1
|
Shen Y, Zhang L, Yang T, Li X, Liu C, Li H, Hu Y, Shen H, Li H, Orlov YL, Zhou S, Shen Y. Monosome Stalls the Translation Process Mediated by IGF2BP in Arcuate Nucleus for Puberty Onset Delay. Mol Neurobiol 2025; 62:3167-3181. [PMID: 39235646 DOI: 10.1007/s12035-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Puberty onset through hypothalamic-pituitary-gonad (HPG) axis as an important reproductive event in postnatal development is initiated from hypothalamic arcuate nucleus (ARC). The growing evidence indicates that translational control also plays an essential role in the final expression of gonadotropin genes. To investigate the role of protein translation and behavior of ribosomes in pubertal onset, the global profiles of transcriptome, single ribosome (monosome), polysome, and tandem mass tag proteome were comprehensively investigated in rat hypothalamic ARCs of different pubertal stages using RNA sequencing, polyribo sequencing, and mass spectrum. Transcriptome-wide enrichments of N6-methyladenosine and IGF2BP2 were investigated using meRIP and RIP sequencing. Monosome was robustly enriched on a large proportion of mRNA in early puberty rats (postnatal day (PND)-25) compared to late puberty (PND-35 and PND-45). Monosome-enriched mRNAs, including HPG axis-related genes, had a large number of upstream ORFs (uORF, < 100 nt) and displayed translational repression in early puberty. Furthermore, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) could particularly interact with and facilitate monosome to bind with mRNA in early puberty. Finally, ectopic over-expression of IGF2BP2 in hypothalamic ARC via lateral ventricle injection in vivo could recruit monosome to aggregate on mRNA and delay puberty onset. We uncovered a novel regulatory mechanism of IGF2BP2 and monosome for translational control in puberty onset, which shed light on the neuroendocrine regulatory network involved in HPG axis activation.
Collapse
Affiliation(s)
- Yifen Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Le Zhang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China
| | - Hongmei Li
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Hao Shen
- Clinical Laboratory, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Hua Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, 215009, Jiangsu, China.
| | - Yuriy L Orlov
- The Digital Health Center, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia.
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Shasha Zhou
- Department of Endocrinology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200040, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Bay Clinical College, Xuzhou Medical University, Suzhou Ninth People's Hospital, Soochow University, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
2
|
Mou R, Niu R, Yang R, Xu G. Engineering crop performance with upstream open reading frames. TRENDS IN PLANT SCIENCE 2025; 30:311-323. [PMID: 39472218 DOI: 10.1016/j.tplants.2024.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 03/08/2025]
Abstract
Plants intricately regulate the expression of protein-coding genes at multiple stages - including mRNA transcription, translation, decay, and protein degradation - to control growth, development, and responses to environmental challenges. Recent research highlights the importance of translational reprogramming as a pivotal mechanism in regulating gene expression across diverse physiological scenarios. This regulatory mechanism bears practical implications, particularly in bolstering crop productivity by manipulating RNA regulatory elements (RREs) to modulate heterologous gene expression through transgene and endogenous gene expression through gene editing. Here, we elucidate the potential of upstream open reading frames (uORFs), a prominent and stringent class of RREs, in optimizing crop performance, exemplifying the efficacy of translational control in enhancing agricultural yields.
Collapse
Affiliation(s)
- Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Ruoying Yang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; RNA Institute, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
3
|
Salesse‐Smith CE, Wang Y, Long SP. Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency. THE NEW PHYTOLOGIST 2025; 245:951-965. [PMID: 39688507 PMCID: PMC11711929 DOI: 10.1111/nph.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen. Developing more efficient forms of Rubisco, or engineering CO2 concentrating mechanisms into C3 crops to competitively repress oxygenation, are major endeavors, which could hugely increase photosynthetic productivity (≥ 60%). New technologies are bringing this closer, but improvements remain in the discovery phase and have not been reduced to practice. A simpler shorter-term strategy that could fill this time gap, but with smaller productivity increases (c. 10%) is to increase leaf Rubisco content. This has been demonstrated in initial field trials, improving the productivity of C3 and C4 crops. Combining three-dimensional leaf canopies with metabolic models infers that a 20% increase in Rubisco increases canopy photosynthesis by 14% in sugarcane (C4) and 9% in soybean (C3). This is consistent with observed productivity increases in rice, maize, sorghum and sugarcane. Upregulation of Rubisco is calculated not to require more nitrogen per unit yield and although achieved transgenically to date, might be achieved using gene editing to produce transgene-free gain of function mutations or using breeding.
Collapse
Affiliation(s)
- Coralie E. Salesse‐Smith
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- School of Life SciencesNanjing UniversityNanjing210008China
| | - Stephen P. Long
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
4
|
Bhalerao RP. Getting it right: suppression and leveraging of noise in robust decision-making. QUANTITATIVE PLANT BIOLOGY 2024; 5:e10. [PMID: 39777031 PMCID: PMC11706686 DOI: 10.1017/qpb.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 06/20/2024] [Indexed: 01/11/2025]
Abstract
Noise is a ubiquitous feature for all organisms growing in nature. Noise (defined here as stochastic variation) in the availability of nutrients, water and light profoundly impacts their growth and development. Not only is noise present as an external factor but cellular processes themselves are noisy. Therefore, it is remarkable that organisms can display robust control of growth and development despite noise. To survive, various mechanisms to suppress noise have evolved. However, it is also becoming apparent that noise is not just a nuisance that organisms must suppress but can be beneficial as low noise can facilitate the response of an organism to a sub-threshold input signal in a stochastic resonance mechanism. This review discusses mechanisms capable of noise suppression or noise leveraging that might play a significant role in robust temporal regulation of an organism's response to their noisy environment.
Collapse
Affiliation(s)
- Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, The Swedish University of Agricultural Sciences, Umeå Plant Science Center, Umeå, Sweden
| |
Collapse
|
5
|
Carey-Fung O, Beasley JT, Broad RC, Hellens RP, Johnson AAT. Discovery of a conserved translationally repressive upstream open reading frame within the iron-deficiency response regulator IDEF2. BMC PLANT BIOLOGY 2024; 24:891. [PMID: 39343926 PMCID: PMC11440899 DOI: 10.1186/s12870-024-05473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Iron (Fe) deficiency affects 30-50% of the world's population. Genetic biofortification of staple crops is a promising strategy for improving human nutrition, but the number of effective precision breeding targets for Fe biofortification is small. Upstream open reading frames (uORFs) are cis-regulatory elements within the 5' leader sequence (LS) of genes that generally repress translation of the main open reading frame (mORF). RESULTS We aligned publicly available rice (Oryza sativa L.) ribo-seq datasets and transcriptomes to identify putative uORFs within important Fe homeostasis genes. A dual luciferase assay (DLA) was used to determine whether these uORFs cause repression of mORF translation and pinpoint LS regions that can be mutated for mORF derepression. A translationally repressive uORF region was identified in two positive regulators of the Fe-deficiency response: IDEF1 and IDEF2. The IDEF2-uORF peptide was highly conserved among monocots and a mutation series in the 5' LS of the wheat (Triticum aestivum L.) TaIDEF2-A1 gene demonstrated variable mORF derepression. CONCLUSIONS Together these results reveal a possible regulatory mechanism by which IDEF2 transcription factors modulate the Fe deficiency response in monocots, and highlight novel precision breeding targets to improve crop nutrition and abiotic stress tolerance.
Collapse
Affiliation(s)
- Oscar Carey-Fung
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jesse T Beasley
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronan C Broad
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | | | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
7
|
Pal S, Dhar R. Living in a noisy world-origins of gene expression noise and its impact on cellular decision-making. FEBS Lett 2024; 598:1673-1691. [PMID: 38724715 DOI: 10.1002/1873-3468.14898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 07/23/2024]
Abstract
The expression level of a gene can vary between genetically identical cells under the same environmental condition-a phenomenon referred to as gene expression noise. Several studies have now elucidated a central role of transcription factors in the generation of expression noise. Transcription factors, as the key components of gene regulatory networks, drive many important cellular decisions in response to cellular and environmental signals. Therefore, a very relevant question is how expression noise impacts gene regulation and influences cellular decision-making. In this Review, we summarize the current understanding of the molecular origins of expression noise, highlighting the role of transcription factors in this process, and discuss the ways in which noise can influence cellular decision-making. As advances in single-cell technologies open new avenues for studying expression noise as well as gene regulatory circuits, a better understanding of the influence of noise on cellular decisions will have important implications for many biological processes.
Collapse
Affiliation(s)
- Sampriti Pal
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, IIT Kharagpur, India
| |
Collapse
|
8
|
Aoyama H, Arae T, Yamashita Y, Toyoda A, Naito S, Sotta N, Chiba Y. Impact of translational regulation on diel expression revealed by time-series ribosome profiling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1889-1906. [PMID: 38494830 DOI: 10.1111/tpj.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Plants have developed the ability to adjust to the day/night cycle through the expression of diel genes, which allow them to effectively respond to environmental changes and optimise their growth and development. Diel oscillations also have substantial implications in many physiological processes, including photosynthesis, floral development, and environmental stress responses. The expression of diel genes is regulated by a combination of the circadian clock and responses to environmental cues, such as light and temperature. A great deal of information is available on the transcriptional regulation of diel gene expression. However, the extent to which translational regulation is involved in controlling diel changes in expression is not yet clear. To investigate the impact of translational regulation on diel expression, we conducted Ribo-seq and RNA-seq analyses on a time-series sample of Arabidopsis shoots cultivated under a 12 h light/dark cycle. Our results showed that translational regulation is involved in about 71% of the genes exhibiting diel changes in mRNA abundance or translational activity, including clock genes, many of which are subject to both translational and transcriptional control. They also revealed that the diel expression of glycosylation and ion-transporter-related genes is mainly established through translational regulation. The expression of several diel genes likely subject to translational regulation through upstream open-reading frames was also determined.
Collapse
Affiliation(s)
- Haruka Aoyama
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Toshihiro Arae
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yukako Chiba
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
9
|
Zhang C, Tang Y, Tang S, Chen L, Li T, Yuan H, Xu Y, Zhou Y, Zhang S, Wang J, Wen H, Jiang W, Pang Y, Deng X, Cao X, Zhou J, Song X, Liu Q. An inducible CRISPR activation tool for accelerating plant regeneration. PLANT COMMUNICATIONS 2024; 5:100823. [PMID: 38243597 PMCID: PMC11121170 DOI: 10.1016/j.xplc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.
Collapse
Affiliation(s)
- Cuimei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yajun Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
| | - Shanjie Tang
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Chen
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tong Li
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haidi Yuan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
| | - Yujun Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yangyan Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Shuaibin Zhang
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianli Wang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang 150086, China
| | - Hongyu Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xian Deng
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China.
| | - Xianwei Song
- Key Laboratory of Seed Innovation and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Miravet-Verde S, Mazzolini R, Segura-Morales C, Broto A, Lluch-Senar M, Serrano L. ProTInSeq: transposon insertion tracking by ultra-deep DNA sequencing to identify translated large and small ORFs. Nat Commun 2024; 15:2091. [PMID: 38453908 PMCID: PMC10920889 DOI: 10.1038/s41467-024-46112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Identifying open reading frames (ORFs) being translated is not a trivial task. ProTInSeq is a technique designed to characterize proteomes by sequencing transposon insertions engineered to express a selection marker when they occur in-frame within a protein-coding gene. In the bacterium Mycoplasma pneumoniae, ProTInSeq identifies 83% of its annotated proteins, along with 5 proteins and 153 small ORF-encoded proteins (SEPs; ≤100 aa) that were not previously annotated. Moreover, ProTInSeq can be utilized for detecting translational noise, as well as for relative quantification and transmembrane topology estimation of fitness and non-essential proteins. By integrating various identification approaches, the number of initially annotated SEPs in this bacterium increases from 27 to 329, with a quarter of them predicted to possess antimicrobial potential. Herein, we describe a methodology complementary to Ribo-Seq and mass spectroscopy that can identify SEPs while providing other insights in a proteome with a flexible and cost-effective DNA ultra-deep sequencing approach.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain.
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland.
| | | | - Carolina Segura-Morales
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Alicia Broto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Maria Lluch-Senar
- Pulmobiotics, Dr Aiguader 88, 08003, Barcelona, Spain.
- Institute of Biotechnology and Biomedicine "Vicent Villar Palasi" (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
12
|
Wang J, Liu J, Guo Z. Natural uORF variation in plants. TRENDS IN PLANT SCIENCE 2024; 29:290-302. [PMID: 37640640 DOI: 10.1016/j.tplants.2023.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Taking advantage of natural variation promotes our understanding of phenotypic diversity and trait evolution, ultimately accelerating plant breeding, in which the identification of causal variations is critical. To date, sequence variations in the coding region and transcription level polymorphisms caused by variations in the promoter have been prioritized. An upstream open reading frame (uORF) in the 5' untranslated region (5' UTR) regulates gene expression at the post-transcription or translation level. In recent years, studies have demonstrated that natural uORF variations shape phenotypic diversity. This opinion article highlights recent researches and speculates on future directions for natural uORF variation in plants.
Collapse
Affiliation(s)
- Jiangen Wang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhong Liu
- Fuzhou Institute for Data Technology Co., Ltd., Fuzhou 350207, China
| | - Zilong Guo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Maeda AE, Muranaka T, Nakamichi N, Oyama T, Dodd AN. Complexities, similarities, and differences in circadian regulation in the green lineage: A session concerning circadian regulation in unpredictable environments, at the 33rd International Conference of Arabidopsis Research, Makuhari Messe, Chiba, Japan, 5-9 June 2023. THE NEW PHYTOLOGIST 2024; 241:28-31. [PMID: 37823209 DOI: 10.1111/nph.19323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Akari E Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Tomoaki Muranaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Antony N Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7RU, UK
| |
Collapse
|
14
|
Millius A, Yamada RG, Fujishima H, Maeda K, Standley DM, Sumiyama K, Perrin D, Ueda HR. Circadian ribosome profiling reveals a role for the Period2 upstream open reading frame in sleep. Proc Natl Acad Sci U S A 2023; 120:e2214636120. [PMID: 37769257 PMCID: PMC10556633 DOI: 10.1073/pnas.2214636120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Daron M. Standley
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Dimitri Perrin
- School of Computer Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
- Centre for Data Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
15
|
Rahaman S, Faravelli S, Voegeli S, Becskei A. Polysome propensity and tunable thresholds in coding sequence length enable differential mRNA stability. SCIENCE ADVANCES 2023; 9:eadh9545. [PMID: 37756413 PMCID: PMC10530222 DOI: 10.1126/sciadv.adh9545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The half-life of mRNAs, as well as their translation, increases in proportion to the optimal codons, indicating a tight coupling of codon-dependent differential translation and degradation. Little is known about the regulation of this coupling. We found that the mRNA stability gain in yeast depends on the mRNA coding sequence length. Below a critical length, codon optimality fails to affect the stability of mRNAs although they can be efficiently translated into short peptides and proteins. Above this threshold length, codon optimality-dependent differential mRNA stability emerges in a switch-like fashion, which coincides with a similar increase in the polysome propensity of the mRNAs. This threshold length can be tuned by the untranslated regions (UTR). Some of these UTRs can destabilize mRNAs without reducing translation, which plays a role in controlling the amplitude of the oscillatory expression of cell cycle genes. Our findings help understand the translation of short peptides from noncoding RNAs and the translation by localized monosomes in neurons.
Collapse
Affiliation(s)
- Sayanur Rahaman
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
16
|
Zhao C, Li B, Guo K. Adaptive enhancement design of non-significant regions of a Wushu action 3D image based on the symmetric difference algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14793-14810. [PMID: 37679159 DOI: 10.3934/mbe.2023662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The recognition of martial arts movements with the aid of computers has become crucial because of the vigorous promotion of martial arts education in schools in China to support the national essence and the inclusion of martial arts as a physical education test item in the secondary school examination in Shanghai. In this paper, the fundamentals of background difference algorithms are examined and a systematic analysis of the benefits and drawbacks of various background difference algorithms is presented. Background difference algorithm solutions are proposed for a number of common, challenging problems. The empty background is then automatically extracted using a symmetric disparity approach that is proposed for the initialization of background disparity in three-dimensional (3D) photos of martial arts action. It is possible to swiftly remove and manipulate the background, even in intricate martial arts action recognition scenarios. According to the experimental findings, the algorithm's optimized model significantly enhances the foreground segmentation effect of the backdrop disparity in 3D photos of martial arts action. The use of features such as texture probability is coupled to considerably enhance the shadow elimination effect for the shadow problem of background differences.
Collapse
Affiliation(s)
- Chao Zhao
- Wuhan Sport University, Wuhan 430079, China
| | - Bing Li
- College of Physical Education, Chosun University, Gwangju 61452, South Korea
| | - KaiYuan Guo
- Physical Education Institute, Yong In University, Yongin-si 17092, South Korea
| |
Collapse
|
17
|
Uemoto K, Mori F, Yamauchi S, Kubota A, Takahashi N, Egashira H, Kunimoto Y, Araki T, Takemiya A, Ito H, Endo M. Root PRR7 Improves the Accuracy of the Shoot Circadian Clock through Nutrient Transport. PLANT & CELL PHYSIOLOGY 2023; 64:352-362. [PMID: 36631969 PMCID: PMC10016326 DOI: 10.1093/pcp/pcad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The circadian clock allows plants to anticipate and adapt to periodic environmental changes. Organ- and tissue-specific properties of the circadian clock and shoot-to-root circadian signaling have been reported. While this long-distance signaling is thought to coordinate physiological functions across tissues, little is known about the feedback regulation of the root clock on the shoot clock in the hierarchical circadian network. Here, we show that the plant circadian clock conveys circadian information between shoots and roots through sucrose and K+. We also demonstrate that K+ transport from roots suppresses the variance of period length in shoots and then improves the accuracy of the shoot circadian clock. Sucrose measurements and qPCR showed that root sucrose accumulation was regulated by the circadian clock. Furthermore, root circadian clock genes, including PSEUDO-RESPONSE REGULATOR7 (PRR7), were regulated by sucrose, suggesting the involvement of sucrose from the shoot in the regulation of root clock gene expression. Therefore, we performed time-series measurements of xylem sap and micrografting experiments using prr7 mutants and showed that root PRR7 regulates K+ transport and suppresses variance of period length in the shoot. Our modeling analysis supports the idea that root-to-shoot signaling contributes to the precision of the shoot circadian clock. We performed micrografting experiments that illustrated how root PRR7 plays key roles in maintaining the accuracy of shoot circadian rhythms. We thus present a novel directional signaling pathway for circadian information from roots to shoots and propose that plants modulate physiological events in a timely manner through various timekeeping mechanisms.
Collapse
Affiliation(s)
- Kyohei Uemoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Fumito Mori
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Haruki Egashira
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Yumi Kunimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara, 630-0192 Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512 Japan
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 Japan
| | | |
Collapse
|
18
|
Feng Y, Jiang M, Yu W, Zhou J. Identification of short open reading frames in plant genomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094715. [PMID: 36875581 PMCID: PMC9975389 DOI: 10.3389/fpls.2023.1094715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The roles of short/small open reading frames (sORFs) have been increasingly recognized in recent years due to the rapidly growing number of sORFs identified in various organisms due to the development and application of the Ribo-Seq technique, which sequences the ribosome-protected footprints (RPFs) of the translating mRNAs. However, special attention should be paid to RPFs used to identify sORFs in plants due to their small size (~30 nt) and the high complexity and repetitiveness of the plant genome, particularly for polyploidy species. In this work, we compare different approaches to the identification of plant sORFs, discuss the advantages and disadvantages of each method, and provide a guide for choosing different methods in plant sORF studies.
Collapse
Affiliation(s)
- Yong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Weichang Yu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Liaoning Peanut Research Institute, Liaoning Academy of Agricultural Sciences, Fuxing, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
19
|
Fajiculay E, Hsu CP. Localization of Noise in Biochemical Networks. ACS OMEGA 2023; 8:3043-3056. [PMID: 36713703 PMCID: PMC9878546 DOI: 10.1021/acsomega.2c06113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Noise, or uncertainty in biochemical networks, has become an important aspect of many biological problems. Noise can arise and propagate from external factors and probabilistic chemical reactions occurring in small cellular compartments. For species survival, it is important to regulate such uncertainties in executing vital cell functions. Regulated noise can improve adaptability, whereas uncontrolled noise can cause diseases. Simulation can provide a detailed analysis of uncertainties, but parameters such as rate constants and initial conditions are usually unknown. A general understanding of noise dynamics from the perspective of network structure is highly desirable. In this study, we extended the previously developed law of localization for characterizing noise in terms of (co)variances and developed noise localization theory. With linear noise approximation, we can expand a biochemical network into an extended set of differential equations representing a fictitious network for pseudo-components consisting of variances and covariances, together with chemical species. Through localization analysis, perturbation responses at the steady state of pseudo-components can be summarized into a sensitivity matrix that only requires knowledge of network topology. Our work allows identification of buffering structures at the level of species, variances, and covariances and can provide insights into noise flow under non-steady-state conditions in the form of a pseudo-chemical reaction. We tested noise localization in various systems, and here we discuss its implications and potential applications. Results show that this theory is potentially applicable in discriminating models, scanning network topologies with interesting noise behavior, and designing and perturbing networks with the desired response.
Collapse
Affiliation(s)
- Erickson Fajiculay
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Physics
Division, National Center for Theoretical
Sciences, Taipei106319, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University, Taipei106319, Taiwan
| |
Collapse
|
20
|
Chen G, Wang R, Jiang Y, Dong X, Xu J, Xu Q, Kan Q, Luo Z, Springer N, Li Q. A novel active transposon creates allelic variation through altered translation rate to influence protein abundance. Nucleic Acids Res 2023; 51:595-609. [PMID: 36629271 PMCID: PMC9881132 DOI: 10.1093/nar/gkac1195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Protein translation is tightly and precisely controlled by multiple mechanisms including upstream open reading frames (uORFs), but the origins of uORFs and their role in maize are largely unexplored. In this study, an active transposition event was identified during the propagation of maize inbred line B73. The transposon, which was named BTA for 'B73 active transposable element hAT', creates a novel dosage-dependent hypomorphic allele of the hexose transporter gene ZmSWEET4c through insertion within the coding sequence in the first exon, and results in reduced kernel size. The BTA insertion does not affect transcript abundance but reduces protein abundance of ZmSWEET4c, probably through the introduction of a uORF. Furthermore, the introduction of BTA sequence in the exon of other genes can regulate translation efficiency without affecting their mRNA levels. A transposon capture assay revealed 79 novel insertions for BTA and BTA-like elements. These insertion sites have typical euchromatin features, including low levels of DNA methylation and high levels of H3K27ac. A putative autonomous element that mobilizes BTA and BTA-like elements was identified. Together, our results suggest a transposon-based origin of uORFs and document a new role for transposable elements to influence protein abundance and phenotypic diversity by affecting the translation rate.
Collapse
Affiliation(s)
| | | | | | - Xiaoxiao Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuxin Kan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixiang Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Qing Li
- To whom correspondence should be addressed.
| |
Collapse
|
21
|
Jürgens L, Wethmar K. The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology. Cancers (Basel) 2022; 14:6031. [PMID: 36551517 PMCID: PMC9776223 DOI: 10.3390/cancers14246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.
Collapse
Affiliation(s)
| | - Klaus Wethmar
- University Hospital Münster, Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, 48149 Münster, Germany
| |
Collapse
|
22
|
Guo Z, Cao H, Zhao J, Bai S, Peng W, Li J, Sun L, Chen L, Lin Z, Shi C, Yang Q, Yang Y, Wang X, Tian J, Chen Z, Liao H. A natural uORF variant confers phosphorus acquisition diversity in soybean. Nat Commun 2022; 13:3796. [PMID: 35778398 PMCID: PMC9249851 DOI: 10.1038/s41467-022-31555-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphorus (P) is an essential element for all organisms. Because P fertilizers are a non-renewable resource and high fixation in soils, sustainable agriculture requires researchers to improve crop P acquisition efficiency. Here, we report a strong association signal at a locus of CPU1 (component of phosphorus uptake 1), from a genome-wide association study of P acquisition efficiency in a soybean core collection grown in the field. A SEC12-like gene, GmPHF1, is identified as the causal gene for CPU1. GmPHF1 facilitates the ER (endoplasmic reticulum) exit of the phosphate transporter, GmPT4, to the plasma membrane of root epidermal cells. A common SNP in an upstream open reading frame (uORF) of GmPHF1, which alters the abundance of GmPHF1 in a tissue-specific manner, contributes to P acquisition diversity in soybean. A natural genetic variation conditions diversity in soybean P acquisition, which can be used to develop P-efficient soybean genotypes.
Collapse
Affiliation(s)
- Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongrui Cao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhao
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Shuang Bai
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenting Peng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Sun
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyu Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhihao Lin
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Chen Shi
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiurong Wang
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Zhichang Chen
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
23
|
Alamos S. Noise-cancelling translation syncs cellular clocks. NATURE PLANTS 2022; 8:455-456. [PMID: 35501453 DOI: 10.1038/s41477-022-01143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Simon Alamos
- University of California, Berkeley, Berkeley, CA, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|