghu LaboratoryHangzhouChina
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | | | - Yue Chen
- Xianghu LaboratoryHangzhouChina
- Horticulture Research InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yanlai Yao
- Xianghu LaboratoryHangzhouChina
- Institute of Environment, Resource, Soil and FertiliserZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing Agricultural UniversityNanjingChina
| | | |
Collapse
|
6
|
Wu J, Liu S, Zhang H, Chen S, Si J, Liu L, Wang Y, Tan S, Du Y, Jin Z, Xie J, Zhang D. Flavones enrich rhizosphere Pseudomonas to enhance nitrogen utilization and secondary root growth in Populus. Nat Commun 2025; 16:1461. [PMID: 39920117 PMCID: PMC11805958 DOI: 10.1038/s41467-025-56226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
Plant growth behavior is a function of genetic network architecture. The importance of root microbiome variation driving plant functional traits is increasingly recognized, but the genetic mechanisms governing this variation are less studied. Here, we collect roots and rhizosphere soils from nine Populus species belonging to four sections (Leuce, Aigeiros, Tacamahaca, and Turanga), generate metabolite and transcription data for roots and microbiota data for rhizospheres, and conduct comprehensive multi-omics analyses. We demonstrate that the roots of vigorous Leuce poplar enrich more Pseudomonas, compared with the poorly performing poplar. Moreover, we confirm that Pseudomonas is strongly associated with tricin and apigenin biosynthesis and identify that gene GLABRA3 (GL3) is critical for tricin secretion. The elevated tricin secretion via constitutive transcription of PopGL3 and Chalcone synthase (PopCHS4) can drive Pseudomonas colonization in the rhizosphere and further enhance poplar growth, nitrogen acquisition, and secondary root development in nitrogen-poor soil. This study reveals that plant-metabolite-microbe regulation patterns contribute to the poplar fitness and thoroughly decodes the key regulatory mechanisms of tricin, and provides insights into the interactions of the plant's key metabolites with its transcriptome and rhizosphere microbes.
Collapse
Affiliation(s)
- Jiadong Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Sijia Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Haoyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Sisi Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Jingna Si
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Lin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Yue Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Shuxian Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Yuxin Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Zhelun Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China.
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, PR China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, PR China.
| |
Collapse
|
7
|
Lian J, Cai K, Yin A, Yuan Y, Zhang X, Xu C. Both light and soil moisture affect the rhizosphere microecology in two oak species. Front Microbiol 2025; 16:1506558. [PMID: 39963499 PMCID: PMC11830677 DOI: 10.3389/fmicb.2025.1506558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding the mechanisms by which seedlings respond to light and water regulation, as well as studying the response of rhizosphere microecology to drought stress, are crucial for forest ecosystem management and ecological restoration. To elucidate the response of the rhizosphere microecology of Quercus dentata and Quercus variabilis seedlings to water and light conditions, and to clarify how plants modulate the structure and function of rhizosphere microbial communities under drought stress, we conducted 12 water-light gradient control experiments. These experiments aimed to offer scientific theoretical support for the dynamic changes in rhizosphere soil enzyme activities and microbial community compositions of these two oak species under varying light and moisture conditions, and subsequently assist in the future breeding and cultivation efforts. The results are summarized as follows: (1) The activities of cellulase, urease, and chitinase in the rhizosphere soil of Q. dentata and Q. variabilis were significantly influenced by water and light treatments (p < 0.05). Urease was particularly sensitive to light, while sucrase exhibited sensitivity to light in Q. dentata and no significant difference in Q. variabilis. (2) Compared to Q. dentata, the rhizosphere bacteria of Q. variabilis demonstrated greater adaptability to drought conditions. Significant differences were observed in the composition of microorganisms and types of fungi in the rhizosphere soil of the two Quercus seedlings. The fungal community is significantly influenced by light and moisture, and appropriate shading treatment can increase the species diversity of fungi; (3) Under different water and light treatments, the rhizosphere soil microbial composition and dominant species differed significantly between the two Quercus seedlings. For instance, Streptomyces, Mesorhizobium, and Paecilomyces exhibited significant variations under different treatment conditions. Specifically, under L3W0 (25% light, 75-85% moisture) conditions, Hyphomonadaceae and SWB02 dominated in the Q. dentata rhizosphere, whereas Burkholderiales and Nitrosomonadaceae were prevalent in the Q. variabilis rhizosphere. Overall, the rhizosphere microecology of Q. dentata and Q. variabilis exhibited markedly distinct responses to varying light and water regimen conditions. Under identical conditions, however, the enzyme activity and microbial community composition in the rhizosphere soil of these two oak seedlings were found to be similar.
Collapse
Affiliation(s)
- Jinshuo Lian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Keke Cai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Aijing Yin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinna Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Jiang C, Wang F, Tian J, Zhang W, Xie K. Two rice cultivars recruit different rhizospheric bacteria to promote aboveground regrowth after mechanical defoliation. Microbiol Spectr 2025; 13:e0125424. [PMID: 39651854 PMCID: PMC11705949 DOI: 10.1128/spectrum.01254-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Plants have evolved the ability to regrow after mechanical defoliation and environmental stresses. However, it is unclear whether and how defoliated plants exploit beneficial microbiota from the soil to promote aboveground regrowth. Here, we compared the defoliation-triggered changes in the root exudation and bacterial microbiome of two rice cultivars (Oryza sativa L ssp.), indica/xian cultivar Minghui63 and japonica/geng cultivar Nipponbare. The results show that reciprocal growth promotion existed between defoliated Minghui63 seedlings and soil bacteria. After the leaves were removed, the Minghui63 seedlings displayed approximately 1.5- and 2.1-fold higher root exudation and leaf regrowth rates, respectively, than did the Nipponbare seedlings. In field trials, Minghui63 and Nipponbare enriched taxonomically and functionally distinct bacteria in the rhizosphere and root. In particular, Minghui63 rhizosphere and root communities depleted bacteria whose functions are related to xenobiotics biodegradation and metabolism. The microbiome data implied that the bacterial family Rhodocyclaceae was specifically enriched during the regrowth of defoliated Minghui63 rice. We further isolated a Rhodocyclaceae strain, Uliginosibacterium gangwonense MDD1, from rice root. Compared with germ-free conditions, MDD1 inoculation promoted the aboveground regrowth of defoliated Minghui63 by 61% but had a weaker effect on Nipponbare plants, suggesting cultivar-specific associations between regrowth-promoting bacteria and rice. This study provides novel insight into microbiota‒root‒shoot communication, which is implicated in the belowground microbiome and aboveground regrowth in defoliated rice. These data will be helpful for microbiome engineering to increase rice resilience to defoliation and environmental stresses.IMPORTANCEAs sessile organisms, plants face a multitude of abiotic and biotic stresses which often result in defoliation. To survive, plants have evolved the ability to regrow leaves after stresses and wounding. Previous studies revealed that the rhizosphere microbiome affected plant growth and stress resilience; however, how belowground microbiota modulates the aboveground shoot regrowth is unclear. To address this question, we used rice, an important crop worldwide, to analyze the role of rhizosphere microbiota in leaf regrowth after defoliation. Our data indicate mutual growth promotion between defoliated rice and rhizosphere bacteria and such beneficial effect is cultivar specific. The microbiome analysis also led us to find a Uliginosibacterium gangwonense strain that promoted rice cv. MH63 leaf regrowth. Our findings therefore present a novel insight into plant-microbiome function and provide beneficial strains that potentially enhance rice stress resilience.
Collapse
Affiliation(s)
- Changjin Jiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Jinling Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Wanyuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
9
|
Chesneau G, Herpell J, Garrido-Oter R, Hacquard S. From synthetic communities to synthetic ecosystems: exploring causalities in plant-microbe-environment interactions. THE NEW PHYTOLOGIST 2025; 245:496-502. [PMID: 39501565 DOI: 10.1111/nph.20250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/14/2024] [Indexed: 12/20/2024]
Abstract
The plant microbiota research field has rapidly shifted from efforts aimed at gaining a descriptive understanding of microbiota composition to a focus on acquiring mechanistic insights into microbiota functions and assembly rules. This evolution was driven by our ability to establish comprehensive collections of plant-associated microbes and to reconstruct meaningful microbial synthetic communities (SynComs). We argue that this powerful deconstruction-reconstruction strategy can be used to reconstitute increasingly complex synthetic ecosystems (SynEcos) and mechanistically understand high-level biological organization. The transitioning from simple to more advanced, fully tractable and programmable gnotobiotic SynEcos is ongoing and aims at rationally simplifying natural ecosystems by engineering them. Such reconstitution ecology approaches represent an untapped strategy for bridging the gap between ecology and functional biology and for unraveling plant-microbiota-environment mechanisms that modulate ecosystem health, assembly, and functioning.
Collapse
Affiliation(s)
- Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Johannes Herpell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Rubén Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Earlham Institute, Norwich Research Park, NR4 7UZ, Norwich, UK
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
10
|
Villano F, Balestrini R, Nerva L, Chitarra W. Harnessing microbes as sun cream against high light stress. THE NEW PHYTOLOGIST 2025; 245:450-457. [PMID: 39462775 DOI: 10.1111/nph.20206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Plants rely on solar energy for growth through photosynthesis, yet excessive light intensity can induce physiological damage. Despite the considerable harm, inadequate attention has been directed toward understanding how plant-associated microorganisms mitigate this stress, and the impact of high light intensity on plant microbial communities remains underexplored. Through this Viewpoint, we aim to highlight the potential of microbial communities to enhance plant resilience and understand how light stress can shape plant microbiome. A full understanding of these dynamics is essential to design strategies that take advantage of microbial assistance to plants under light stress and to effectively manage the impact of changing light conditions on plant-microbe interactions.
Collapse
Affiliation(s)
- Filippo Villano
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources (IBBR), National Research Council (IBBR-CNR), Via G. Amendola 165/A, Bari (BA), 70126, Italy
| | - Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, (CREA-VE), Via XXVIII Aprile 26, Conegliano (TV), 31015, Italy
| |
Collapse
|
11
|
Ruan Z, Xu M, Xing Y, Yang K, Xu X, Jiang J, Qiu R. Enhanced growth of wheat in contaminated fields via synthetic microbiome as revealed by genome-scale metabolic modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176047. [PMID: 39241874 DOI: 10.1016/j.scitotenv.2024.176047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The relationship between plants and soil microbial communities is complex and subtle, with microbes playing a crucial role in plant growth. Autochthonous bioaugmentation and nutrient biostimulation are promising bioremediation methods for herbicides in contaminated agricultural soils, but how microbes interact to promote biodegradation and plant growth on barren fields, especially in response to the treatment of the herbicide bromoxynil after wheat seedlings, remains poorly understood. In this study, we explored the microbial community reassembly process from the three-leaf stage to the tillering stage of wheat and put forward the idea of using the overlapping results of three methods (network Zi-Pi analysis, LEfSe analysis, and Random Forest analysis) as keystones for the simplification and optimization of key microbial species in the soil. Then we used genome-scale metabolic models (GSMMs) to design a targeted synthetic microbiome for promoting wheat seedling growing. The results showed that carbon source was more helpful in enriching soil microbial diversity and promoting the role of functional microbial communities, which facilitated the degradation of bromoxynil. Designed a multifunctional synthetic consortium consisting of seven non-degraders which unexpectedly assisted in the degradation of indigenous bacteria, which increased the degradation rate of bromoxynil by 2.05 times, and when adding nutritional supplementation, it increased the degradation rate by 3.65 times. In summary, this study provides important insights for rational fertilization and precise microbial consortium management to improve plant seedling growth in contaminated fields.
Collapse
Affiliation(s)
- Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mengjun Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Youwen Xing
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaiqing Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xihui Xu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Luo C, He Y, Chen Y. Rhizosphere microbiome regulation: Unlocking the potential for plant growth. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100322. [PMID: 39678067 PMCID: PMC11638623 DOI: 10.1016/j.crmicr.2024.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rhizosphere microbial communities are essential for plant growth and health maintenance, but their recruitment and functions are affected by their interactions with host plants. Finding ways to use the interaction to achieve specific production purposes, so as to reduce the use of chemical fertilizers and pesticides, is an important research approach in the development of green agriculture. To demonstrate the importance of rhizosphere microbial communities and guide practical production applications, this review summarizes the outstanding performance of rhizosphere microbial communities in promoting plant growth and stress tolerance. We also discuss the effect of host plants on their rhizosphere microbes, especially emphasizing the important role of host plant species and genes in the specific recruitment of beneficial microorganisms to improve the plants' own traits. The aim of this review is to provide valuable insights into developing plant varieties that can consistently recruit specific beneficial microorganisms to improve crop adaptability and productivity, and thus can be applied to green and sustainable agriculture in the future.
Collapse
Affiliation(s)
- Chenghua Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijun He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaping Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
13
|
Wang X, Zhu J, Ma J, Wang S, Zuo L, Yang Z. Close correlation between sugarcane ratoon decline and rhizosphere ecological factors. Sci Rep 2024; 14:20738. [PMID: 39548086 PMCID: PMC11568144 DOI: 10.1038/s41598-024-70613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 11/17/2024] Open
Abstract
Rhizosphere ecological factors that affect sugarcane ratoons are crucial components in the feedback mechanisms between the sugarcane plant and soil environment. However, systematic investigations on these dynamics are lacking. Therefore, this study investigated the relationship between sugarcane ratoon decline and rhizosphere ecological factors. In first-year sugarcane ratoons, ecological factors such as soil available potassium content, soil nitrogen fixation, and soil peroxidase activity were significantly positively correlated with sugarcane growth (P < 0.05) compared to that of third-year sugarcane ratoons. Significant intergroup disparities in the rhizosphere soil microbial community structure were observed based on different ratoon ages (P < 0.01), while highly significant intergroup differences in endophytic microbial community structure were observed based on a Jaccard distance analysis (P < 0.01). Generalised additive model analysis revealed a significant positive correlation (P < 0.05) between sugarcane growth properties and the alpha diversity of rhizosphere soil bacteria and endophytic bacteria but a predominantly negative correlation (P > 0.05) between the alpha diversity of endophytic fungi and key sugarcane growth indicators. The deterioration of mainly non-microbial ecological factors in rhizosphere soil (P < 0.05) with increasing ratoon age may represent a significant factor contributing to sugarcane ratoon decline. The fungal community significantly impacted soil enzyme activity, while the microbial community indirectly influenced sugarcane yield through its effect on soil enzyme activity. Therefore, endophytic fungi, particularly Ascomycota species, may play a crucial role in sugarcane diseases.
Collapse
Affiliation(s)
- Xiaoming Wang
- Key Laboratory for the Green and Efficient Production Technology of Sugarcane, Guangxi Science & Technology Normal University, Laibin, China
| | - Jinghuan Zhu
- Key Laboratory for the Green and Efficient Production Technology of Sugarcane, Guangxi Science & Technology Normal University, Laibin, China
| | - Junjun Ma
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing, China
| | - Shilong Wang
- Key Laboratory for the Green and Efficient Production Technology of Sugarcane, Guangxi Science & Technology Normal University, Laibin, China.
| | - Linzhi Zuo
- Key Laboratory for the Green and Efficient Production Technology of Sugarcane, Guangxi Science & Technology Normal University, Laibin, China
| | - Zuli Yang
- Laibin Comprehensive Experiment Station of National Sugar Industry Technical System, Laibin Academy of Agricultural Sciences, Laibin, China
| |
Collapse
|
14
|
Tan W, Nian H, Tran LSP, Jin J, Lian T. Small peptides: novel targets for modulating plant-rhizosphere microbe interactions. Trends Microbiol 2024; 32:1072-1083. [PMID: 38670883 DOI: 10.1016/j.tim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The crucial role of rhizosphere microbes in plant growth and their resilience to environmental stresses underscores the intricate communication between microbes and plants. Plants are equipped with a diverse set of signaling molecules that facilitate communication across different biological kingdoms, although our comprehension of these mechanisms is still evolving. Small peptides produced by plants (SPPs) and microbes (SPMs) play a pivotal role in intracellular signaling and are essential in orchestrating various plant development stages. In this review, we posit that SPPs and SPMs serve as crucial signaling agents for the bidirectional cross-kingdom communication between plants and rhizosphere microbes. We explore several potential mechanistic pathways through which this communication occurs. Additionally, we propose that leveraging small peptides, inspired by plant-rhizosphere microbe interactions, represents an innovative approach in the field of holobiont engineering.
Collapse
Affiliation(s)
- Weiyi Tan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Jing Jin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
16
|
Xu H, Wang L, Zhu M, Chen X. Epiphytic Fungi Can Drive a Trade-Off Between Pathogen and Herbivore Resistance in Invasive Ipomoea cairica. Microorganisms 2024; 12:2130. [PMID: 39597519 PMCID: PMC11596056 DOI: 10.3390/microorganisms12112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Trade-offs between different defense traits exist commonly in plants. However, no evidence suggests that symbiotic microbes can drive a trade-off between plant pathogen and herbivore defense. The present study aims to investigate whether the mixture of epiphytic Fusarium oxysporum and Fusarium fujikuroi can drive the trade-off between the two defense traits in invasive Ipomoea cairica. Surface-sterilized I. cairica cuttings pre-inoculated with the epiphytic fungal mixture served as an epiphyte-inoculated (E+) group, while cuttings sprayed with sterile PDB served as an epiphyte-free (E-) group. After 3 days of incubation, E+ and E- cuttings were subjected to the challenge from a fungal pathogen and an insect herbivore, respectively. The results suggested that E+ cuttings had less rotted and yellowed leaf rates per plant than E- cuttings after Colletotrichum gloeosporioides infection. On the contrary, E+ cuttings had higher absolute and relative fresh weight losses per leaf than E- cuttings after Taiwania circumdata introduction. In the absence of challenges from the two natural enemies, salicylic acid and H2O2 accumulation occurred in E+ cuttings, which activated their SA-dependent pathogen defense and resulted in an increase in chitinase and β-1,3-glucanase activities. Although jasmonic acid accumulation also occurred in E+ cuttings, their JA-dependent herbivore defense responses were antagonized by SA signaling, leading to a decrease in total phenol content and phenylalanine ammonia-lyase activity. The activity of generalized defense enzymes, including superoxide dismutase, peroxidase, and catalase, did not differ between E+ and E- cuttings. Together, our findings indicate that a trade-off between pathogen and herbivore defense in I. cairica had already been driven by the epiphytic fungal mixture before the challenge by the two natural enemies. This study provides a novel insight into biocontrol strategies for I. cairica.
Collapse
Affiliation(s)
- Hua Xu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (H.X.); (L.W.)
| | - Lixing Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (H.X.); (L.W.)
| | - Minjie Zhu
- Hunan Polytechnic of Environment and Biology, Hengyang 421005, China;
| | - Xuhui Chen
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
17
|
Ortúzar M, Riesco R, Criado M, Alonso MDP, Trujillo ME. Unraveling the dynamic interplay of microbial communities associated to Lupinus angustifolius in response to environmental and cultivation conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174277. [PMID: 38944300 DOI: 10.1016/j.scitotenv.2024.174277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Microorganisms form dynamic communities with plants, providing benefits such as nutrient acquisition and stress resilience. Understanding how these microorganisms are affected by environmental factors such as growth conditions and soil characteristics are essential for harnessing these communities for sustainable agriculture practices and their response to climate change. The microbiome associated to Lupinus angustifolius, a legume native in Europe, with a high protein value and stress resilience was characterized for the first time. Using 16S rRNA gene and ITS amplicon sequencing, we characterized the compositional and temporal changes of the bacterial and fungal communities associated to the soil, rhizosphere, and plant compartments where Lupinus angustifolius grows naturally. Our results suggest that the main difference in the soil microbial communities is related to the edaphic properties, although environmental factors such as temperature, humidity or rainfall also influenced the composition of the soil microbial communities. We also characterized the bacterial communities associated with the rhizosphere, roots, nodules, and leaves of wild plants collected in the field and compared them against plants obtained under greenhouse conditions. In the plant compartments, the bacterial composition appeared to be more affected by the growing conditions (field vs greenhouse), than by soil characteristics or location. These results can be used to identify key taxa that may play crucial roles in the development and adaptation of the host plant and its associated microbiota to environmental changes and highlight the importance of characterizing the plant microbiomes in their natural habitats. Soil, influenced by climatic seasons, shapes the plant microbiome assembly. Lupinus recruits a core microbiome across rhizosphere, roots, nodules, and leaves, that is stable across locations. However, cultivation conditions may alter microbiome dynamics, impacting the adaptability of its components. Wild plants show a resilient and adaptable microbiome while germination and cultivation in greenhouse conditions alter its composition and vulnerability.
Collapse
Affiliation(s)
- Maite Ortúzar
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain.
| | - Raúl Riesco
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain.
| | - Marco Criado
- Area of Edaphology and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, University of Salamanca, 37007 Salamanca, Spain.
| | - María Del Pilar Alonso
- Area of Edaphology and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, University of Salamanca, 37007 Salamanca, Spain.
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
18
|
Han C, Cheng Q, Du X, Liang L, Fan G, Xie J, Wang X, Tang Y, Zhang H, Hu C, Zhao X. Selenium in soil enhances resistance of oilseed rape to Sclerotinia sclerotiorum by optimizing the plant microbiome. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5768-5789. [PMID: 38809805 DOI: 10.1093/jxb/erae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Plants can recruit beneficial microbes to enhance their ability to resist disease. It is well established that selenium is beneficial in plant growth, but its role in mediating microbial disease resistance remains poorly understood. Here, we investigated the correlation between selenium, oilseed rape rhizosphere microbes, and Sclerotinia sclerotiorum. Soil application of 0.5 and 1.0 mg kg-1 selenium [selenate Na2SeO4, Se(VI) or selenite Na2SeO3, Se(IV)] significantly increased the resistance of oilseed rape to Sclerotinia sclerotiorum compared with no selenium application, with a disease inhibition rate higher than 20% in Se(VI)0.5, Se(IV)0.5 and Se(IV)1.0 mg kg-1 treatments. The disease resistance of oilseed rape was related to the presence of rhizosphere microorganisms and beneficial bacteria isolated from the rhizosphere inhibited Sclerotinia stem rot. Burkholderia cepacia and the synthetic community consisting of Bacillus altitudinis, Bacillus megaterium, Bacillus cereus, Bacillus subtilis, Bacillus velezensis, Burkholderia cepacia, and Flavobacterium anhui enhanced plant disease resistance through transcriptional regulation and activation of plant-induced systemic resistance. In addition, inoculation of isolated bacteria optimized the bacterial community structure of leaves and enriched beneficial microorganisms such as Bacillus, Pseudomonas, and Sphingomonas. Bacillus isolated from the leaves were sprayed on detached leaves, and it also performed a significant inhibition effect on Sclerotinia sclerotiorum. Overall, our results indicate that selenium improves plant rhizosphere microorganisms and increase resistance to Sclerotinia sclerotiorum in oilseed rape.
Collapse
Affiliation(s)
- Chuang Han
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| | - Lianming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanni Tang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China
| |
Collapse
|
19
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
20
|
Ku Y, Liao Y, Chiou S, Lam H, Chan C. From trade-off to synergy: microbial insights into enhancing plant growth and immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2461-2471. [PMID: 38735054 PMCID: PMC11331785 DOI: 10.1111/pbi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.
Collapse
Affiliation(s)
- Yee‐Shan Ku
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
| | - Yi‐Jun Liao
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shian‐Peng Chiou
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hon‐Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong
- Institute of Environment, Energy and SustainabilityThe Chinese University of Hong KongShatinHong Kong
| | - Ching Chan
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
21
|
King WL, Grandinette EM, Trase O, Rolon ML, Salis HM, Wood H, Bell TH. Autoclaving is at least as effective as gamma irradiation for biotic clearing and intentional microbial recolonization of soil. mSphere 2024; 9:e0047624. [PMID: 38980074 PMCID: PMC11288020 DOI: 10.1128/msphere.00476-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Sterilization is commonly used to remove or reduce the biotic constraints of a soil to allow recolonization by soil-dwelling organisms, with autoclaving and gamma irradiation being the most frequently used approaches. Many studies have characterized sterilization impacts on soil physicochemical properties, with gamma irradiation often described as the preferred approach, despite the lower cost and higher scalability of autoclaving. However, few studies have compared how sterilization techniques impact soil recolonization by microorganisms. Here, we compared how two sterilization approaches (autoclaving; gamma irradiation) and soil washing impacted microbial recolonization of soil from a diverse soil inoculum. Sterilization method had little impact on microbial alpha diversity across recolonized soils. For sterile soil regrowth microcosms, species richness and diversity were significantly reduced by autoclaving relative to gamma irradiation, particularly for fungi. There was no impact of sterilization method on bacterial composition in recolonized soils and minimal impact on fungal composition (P = 0.05). Washing soils had a greater impact on microbial composition than sterilization method, and sterile soil regrowth had negligible impacts on microbial recolonization. These data suggest that sterilization method has no clear impact on microbial recolonization, at least across the soils tested, indicating that soil autoclaving is an appropriate and economical approach for biotically clearing soils.IMPORTANCESterilized soils represent soil-like environments that act as a medium to study microbial colonization dynamics in more "natural" settings relative to artificial culturing environments. Soil sterilization is often carried out by gamma irradiation or autoclaving, which both alter soil properties, but gamma irradiation is thought to be the gentler technique. Gamma irradiation can be cost prohibitive and does not scale well for larger experiments. We sought to examine how soil sterilization technique can impact microbial colonization, and additionally looked at the impact of soil washing which is believed to remove soil toxins that inhibit soil recolonization. We found that both gamma-irradiated and autoclaved soils showed similar colonization patterns when reintroducing microorganisms. Soil washing, relative to sterilization technique, had a greater impact on which microorganisms were able to recolonize the soil. When allowing sterilized soils to regrow (i.e., persisting microorganisms), gamma irradiation performed worse, suggesting that gamma irradiation does not biotically clear soils as well as autoclaving. These data suggest that both sterilization techniques are comparable, and that autoclaving may be more effective at biotically clearing soil.
Collapse
Affiliation(s)
- William L. King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Emily M. Grandinette
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Olivia Trase
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - M. Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Howard M. Salis
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Harlow Wood
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Getzke F, Wang L, Chesneau G, Böhringer N, Mesny F, Denissen N, Wesseler H, Adisa PT, Marner M, Schulze-Lefert P, Schäberle TF, Hacquard S. Physiochemical interaction between osmotic stress and a bacterial exometabolite promotes plant disease. Nat Commun 2024; 15:4438. [PMID: 38806462 PMCID: PMC11133316 DOI: 10.1038/s41467-024-48517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.
Collapse
Affiliation(s)
- Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Nienke Denissen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Hidde Wesseler
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Priscilla Tijesuni Adisa
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392, Giessen, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392, Giessen, Germany.
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
23
|
Blakney AJC, Morvan S, Lucotte M, Moingt M, Charbonneau A, Bipfubusa M, Gonzalez E, Pitre FE. Site properties, environmental factors, and crop identify influence soil bacterial communities more than municipal biosolid application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171854. [PMID: 38522550 DOI: 10.1016/j.scitotenv.2024.171854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Reducing the environmental impact of Canadian field crop agriculture, including the reliance on conventional synthesised fertilisers, are key societal targets for establishing long-term sustainable practices. Municipal biosolids (MSB) are an abundant, residual organic material, rich in phosphate, nitrogen and other oligo-nutrients, that could be used in conjunction with conventional fertilisers to decrease their use. Though MBS have previously been shown to be an effective fertiliser substitute for different crops, including corn and soybean, there remain key knowledge gaps concerning the impact of MBS on the resident soil bacterial communities in agro-ecosystems. We hypothesised that the MBS fertiliser amendment would not significantly impact the structure or function of the soil bacterial communities, nor contribute to the spread of human pathogenic bacteria, in corn or soybean agricultural systems. In field experiments, fertiliser regimes for both crops were amended with MBS, and compared to corn and soybean plots with standard fertiliser treatments. We repeated this across four different agricultural sites in Quebec, over 2021 and 2022. We sampled MBS-treated, and untreated soils, and identified the composition of the soil bacterial communities via 16S rRNA metabarcoding. We found no indication that the MBS fertiliser amendment altered the structure of the soil bacterial communities, but rather that the soil type and crop identities were the most significant factors in structuring the bacterial communities. Moreover, there was no evidence that the MBS-treated soils were enriched in potential human bacterial pathogens over the two years of our study. Our analysis indicates that not only can MBS function as substitutes for conventional, synthesised fertilisers, but that they also do not disrupt the structure of the resident soil bacterial communities in the short term. Finally, we suggest that the use of MBS in agro-ecosystems poses no greater concern to the public than existing soil bacterial communities. This highlights the significant role MBS could potentially have in reducing the use of conventional industrial fertilisers and improving agricultural production, without risking environmental contamination.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada.
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| | - Marc Lucotte
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada.
| | - Matthieu Moingt
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Ariane Charbonneau
- GEOTOP & Institut des Sciences de l'environnement, Université du Québec à Montréal, 201, Avenue du Président-Kennedy, Montréal, QC H2X3Y7, Canada
| | - Marie Bipfubusa
- Centre de Recherche sur les Grains, Inc. (CÉROM), Saint-Mathieu-de-Beloeil, QC J3G 0E2, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
| | - Frédéric E Pitre
- Institut de Recherche en Biologie Végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke East, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
24
|
Zheng Y, Cao X, Zhou Y, Ma S, Wang Y, Li Z, Zhao D, Yang Y, Zhang H, Meng C, Xie Z, Sui X, Xu K, Li Y, Zhang CS. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress. Nat Commun 2024; 15:3520. [PMID: 38664402 PMCID: PMC11045775 DOI: 10.1038/s41467-024-47773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.
Collapse
Affiliation(s)
- Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xuwen Cao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China
| | - Yanan Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, 271018, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Youqiang Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Han Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, 271018, China
| | - Xiaona Sui
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kangwen Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
25
|
Jiang Y, Zhang Y, Liu Y, Zhang J, Jiang M, Nong C, Chen J, Hou K, Chen Y, Wu W. Plant Growth-Promoting Rhizobacteria Are Key to Promoting the Growth and Furanocoumarin Synthesis of Angelica dahurica var. formosana under Low-Nitrogen Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6964-6978. [PMID: 38525888 DOI: 10.1021/acs.jafc.3c09655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Microbiomes are the most important members involved in the regulation of soil nitrogen metabolism. Beneficial interactions between plants and microbiomes contribute to improving the nitrogen utilization efficiency. In this study, we investigated the Apiaceae medicinal plant Angelica dahurica var. formosana. We found that under a low-nitrogen treatment, the abundance of carbon metabolites in the rhizosphere secretions of A. dahurica var. formosana significantly increased, thereby promoting the ratio of C to N in rhizosphere and nonrhizosphere soils, increasing carbon sequestration, and shaping the microbial community composition, thus promoting a higher yield and furanocoumarin synthesis. Confirmation through the construction of a synthetic microbial community and feedback experiments indicated that beneficial plant growth-promoting rhizobacteria play a crucial role in improving nitrogen utilization efficiency and selectively regulating the synthesis of target furanocoumarins under low nitrogen conditions. These findings may contribute additional theoretical evidence for understanding the mechanisms of interaction between medicinal plants and rhizosphere microorganisms.
Collapse
Affiliation(s)
- Yijie Jiang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Yunxin Zhang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Yanan Liu
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Jiaheng Zhang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Meiyan Jiang
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Changguo Nong
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Jinsong Chen
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Kai Hou
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Cheng, Du 611130, China
| |
Collapse
|
26
|
Wu YC, Yu CW, Chiu JY, Chiang YH, Mitsuda N, Yen XC, Huang TP, Chang TF, Yen CJ, Guo WJ. The AT-hook protein AHL29 promotes Bacillus subtilis colonization by suppressing SWEET2-mediated sugar retrieval in Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:1084-1098. [PMID: 38037476 DOI: 10.1111/pce.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Beneficial Bacillus subtilis (BS) symbiosis could combat root pathogenesis, but it relies on root-secreted sugars. Understanding the molecular control of sugar flux during colonization would benefit biocontrol applications. The SWEET (Sugar Will Eventually Be Exported Transporter) uniporter regulates microbe-induced sugar secretion from roots; thus, its homologs may modulate sugar distribution upon BS colonization. Quantitative polymerase chain reaction revealed that gene transcripts of SWEET2, but not SWEET16 and 17, were significantly induced in seedling roots after 12 h of BS inoculation. Particularly, SWEET2-β-glucuronidase fusion proteins accumulated in the apical mature zone where BS abundantly colonized. Yet, enhanced BS colonization in sweet2 mutant roots suggested a specific role for SWEET2 to constrain BS propagation, probably by limiting hexose secretion. By employing yeast one-hybrid screening and ectopic expression in Arabidopsis protoplasts, the transcription factor AHL29 was identified to function as a repressor of SWEET2 expression through the AT-hook motif. Repression occurred despite immunity signals. Additionally, enhanced SWEET2 expression and reduced colonies were specifically detected in roots of BS-colonized ahl29 mutant. Taken together, we propose that BS colonization may activate repression of AHL29 on SWEET2 transcription that would be enhanced by immunity signals, thereby maintaining adequate sugar secretion for a beneficial Bacillus association.
Collapse
Affiliation(s)
- Yun-Chien Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| | - Chien-Wen Yu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| | - Jo-Yu Chiu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| | - Yu-Hsuan Chiang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Xu-Chen Yen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan ROC
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan ROC
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan ROC
- Master and Doctoral Degree Program in Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan ROC
| | - Tzu-Fang Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| | - Cen-Jie Yen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| | - Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan ROC
| |
Collapse
|
27
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
28
|
Yao Y, Liu C, Zhang Y, Lin Y, Chen T, Xie J, Chang H, Fu Y, Cheng J, Li B, Yu X, Lyu X, Feng Y, Bian X, Jiang D. The Dynamic Changes of Brassica napus Seed Microbiota across the Entire Seed Life in the Field. PLANTS (BASEL, SWITZERLAND) 2024; 13:912. [PMID: 38592934 PMCID: PMC10975644 DOI: 10.3390/plants13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The seed microbiota is an important component given by nature to plants, protecting seeds from damage by other organisms and abiotic stress. However, little is known about the dynamic changes and potential functions of the seed microbiota during seed development. In this study, we investigated the composition and potential functions of the seed microbiota of rapeseed (Brassica napus). A total of 2496 amplicon sequence variants (ASVs) belonging to 504 genera in 25 phyla were identified, and the seed microbiota of all sampling stages were divided into three groups. The microbiota of flower buds, young pods, and seeds at 20 days after flowering (daf) formed the first group; that of seeds at 30 daf, 40 daf and 50 daf formed the second group; that of mature seeds and parental seeds were clustered into the third group. The functions of seed microbiota were identified by using PICRUSt2, and it was found that the substance metabolism of seed microbiota was correlated with those of the seeds. Finally, sixty-one core ASVs, including several potential human pathogens, were identified, and a member of the seed core microbiota, Sphingomonas endophytica, was isolated from seeds and found to promote seedling growth and enhance resistance against Sclerotinia sclerotiorum, a major pathogen in rapeseed. Our findings provide a novel perspective for understanding the composition and functions of microbiota during seed development and may enhance the efficiency of mining beneficial seed microbes.
Collapse
Affiliation(s)
- Yao Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Changxing Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yu Zhang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haibin Chang
- Huanggang Academy of Agricultural Science, Huanggang 438000, China;
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanbo Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuefeng Bian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Y.); (C.L.); (T.C.); (J.X.); (B.L.); (X.Y.); (X.L.); (Y.F.); (X.B.)
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (Y.L.); (Y.F.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
29
|
Yue H, Sun X, Wang T, Zhang A, Han D, Wei G, Song W, Shu D. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. MICROBIOME 2024; 12:44. [PMID: 38433268 PMCID: PMC10910722 DOI: 10.1186/s40168-024-01770-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND The severity and frequency of drought are expected to increase substantially in the coming century and dramatically reduce crop yields. Manipulation of rhizosphere microbiomes is an emerging strategy for mitigating drought stress in agroecosystems. However, little is known about the mechanisms underlying how drought-resistant plant recruitment of specific rhizosphere fungi enhances drought adaptation of drought-sensitive wheats. Here, we investigated microbial community assembly features and functional profiles of rhizosphere microbiomes related to drought-resistant and drought-sensitive wheats by amplicon and shotgun metagenome sequencing techniques. We then established evident linkages between root morphology traits and putative keystone taxa based on microbial inoculation experiments. Furthermore, root RNA sequencing and RT-qPCR were employed to explore the mechanisms how rhizosphere microbes modify plant response traits to drought stresses. RESULTS Our results indicated that host plant signature, plant niche compartment, and planting site jointly contribute to the variation of soil microbiome assembly and functional adaptation, with a relatively greater effect of host plant signature observed for the rhizosphere fungi community. Importantly, drought-resistant wheat (Yunhan 618) possessed more diverse bacterial and fungal taxa than that of the drought-sensitive wheat (Chinese Spring), particularly for specific fungal species. In terms of microbial interkingdom association networks, the drought-resistant variety possessed more complex microbial networks. Metagenomics analyses further suggested that the enriched rhizosphere microbiomes belonging to the drought-resistant cultivar had a higher investment in energy metabolism, particularly in carbon cycling, that shaped their distinctive drought tolerance via the mediation of drought-induced feedback functional pathways. Furthermore, we observed that host plant signature drives the differentiation in the ecological role of the cultivable fungal species Mortierella alpine (M. alpina) and Epicoccum nigrum (E. nigrum). The successful colonization of M. alpina on the root surface enhanced the resistance of wheats in response to drought stresses via activation of drought-responsive genes (e.g., CIPK9 and PP2C30). Notably, we found that lateral roots and root hairs were significantly suppressed by co-colonization of a drought-enriched fungus (M. alpina) and a drought-depleted fungus (E. nigrum). CONCLUSIONS Collectively, our findings revealed host genotypes profoundly influence rhizosphere microbiome assembly and functional adaptation, as well as it provides evidence that drought-resistant plant recruitment of specific rhizosphere fungi enhances drought tolerance of drought-sensitive wheats. These findings significantly underpin our understanding of the complex feedbacks between plants and microbes during drought, and lay a foundation for steering "beneficial keystone biome" to develop more resilient and productive crops under climate change. Video Abstract.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuming Sun
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dejun Han
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- College of Life Sciences, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
30
|
Masenya K, Manganyi MC, Dikobe TB. Exploring Cereal Metagenomics: Unravelling Microbial Communities for Improved Food Security. Microorganisms 2024; 12:510. [PMID: 38543562 PMCID: PMC10974370 DOI: 10.3390/microorganisms12030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Food security is an urgent global challenge, with cereals playing a crucial role in meeting the nutritional requirements of populations worldwide. In recent years, the field of metagenomics has emerged as a powerful tool for studying the microbial communities associated with cereal crops and their impact on plant health and growth. This chapter aims to provide a comprehensive overview of cereal metagenomics and its role in enhancing food security through the exploration of beneficial and pathogenic microbial interactions. Furthermore, we will examine how the integration of metagenomics with other tools can effectively address the adverse effects on food security. For this purpose, we discuss the integration of metagenomic data and machine learning in providing novel insights into the dynamic interactions shaping plant-microbe relationships. We also shed light on the potential applications of leveraging microbial diversity and epigenetic modifications in improving crop resilience and yield sustainability. Ultimately, cereal metagenomics has revolutionized the field of food security by harnessing the potential of beneficial interactions between cereals and their microbiota, paving the way for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedibone Masenya
- National Zoological Gardens, South African National Biodiversity Institute, 32 Boom St., Pretoria 0001, South Africa
| | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Pretoria 0204, South Africa;
| | - Tshegofatso Bridget Dikobe
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
31
|
Kimotho RN, Maina S. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1289-1313. [PMID: 37950741 PMCID: PMC10901211 DOI: 10.1093/jxb/erad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant-microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop-microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant-microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Solomon Maina
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales 2568, Australia
| |
Collapse
|
32
|
Kong D, Ye Z, Dai M, Ma B, Tan X. Light Intensity Modulates the Functional Composition of Leaf Metabolite Groups and Phyllosphere Prokaryotic Community in Garden Lettuce ( Lactuca sativa L.) Plants at the Vegetative Stage. Int J Mol Sci 2024; 25:1451. [PMID: 38338730 PMCID: PMC10855689 DOI: 10.3390/ijms25031451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024] Open
Abstract
Light intensity primarily drives plant growth and morphogenesis, whereas the ecological impact of light intensity on the phyllosphere (leaf surface and endosphere) microbiome is poorly understood. In this study, garden lettuce (Lactuca sativa L.) plants were grown under low, medium, and high light intensities. High light intensity remarkably induced the leaf contents of soluble proteins and chlorophylls, whereas it reduced the contents of leaf nitrate. In comparison, medium light intensity exhibited the highest contents of soluble sugar, cellulose, and free amino acids. Meanwhile, light intensity resulted in significant changes in the composition of functional genes but not in the taxonomic compositions of the prokaryotic community (bacteria and archaea) in the phyllosphere. Notably, garden lettuce plants under high light intensity treatment harbored more sulfur-cycling mdh and carbon-cycling glyA genes than under low light intensity, both of which were among the 20 most abundant prokaryotic genes in the leaf phyllosphere. Furthermore, the correlations between prokaryotic functional genes and lettuce leaf metabolite groups were examined to disclose their interactions under varying light intensities. The relative abundance of the mdh gene was positively correlated with leaf total chlorophyll content but negatively correlated with leaf nitrate content. In comparison, the relative abundance of the glyA gene was positively correlated with leaf total chlorophyll and carotenoids. Overall, this study revealed that the functional composition of the phyllosphere prokaryotic community and leaf metabolite groups were tightly linked in response to changing light intensities. These findings provided novel insights into the interactions between plants and prokaryotic microbes in indoor farming systems, which will help optimize environmental management in indoor farms and harness beneficial plant-microbe relationships for crop production.
Collapse
Affiliation(s)
- Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| | - Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (D.K.); (Z.Y.); (M.D.)
| |
Collapse
|
33
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
34
|
Liu HB, Sun HX, Du LQ, Jiang LL, Zhang LA, Qi YY, Cai J, Yu F. Rice receptor kinase FLR7 regulates rhizosphere oxygen levels and enriches the dominant Anaeromyxobacter that improves submergence tolerance in rice. THE ISME JOURNAL 2024; 18:wrae006. [PMID: 38366198 PMCID: PMC10900889 DOI: 10.1093/ismejo/wrae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Oxygen is one of the determinants of root microbiome formation. However, whether plants regulate rhizosphere oxygen levels to affect microbiota composition and the underlying molecular mechanisms remain elusive. The receptor-like kinase (RLK) family member FERONIA modulates the growth-defense tradeoff in Arabidopsis. Here, we established that rice FERONIA-like RLK 7 (FLR7) controls rhizosphere oxygen levels by methylene blue staining, oxygen flux, and potential measurements. The formation of oxygen-transporting aerenchyma in roots is negatively regulated by FLR7. We further characterized the root microbiota of 11 FLR mutants including flr7 and wild-type Nipponbare (Nip) grown in the field by 16S ribosomal RNA gene profiling and demonstrated that the 11 FLRs are involved in regulating rice root microbiome formation. The most abundant anaerobic-dependent genus Anaeromyxobacter in the Nip root microbiota was less abundant in the root microbiota of all these mutants, and this contributed the most to the community differences between most mutants and Nip. Metagenomic sequencing revealed that flr7 increases aerobic respiration and decreases anaerobic respiration in the root microbiome. Finally, we showed that a representative Anaeromyxobacter strain improved submergence tolerance in rice via FLR7. Collectively, our findings indicate that FLR7 mediates changes in rhizosphere oxygen levels and enriches the beneficial dominant genus Anaeromyxobacter and may provide insights for developing plant flood prevention strategies via the use of environment-specific functional soil microorganisms.
Collapse
Affiliation(s)
- Hong-Bin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410082, P.R. China
- Interdisciplinary and Intelligent Seed Industry Equipment Research Department, Yuelushan Laboratory, Changsha 410082, P.R. China
| | - Hong-Xia Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Li-Qiong Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Ling-Li Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Lin-An Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Yin-Yao Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
- Interdisciplinary and Intelligent Seed Industry Equipment Research Department, Yuelushan Laboratory, Changsha 410082, P.R. China
| |
Collapse
|
35
|
Luo X, Sun K, Li HR, Zhang XY, Pan YT, Luo DL, Wu YB, Jiang HJ, Wu XH, Ma CY, Dai CC, Zhang W. Depletion of protective microbiota promotes the incidence of fruit disease. THE ISME JOURNAL 2024; 18:wrae071. [PMID: 38691444 PMCID: PMC11654636 DOI: 10.1093/ismejo/wrae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Plant-associated microbiomes play important roles in plant health and productivity. However, despite fruits being directly linked to plant productivity, little is known about the microbiomes of fruits and their potential association with fruit health. Here, by integrating 16S rRNA gene, ITS high-throughput sequencing data, and microbiological culturable approaches, we reported that roots and fruits (pods) of peanut, a typical plant that bears fruits underground, recruit different bacterial and fungal communities independently of cropping conditions and that the incidence of pod disease under monocropping conditions is attributed to the depletion of Bacillus genus and enrichment of Aspergillus genus in geocarposphere. On this basis, we constructed a synthetic community (SynCom) consisting of three Bacillus strains from geocarposphere soil under rotation conditions with high culturable abundance. Comparative transcriptome, microbiome profiling, and plant phytohormone signaling analysis reveal that the SynCom exhibited more effective Aspergillus growth inhibition and pod disease control than individual strain, which was underpinned by a combination of molecular mechanisms related to fungal cell proliferation interference, mycotoxins biosynthesis impairment, and jasmonic acid-mediated plant immunity activation. Overall, our results reveal the filter effect of plant organs on the microbiome and that depletion of key protective microbial community promotes the fruit disease incidence.
Collapse
Affiliation(s)
- Xue Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Hao-Ran Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Xiang-Yu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Yi-Tong Pan
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Yi-Bo Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Hui-Jun Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Xiao-Han Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics,
Jiangsu Engineering and Technology Research Center for Industrialization of Microbial
Resources, College of Life Sciences, Nanjing Normal
University, Jiangsu Province, 210023, China
| |
Collapse
|
36
|
Blakney AJC, St-Arnaud M, Hijri M. Does soil history decline in influencing the structure of bacterial communities of Brassica napus host plants across different growth stages? ISME COMMUNICATIONS 2024; 4:ycae019. [PMID: 38500702 PMCID: PMC10944699 DOI: 10.1093/ismeco/ycae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Soil history has been shown to condition future rhizosphere microbial communities. However, previous experiments have also illustrated that mature, adult plants can "re-write," or mask, different soil histories through host plant-soil community feedbacks. This leaves a knowledge gap concerning how soil history influences bacterial community structure across different growth stages. Thus, here we tested the hypothesis that previously established soil histories will decrease in influencing the structure of Brassica napus bacterial communities over the growing season. We used an on-going agricultural field experiment to establish three different soil histories, plots of monocrop canola (B. napus), or rotations of wheat-canola, or pea-barley-canola. During the following season, we repeatedly sampled the surrounding bulk soil, rhizosphere, and roots of the B. napus hosts at different growth stages-the initial seeding conditions, seedling, rosette, bolting, and flower-from all three soil history plots. We compared composition and diversity of the B. napus soil bacterial communities, as estimated using 16S rRNA gene metabarcoding, to identify any changes associated with soil history and growth stages. We found that soil history remained significant across each growth stage in structuring the bacterial bulk soil and rhizosphere communities, but not the bacterial root communities. This suggests that the host plant's capacity to "re-write" different soil histories may be quite limited as key components that constitute the soil history's identity remain present, such that the previously established soil history continues to impact the bacterial rhizosphere communities, but not the root communities. For agriculture, this highlights how previously established soil histories persist and may have important long-term consequences on future plant-microbe communities, including bacteria.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, Québec, H1X 2B2, Canada
- Present address: Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Ontario, M1C 1A4, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de recherche en biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin botanique de Montréal, Montréal, Québec, H1X 2B2, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
37
|
Wang YX, Liu XY, Di HH, He XS, Sun Y, Xiang S, Huang ZB. The mechanism of microbial community succession and microbial co-occurrence network in soil with compost application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167409. [PMID: 37769744 DOI: 10.1016/j.scitotenv.2023.167409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The application of organic and chemical fertilizer into soil can regulate microbial communities. However, the response mechanism of microbial communities in soil to compost and chemical fertilizer application remain unclear. In this study, compost made of tobacco leaves individually and combined with chemical fertilizer was applied, respectively, to investigate their effect on soil microorganisms during the pot-culture process. High-throughput sequence, neutral community model and null model were employed to clarify how soil microbial community respond to the application of compost and chemical fertilizer. Furthermore, random forest model was applied to predict the relationships between the plant agronomical traits and the soil microorganism during the pot-culture process. The results demonstrated that the simultaneous application of compost and chemical fertilizer increased significantly the richness and diversity of the microorganisms in soil (p < 0.05), groups C and D led to a significant reduction in the number of nodes and edges in the microbial network (77.78 %-96.57 %). The dominant bacteria in the application of 50 g fertilizer accounted for the highest proportion (40 %) and organic matter was the main factors driving the change in bacterial communities. Compared to the tilled soil, the microbial communities of the soil with the simultaneous application of compost and chemical fertilizer were more susceptible to stochastic processes, and soil microorganisms had less influence on the growth of crops during pot-culture. In conclusion, the simultaneous application of compost and fertilizer altered the ecological functions of soil microbial communities, leading to an enhanced stochastic process of community formation.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xie-Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hui-Hui Di
- Enshi Tobacco Company of Hubei Province Corporation, Enshi 445000, China
| | - Xiao-Song He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yue Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Song Xiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhan-Bin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
38
|
Vannier N, Mesny F, Getzke F, Chesneau G, Dethier L, Ordon J, Thiergart T, Hacquard S. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota. Nat Commun 2023; 14:8274. [PMID: 38092730 PMCID: PMC10719396 DOI: 10.1038/s41467-023-43688-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
The identification of processes activated by specific microbes during microbiota colonization of plant roots has been hampered by technical constraints in metatranscriptomics. These include lack of reference genomes, high representation of host or microbial rRNA sequences in datasets, or difficulty to experimentally validate gene functions. Here, we recolonized germ-free Arabidopsis thaliana with a synthetic, yet representative root microbiota comprising 106 genome-sequenced bacterial and fungal isolates. We used multi-kingdom rRNA depletion, deep RNA-sequencing and read mapping against reference microbial genomes to analyse the in planta metatranscriptome of abundant colonizers. We identified over 3,000 microbial genes that were differentially regulated at the soil-root interface. Translation and energy production processes were consistently activated in planta, and their induction correlated with bacterial strains' abundance in roots. Finally, we used targeted mutagenesis to show that several genes consistently induced by multiple bacteria are required for root colonization in one of the abundant bacterial strains (a genetically tractable Rhodanobacter). Our results indicate that microbiota members activate strain-specific processes but also common gene sets to colonize plant roots.
Collapse
Affiliation(s)
- Nathan Vannier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Fantin Mesny
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institute for Plant Sciences, University of Cologne, 50923, Cologne, Germany
| | - Felix Getzke
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Guillaume Chesneau
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Laura Dethier
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thorsten Thiergart
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
| |
Collapse
|
39
|
Su Y, Wang J, Gao W, Wang R, Yang W, Zhang H, Huang L, Guo L. Dynamic metabolites: A bridge between plants and microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165612. [PMID: 37478935 DOI: 10.1016/j.scitotenv.2023.165612] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Plant metabolites have a great influence on soil microbiomes. Although few studies provided insights into plant-microbe interactions, we still know very little about how plants recruit their microbiome. Here, we discuss the dynamic progress that typical metabolites shape microbes by a variety of factors, such as physiographic factors, cultivar factors, phylogeny factors, and environmental stress. Several kinds of metabolites have been reviewed, including plant primary metabolites (PPMs), phytohormones, and plant secondary metabolites (PSMs). The microbes assembled by plant metabolites in return exert beneficial effects on plants, which have been widely applied in agriculture. What's more, we point out existing problems and future research directions, such as unclear mechanisms, few species, simple parts, and ignorance of absolute abundance. This review may inspire readers to study plant-metabolite-microbe interactions in the future.
Collapse
Affiliation(s)
- Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
40
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. Deep discovery informs difficult deployment in plant microbiome science. Cell 2023; 186:4496-4513. [PMID: 37832524 DOI: 10.1016/j.cell.2023.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.
Collapse
Affiliation(s)
- Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Wang Y, Li P, Tian Y, Xiong Z, Zheng Z, Yi Z, Ao H, Wang Q, Li J. Bacterial seed endophyte and abiotic factors influence cadmium accumulation in rice (Oryza sativa) along the Yangtze River area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115352. [PMID: 37579590 DOI: 10.1016/j.ecoenv.2023.115352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa) is particularly problematic due to its high risk to human health. Investigating the hidden roles of seed endophytes of rice in influencing Cd accumulation is essential to comprehensively understand the effects of biotic and abiotic factors to food security. Here, the content of Cd in soils and rice (Huanghuazhan) seeds from 19 sites along the Yangtze River exhibited considerable differences. From a biotic perspective, we observed the dominant endophytic bacteria, Stenotrophomonas (7.25 %), contribute to Cd control of rice (below 0.2 mg kg-1). Partial Least Squares (PLS) analysis further suggested that Enterobacteriaceae (15.48 %), altitude and pH were found to be the strong variables that might reduce the Cd uptake of rice. In contrast, Cytophagaceae (0.58 %), latitude and mean annual air pressure had the opposite effect. In pot experiments, after respectively inoculating the isolated endophytic bacteria Stenotrophomonas T4 and Enterobacter R1, N1 (f_Enterobacteriaceae), the Cd contents in shoot decreased by 47.6 %, 21.9 % and 33.0 % compared to controls. The distribution of Cd resistant genes (e.g., czcABC, nccAB, cznA) of Stenotrophomonas, Enterobacteriaceaea and Cytophagaceae further suggested their distinct manners in influencing the Cd uptake of rice. Overall, this study provides new insights into the food security threatened by globally widespread Cd pollution.
Collapse
Affiliation(s)
- Yujie Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Peng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yunhe Tian
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ziqin Xiong
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongyi Zheng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenxie Yi
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiming Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
42
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
43
|
Feng H, Fu R, Luo J, Hou X, Gao K, Su L, Xu Y, Miao Y, Liu Y, Xu Z, Zhang N, Shen Q, Xun W, Zhang R. Listening to plant's Esperanto via root exudates: reprogramming the functional expression of plant growth-promoting rhizobacteria. THE NEW PHYTOLOGIST 2023; 239:2307-2319. [PMID: 37357338 DOI: 10.1111/nph.19086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Rhizomicrobiome plays important roles in plant growth and health, contributing to the sustainable development of agriculture. Plants recruit and assemble the rhizomicrobiome to satisfy their functional requirements, which is widely recognized as the 'cry for help' theory, but the intrinsic mechanisms are still limited. In this study, we revealed a novel mechanism by which plants reprogram the functional expression of inhabited rhizobacteria, in addition to the de novo recruitment of soil microbes, to satisfy different functional requirements as plants grow. This might be an efficient and low-cost strategy and a substantial extension to the rhizomicrobiome recruitment theory. We found that the plant regulated the sequential expression of genes related to biocontrol and plant growth promotion in two well-studied rhizobacteria Bacillus velezensis SQR9 and Pseudomonas protegens CHA0 through root exudate succession across the plant developmental stages. Sixteen key chemicals in root exudates were identified to significantly regulate the rhizobacterial functional gene expression by high-throughput qPCR. This study not only deepens our understanding of the interaction between the plant-rhizosphere microbiome, but also provides a novel strategy to regulate and balance the different functional expression of the rhizomicrobiome to improve plant health and growth.
Collapse
Affiliation(s)
- Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
- College of Agriculture, Henan University, Zhengzhou, 450046, China
| | - Ruixin Fu
- School of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Jiayu Luo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueqin Hou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Gao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lv Su
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Xu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang, 050021, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
44
|
Martins SJ, Pasche J, Silva HAO, Selten G, Savastano N, Abreu LM, Bais HP, Garrett KA, Kraisitudomsook N, Pieterse CMJ, Cernava T. The Use of Synthetic Microbial Communities to Improve Plant Health. PHYTOPATHOLOGY 2023; 113:1369-1379. [PMID: 36858028 DOI: 10.1094/phyto-01-23-0016-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.
Collapse
Affiliation(s)
- Samuel J Martins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Josephine Pasche
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Hiago Antonio O Silva
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Gijs Selten
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Noah Savastano
- Department of Plant and Soil Sciences, 311 AP Biopharma, University of Delaware, Newark, DE 19713, U.S.A
| | - Lucas Magalhães Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Harsh P Bais
- Department of Plant and Soil Sciences, 311 AP Biopharma, University of Delaware, Newark, DE 19713, U.S.A
| | - Karen A Garrett
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | | | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, 8020, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, U.K
| |
Collapse
|
45
|
Fan L, Li Y, Wang X, Leng F, Li S, Zhu N, Chen K, Wang Y. Culturable endophytic fungi community structure isolated from Codonopsis pilosula roots and effect of season and geographic location on their structures. BMC Microbiol 2023; 23:132. [PMID: 37189022 DOI: 10.1186/s12866-023-02848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/05/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Rhizosphere soil physicochemical, endophytic fungi have an important role in plant growth. A large number of endophytic fungi play an indispensable role in promoting plant growth and development, and they can provide protection for host plants by producing a variety of secondary metabolites to resist and inhibit plant pathogens. Due to the terrain of Gansu province is north-south and longitudinal, different climatic conditions, altitude, terrain and growth environment will affect the growth of Codonopsis pilosula, and the changes in these environmental factors directly affect the quality and yield of C. pilosula in different production areas. However, In C. pilosula, the connection between soil nutrients, spatiotemporal variation and the community structure of endophytic fungi isolated from C. pilosula roots has not been well studied. RESULTS Seven hundred six strains of endophytic fungi were obtained using tissue isolation and the hyphaend-purification method from C. pilosula roots that picked at all seasons and six districts (Huichuan, HC; Longxi, LX; Zhangxian, ZX; Minxian, MX; Weiyuan, WY; and Lintao, LT) in Gansu Province, China. Fusarium sp. (205 strains, 29.04%), Aspergillus sp. (196 strains, 27.76%), Alternaria sp. (73 strains, 10.34%), Penicillium sp. (58 strains, 8.22%) and Plectosphaerella sp. (56 strains, 7.93%) were the dominant genus. The species composition differed from temporal and spatial distribution (Autumn and Winter were higher than Spring and Summer, MX and LT had the highest similarity, HC and LT had the lowest). physical and chemical of soil like Electroconductibility (EC), Total nitrogen (TN), Catalase (CAT), Urease (URE) and Sucrase (SUC) had significant effects on agronomic traits of C. pilosula (P < 0.05). AK (Spring and Summer), TN (Autumn) and altitude (Winter) are the main driving factors for the change of endophytic fungal community. Moreover, geographic location (such as altitude, latitude and longitude) also has effects on the diversity of endophytic fungi. CONCLUSIONS These results suggested that soil nutrients and enzyme, seasonal variation and geographical locations have an impact on shaping the community structure of culturable endophytic fungi in the roots of C. pilosula and its root traits. This suggests that climatic conditions may play a driving role in the growth and development of C. pilosula.
Collapse
Affiliation(s)
- Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yuanli Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
46
|
Zhang J, Shao Z, Li B, Bai G, Yang L, Chi Y, Wang M, Ren Y. Root vertical spatial stress: A method for enhancing rhizosphere effect of plants in subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 231:116083. [PMID: 37164283 DOI: 10.1016/j.envres.2023.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
The depth of the substrate of subsurface flow (SSF) constructed wetlands (CWs) is closely related to their cost and operation stability. To explore the physiological regulation mechanism of wetland plants and pollutant removal potential of SSF CWs under "vertical spatial stress of roots" (by greatly reducing the depth of the substrate in SSF CWs to limit the vertical growth space of roots, VSSR), the physiological response and wetland purification effect of a 0.1 m Canna indica L. CW under VSSR were studied compared with conventional SSF CWs (0.6 m, 1.2 m). The results demonstrated that VSSR significantly enhanced the dissolved oxygen (DO) concentration (p < 0.05) within the SSF CWs, with the DO in 0.1 m CW remaining stable at over 3 mg/L. Under the same hydraulic retention time (HRT), VSSR significantly improved the removal effect of pollutants (p < 0.05). The removal rates of COD, NH4+-N, and total phosphorus (TP) remained above 87%, and the mean removal rates of total nitrogen (TN) reached 91.71%. VSSR promoted the morphological adaptation mechanisms of plants, such as significantly increased root-shoot ratio (p < 0.05), changed biomass allocation. Plants could maintain the stability of the photosynthetic mechanism by changing the distribution of light energy. The results of microbial community function prediction demonstrated that aerobic denitrification was the main mechanism of N transformation in the 0.1 m CW under VSSR. VSSR could induce the high root activity of plants, augment the concentration of root exudates, enhance the redox environment of the plant rhizosphere, further foster the enrichment of aerobic denitrifying bacteria, and strengthen the absorption efficiency of wetland plants and substrate, thus achieving an efficient pollutant removal capacity. Studies showed that VSSR was an effective means to enhance the rhizosphere effect of plants and pollutant removal in SSF CWs.
Collapse
Affiliation(s)
- Jingying Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhiyong Shao
- Hefei Municipal Design & Research Institute Co., Ltd., Hefei, 230000, China
| | - Bin Li
- Xi'an Botanical Garden of Shaanxi Province, Botanical Institute of Shaanxi Province, Xi'an, 710061, China
| | - Ge Bai
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yanbin Chi
- School of Metallurgical and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Wang
- Shaanxi Environmental Monitoring Technology Advisory Service Center, Xi'an, 710000, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
47
|
Wang L, Wu X, Xing Q, Zhao Y, Yu B, Ma Y, Wang F, Qi H. PIF8-WRKY42-mediated salicylic acid synthesis modulates red light induced powdery mildew resistance in oriental melon. PLANT, CELL & ENVIRONMENT 2023; 46:1726-1742. [PMID: 36759948 DOI: 10.1111/pce.14560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Light signals and plant hormones are involved in regulating the growth, development and stress resistance of plants; however, it remains unclear whether light affects hormones and thus pathogen resistance in oriental melon. Here, we found that red light promoted salicylic acid (SA) accumulation and powdery mildew resistance by activating the transcription of CmICS, the key gene for SA biosynthesis, and silencing CmICS seriously weakened the induction effect of red light on powdery mildew resistance in oriental melon leaves. Further studies showed that red light induced the expression of CmWRKY42 under powdery mildew stress, and CmWRKY42 directly bound to the CmICS promoter to activate its expression and promote the accumulation of SA under red light. Furthermore, we found that PHYTOCHROME INTERACTING FACTOR 8 (PIF8), as a negative regulator of SA biosynthesis, inhibits CmWRKY42 transcriptional activation by binding to the CmWRKY42 promoter, and thus inhibits transcriptional activation of CmICS by CmWRKY42. Also, CmPIF8 binds to the CmICS promoter and directly inhibits its transcription. In conclusion, our study revealed a new molecular mechanism of the relationship between red light-SA-powdery mildew resistance and provided a theoretical basis for resistance breeding of oriental melon.
Collapse
Affiliation(s)
- Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaping Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Bo Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Feng Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| |
Collapse
|
48
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
49
|
Zhu L, Chen Y, Sun R, Zhang J, Hale L, Dumack K, Geisen S, Deng Y, Duan Y, Zhu B, Li Y, Liu W, Wang X, Griffiths BS, Bonkowski M, Zhou J, Sun B. Resource-dependent biodiversity and potential multi-trophic interactions determine belowground functional trait stability. MICROBIOME 2023; 11:95. [PMID: 37127665 PMCID: PMC10150482 DOI: 10.1186/s40168-023-01539-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait stability. RESULTS We found that agricultural practice-induced higher resource availability increased potential cross-trophic interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient supply increase the proportion of potential cross-trophic interactions, which were positively associated with functional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the stability of plant biomass. CONCLUSIONS Our results indicated the importance of potential multi-trophic interactions in supporting belowground functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertilization programs in modern agricultural intensification. Video Abstract.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Lauren Hale
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- United States Department of Agriculture, Agricultural Research Service (ARS), Washington, DC, 20250, USA
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, The Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chine, Academy of Sciences and Ministry of Water Resources , Yangling, 712100, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
| | - Bryan S Griffiths
- SRUC, Crop and Soil System Research Group, West Mains Road, Edinburgh, EH93JG, UK
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| |
Collapse
|
50
|
Zhang M, Wang Y, Hu Y, Wang H, Liu Y, Zhao B, Zhang J, Fang R, Yan Y. Heterosis in root microbiota inhibits growth of soil-borne fungal pathogens in hybrid rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1059-1076. [PMID: 36426878 DOI: 10.1111/jipb.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
In nature, plants are colonized by various microbes that play essential roles in their growth and health. Heterosis is a natural genetic phenomenon whereby first-generation hybrids exhibit superior phenotypic performance relative to their parents. It remains unclear whether this concept can be extended to the "hybridization" of microbiota from two parents in their descendants and what benefits the hybrid microbiota might convey. Here, we investigated the structure and function of the root microbiota from three hybrid rice varieties and their parents through amplicon sequencing analysis of bacterial 16S ribosomal DNA (rDNA) and fungal internal transcribed spacer (ITS) regions. We show that the bacterial and fungal root microbiota of the varieties are distinct from those of their parental lines and exhibit potential heterosis features in diversity and composition. Moreover, the root bacterial microbiota of hybrid variety LYP9 protects rice against soil-borne fungal pathogens. Systematic analysis of the protective capabilities of individual strains from a 30-member bacterial synthetic community derived from LYP9 roots indicated that community members have additive protective roles. Global transcription profiling analyses suggested that LYP9 root bacterial microbiota activate rice reactive oxygen species production and cell wall biogenesis, contributing to heterosis for protection. In addition, we demonstrate that the protection conferred by the LYP9 root microbiota is transferable to neighboring plants, potentially explaining the observed hybrid-mediated superior effects of mixed planting. Our findings suggest that some hybrids exhibit heterosis in their microbiota composition that promotes plant health, highlighting the potential for microbiota heterosis in breeding hybrid crops.
Collapse
Affiliation(s)
- Mengting Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinyue Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyi Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- Innovation Academy for Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|