1
|
Mohal MM, Sraboni FS, Islam S, Zaman S, Uddin MS, Saleh MA. Functional characterization and biotechnological applications of exopolysaccharides produced by newly isolated Enterococcus hirae MLG3-25-1. Int Microbiol 2025; 28:851-862. [PMID: 39222179 DOI: 10.1007/s10123-024-00587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the potential applications of Enterococcus hirae MLG3-25-1 exopolysaccharides (EPS), with a focus on their isolation, identification, production, and functional characteristics. After the bacterial strain was cultured in De Man-Rogosa-Sharpe (MRS) medium containing 1% glucose at 37 °C, the EPS was refined, and the highest yield of 0.85 mg/mL was achieved at the 24-h incubation period. Enterococcus hirae MLG3-25-1 was found to be able to produce EPS. The study explored the microstructure of the EPS, which resembles polysaccharide sheets with smooth surfaces, through scanning electron microscope (SEM) analysis. Through Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis, the chemical composition, aligning with glycosidic bond characteristics, has been deciphered. Furthermore, the antimicrobial and antibiofilm activities against pathogenic bacteria, particularly Bacillus sp., demonstrated potential applications in combating antibiotic resistance. The EPS exhibited notable antioxidant activity (89.36% DPPH scavenging), along with high water-holding capacity (575%), emulsifying activity, and flocculation activity, suggesting its potential as a stabilizing agent in the food industry. Overall, this study provides a comprehensive characterization of Enterococcus hirae MLG3-25-1 EPS, emphasizing its diverse applications in antimicrobial, antioxidant, and food-related industries. These findings lay the groundwork for further exploration and utilization of this EPS in various sectors.
Collapse
Affiliation(s)
- Mst Mamotaz Mohal
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farzana Sayed Sraboni
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
2
|
Sun L, Wang D, Liu X, Zhou Y, Wang S, Guan X, Huang W, Wang C, Gong B, Xie Z. The GlnE protein of Azorhizobium caulinodans ORS571 plays a crucial role in the nodulation process of the legume host Sesbania rostrata. Microbiol Res 2025; 293:128072. [PMID: 39842377 DOI: 10.1016/j.micres.2025.128072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
The GlnE enzyme, functioning as an adenylyltransferase/adenylyl-removing enzyme, plays a crucial role in reversible adenylylation of glutamine synthetase (GS), which in turn regulates bacterial nitrogen assimilation. Genomic analysis of Azorhizobium caulinodans ORS571 revealed an open reading frame encoding a GlnE protein, whose function in the free-living and symbiotic states remains to be elucidated. A glnE deletion mutant retained high GS activity even under nitrogen-rich conditions. However, a reduction in growth was observed for the mutant strain at lower NH4+ concentrations than for the wild-type strain. Furthermore, the ΔglnE mutant strain showed reduced motility on ammonium-containing media. Inactivation of GlnE led to an increase in root adhesion, biofilm formation, and nodulation on Sesbania rostrata. Nevertheless, the nodules induced by the glnE mutant strain were ineffective. In addition, A. caulinodans GlnE played a significant role in enhancing resistance against environmental stresses, such as heat, heavy metals, and cumene hydroperoxide. This study demonstrates that GlnE plays multiple regulatory roles in A. caulinodans beyond nitrogen metabolism and is essential for establishing symbiotic relationships with host plants.
Collapse
Affiliation(s)
- Li Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Yanan Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Shuaibing Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Xin Guan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Weiwei Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Chao Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
3
|
Wang D, Li Y, Li L, Chen Y, Min S, Wang Y, Feng J, Zhou J, Zhang Z, Fang Y. Synthesis of antibiofilm (1R,4S)-(-)-fenchone derivatives to control Pseudomonas syringae pv. tomato. PEST MANAGEMENT SCIENCE 2025; 81:1261-1273. [PMID: 39501917 DOI: 10.1002/ps.8525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Biofilm plays a crucial role in Pseudomonas syringae pv. tomato (Pst) infection. We identified (1R,4S)-(-)-fenchone (FCH) as the most potent antibiofilm agent against Pst among 39 essential oil compounds. Subsequently, we synthesized a series of FCH oxime ester and acylhydrazine derivatives to explore more potent derivatives. RESULTS II3 was screened out as the most potent derivative, exhibiting a minimal biofilm inhibitory concentration of 60 μg mL-1 and a lowest concentration with maximal biofilm inhibition (LCMBI) of 200 μg mL-1, lower than those of FCH (80 and 500 μg mL-1, respectively). II3 and FCH showed minimum inhibitory concentration values >1000 μg mL-1 and similar maximal biofilm inhibition extents of 48.7% and 49.5% at their respective LCMBIs, respectively. Meanwhile, neither of them influenced cell viability or the activity of metabolic enzymes at their respective LCMBIs. II3 at its LCMBI significantly reduced biofilm thickness, extracellular polysaccharide content, and pectinase and cellulase production indices. In vivo assay results indicated that II3 could preventatively reduce the bacterial contents in tomato leaves at its LCMBI, and when combined with kasugamycin (KSG) (10 μg mL-1), II3 achieved the same level of bacterial reduction as the sole application of KSG (70 μg mL-1), thereby reducing the required dosage of KSG. Mechanistic studies demonstrated that II3 can down-regulate biofilm-related genes and inhibit PsyR/PsyI quorum sensing system, which differs from the bactericidal mechanisms. CONCLUSION These results underscore the potential of II3 as an antibiofilm agent for the control of Pst or FCH as a promising natural candidate for future in-depth optimization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Delong Wang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yunpeng Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Linjing Li
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yizhe Chen
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Shuoling Min
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianbo Zhou
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Zhijia Zhang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Yali Fang
- College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
4
|
Naik S, Chapin LJ, South KA, Jones ML. Biocontrol Efficacy of Pseudomonas Consortia Against Botrytis Blight in Petunias. PLANT DISEASE 2025; 109:670-682. [PMID: 39412847 DOI: 10.1094/pdis-06-24-1210-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Botrytis cinerea, a fungal pathogen causing Botrytis blight, significantly impacts greenhouse crop management owing to its broad host range and infection capabilities at various growth stages. Traditional control methods, primarily reliant on fungicides, are challenged by environmental concerns and the rise of fungicide-resistant strains. This study investigates the use of beneficial Pseudomonas bacteria as a sustainable alternative. We hypothesized that specific Pseudomonas consortia could provide more effective biocontrol of B. cinerea than individual strains. Our research investigated five Pseudomonas strains (14B11, AP54, 15H3, 94G2, and 89F1) known to reduce Botrytis blight in Petunia × hybrida. Compatibility for bacterial consortia was assessed through biofilm formation and direct bacterial inhibition assays. The biocontrol effects of the bacteria against B. cinerea were investigated in vitro using shared-air-space and dual-culture assays and in planta by inoculating detached petunia flowers. We found that strain 14B11 exhibited the highest biofilm formation, with consortia of 14B11 and 89F1 showing significant enhancement compared with individual cultures, whereas a slight, nonsignificant increase was observed in 14B11 and AP54 consortia. However, strain 14B11 efficacy was inhibited by strain 15H3. Genomic analyses identified antifungal compound-related gene clusters in 14B11 and AP54, contributing to their biocontrol potential. Trials with detached flowers of Petunia × hybrida 'Carpet Red Bright' confirmed significant disease severity reduction with 14B11, AP54, and their consortia. This research highlights strategic Pseudomonas consortia as promising, eco-friendly alternatives to chemical fungicides, promoting sustainable agriculture by enhancing our understanding of how microbial interactions can be used to manage Botrytis blight.
Collapse
Affiliation(s)
- Sachin Naik
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Laura J Chapin
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, U.S.A
| | - Kaylee A South
- School of Plant and Environmental Sciences, Virginia Tech, Danville, VA 24540, U.S.A
| | - Michelle L Jones
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691, U.S.A
| |
Collapse
|
5
|
Khalaf SM, Alqahtani MS, Ali MR, Abdelalim IT, Hodhod MS. Using MaxEnt modeling to analyze climate change impacts on Pseudomonas syringae van Hall, 1904 distribution on the global scale. Heliyon 2024; 10:e41017. [PMID: 39759371 PMCID: PMC11696772 DOI: 10.1016/j.heliyon.2024.e41017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Pseudomonas syringae is a pathogenic bacterium that poses a significant threat to global agriculture, necessitating a deeper understanding of its ecological dynamics in the context of global warming. This study investigates the current and projected future distribution of P. syringae, focusing on the climatic factors that influence its spread. To achieve this, we employed Maximum Entropy (MaxEnt) modeling based on Geographic Information Systems (GIS) to analyze species occurrence records alongside relevant climate data. The MaxEnt model was calibrated using 75 % of the occurrence data, with the remaining 25 % reserved for validation. The model's performance was meticulously assessed utilizing the area under the curve (AUC) and true skill statistics (TSS), resulting in an AUC score of 0.92, indicating excellent predictive capability. Our analysis identified key climatic parameters-temperature, precipitation, and humidity-that significantly affect the presence of P. syringae. Notably, our findings project an expansion of the bacterium's geographic range in the coming decades, with optimal conditions shifting toward the poles. This research underscores the significant influence of climate change on the distribution of P. syringae and provides valuable insights for developing targeted disease management strategies. The anticipated increase in bacterial infections in crops highlights the urgent need for proactive measures to mitigate these effects.
Collapse
Affiliation(s)
- Sameh M.H. Khalaf
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA University), 6th October City, 12566, Egypt
| | - Monerah S.M. Alqahtani
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed R.M. Ali
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA University), 6th October City, 12566, Egypt
| | - Ibrahim T.I. Abdelalim
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA University), 6th October City, 12566, Egypt
| | - Mohamed S. Hodhod
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA University), 6th October City, 12566, Egypt
| |
Collapse
|
6
|
Ramakrishnan R, Nair AV, Parmar K, Rajmani RS, Chakravortty D, Das D. Combating biofilm-associated Klebsiella pneumoniae infections using a bovine microbial enzyme. NPJ Biofilms Microbiomes 2024; 10:119. [PMID: 39500915 PMCID: PMC11538315 DOI: 10.1038/s41522-024-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses significant clinical challenges with limited treatment options. Biofilm is an important virulence factor of K. pneumoniae, serving as a protective barrier against antibiotics and the immune system. Here, we present the remarkable ability of a bovine microbial enzyme to prevent biofilm formation (IC50 2.50 μM) and degrade pre-formed K. pneumoniae biofilms (EC50 1.94 μM) by degrading the matrix polysaccharides. The treatment was effective against four different clinical K. pneumoniae isolates tested. Moreover, the enzyme significantly improved the biofilm sensitivity of a poorly performing broad-spectrum antibiotic, meropenem, and immune cells, resulting in facile biofilm clearance from the mouse wound infection. Notably, well-known powerful enzymes of the same class, cellulase, and α-amylase, were nearly inactive against the K. pneumoniae biofilms. The enzyme exhibited antibiofilm activity without showing toxicity to the mammalian and microbial cells, highlighting the potential of the enzyme for in vivo applications.
Collapse
Affiliation(s)
- Reshma Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Abhilash V Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kirti Parmar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India.
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
7
|
Sarkar S, Cabrera-Barjas G, Singh RN, Fabi JP, Breig SJM, Tapia J, Sani RK, Banerjee A. Unveiling a novel exopolysaccharide produced by Pseudomonas alcaligenes Med1 isolated from a Chilean hot spring as biotechnological additive. Sci Rep 2024; 14:25058. [PMID: 39443539 PMCID: PMC11500355 DOI: 10.1038/s41598-024-74830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermotolerant (growth from 34-44 °C) strain Pseudomonas alcaligenes Med1 from Medano hot spring (39.1 °C surface temperature, pH 7.1) located in the Central Andean Mountains of Chile. Bacterial growth was screened for temperature tolerance (10-60 °C) to confirm the thermotolerance behaviour. Physicochemical properties of the EPS were characterized by different techniques: Scanning Electron Microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). Whole genome of P. alcaligenes Med1 has also been studied in detail to correlate the structural and functional characteristics with genomic insight. The EPS demonstrated amorphous surface roughness composed of evenly distributed macromolecular lumps composed of mainly carbon and oxygen. The monosaccharide analysis has shown the presence of glucose, galactose, and mannose sugars at different ratios. TGA revealed the high thermal stability (315.3 °C) of the polysaccharide. The GPC has shown that Med1 is a low molecular weight polysaccharide (34.8 kDa) with low PI. The 2D-NMR linkage analysis suggests a diverse array of glycosidic bonds within the exopolysaccharide structure. The functional properties of the EPS were evaluated for food industry applications, specifically for antioxidant (DPPH, FRAP an H2O2). Extracted Med1 EPS revealed significant emulsification activity against different food grade vegetative oils (Coconut oil, Corn oil, Canola oil, Avocado oil, Sunflower oil, Olive oil, and Sesame oil). The highest 33.9% flocculation activity was observed with 60 mg L-1 EPS concentration. It showed water-holding (WHC) of 107.6% and oil-holding (OHC) capacity of 110.8%. The functional EPS produced by Pseudomonas alcaligenes Med1 from Central Andean Chilean hot spring of central Chile can be a useful additive for the food-processing industry.
Collapse
Affiliation(s)
- Shrabana Sarkar
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, 4080871, Concepción, Chile
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CePID‑FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| | | | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, 3460000, Talca, Chile
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota Mines, Rapid City, SD, USA
| | - Aparna Banerjee
- Functional Polysaccharides Research Group, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca, Chile.
| |
Collapse
|
8
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
9
|
Ranjit S, Deblais L, Poelstra JW, Bhandari M, Rotondo F, Scaria J, Miller SA, Rajashekara G. In vitro, in planta, and comparative genomic analyses of Pseudomonas syringae pv. syringae strains of pepper ( Capsicum annuum var. annuum). Microbiol Spectr 2024; 12:e0006424. [PMID: 38712940 PMCID: PMC11237606 DOI: 10.1128/spectrum.00064-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Pseudomonas syringae pv. syringae (Pss) is an emerging phytopathogen that causes Pseudomonas leaf spot (PLS) disease in pepper plants. Pss can cause serious economic damage to pepper production, yet very little is known about the virulence factors carried by Pss that cause disease in pepper seedlings. In this study, Pss strains isolated from pepper plants showing PLS symptoms in Ohio between 2013 and 2021 (n = 16) showed varying degrees of virulence (Pss populations and disease symptoms on leaves) on 6-week-old pepper seedlings. In vitro studies assessing growth in nutrient-limited conditions, biofilm production, and motility also showed varying degrees of virulence, but in vitro and in planta variation in virulence between Pss strains did not correlate. Comparative whole-genome sequencing studies identified notable virulence genes including 30 biofilm genes, 87 motility genes, and 106 secretion system genes. Additionally, a total of 27 antimicrobial resistance genes were found. A multivariate correlation analysis and Scoary analysis based on variation in gene content (n = 812 variable genes) and single nucleotide polymorphisms within virulence genes identified no significant correlations with disease severity, likely due to our limited sample size. In summary, our study explored the virulence and antimicrobial gene content of Pss in pepper seedlings as a first step toward understanding the virulence and pathogenicity of Pss in pepper seedlings. Further studies with additional pepper Pss strains will facilitate defining genes in Pss that correlate with its virulence in pepper seedlings, which can facilitate the development of effective measures to control Pss in pepper and other related P. syringae pathovars. IMPORTANCE Pseudomonas leaf spot (PLS) caused by Pseudomonas syringae pv. syringae (Pss) causes significant losses to the pepper industry. Highly virulent Pss strains under optimal environmental conditions (cool-moderate temperatures, high moisture) can cause severe necrotic lesions on pepper leaves that consequently can decrease pepper yield if the disease persists. Hence, it is important to understand the virulence mechanisms of Pss to be able to effectively control PLS in peppers. In our study, in vitro, in planta, and whole-genome sequence analyses were conducted to better understand the virulence and pathogenicity characteristics of Pss strains in peppers. Our findings fill a knowledge gap regarding potential virulence and pathogenicity characteristics of Pss in peppers, including virulence and antimicrobial gene content. Our study helps pave a path to further identify the role of specific virulence genes in causing disease in peppers, which can have implications in developing strategies to effectively control PLS in peppers.
Collapse
Affiliation(s)
- Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | | | - Menuka Bhandari
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Joy Scaria
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Sally A. Miller
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
10
|
Budil J, Lišková P. Current methods for monitoring Pseudomonas syringae biofilm development. Lett Appl Microbiol 2024; 77:ovae013. [PMID: 38337184 DOI: 10.1093/lambio/ovae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 02/07/2004] [Indexed: 02/12/2024]
Abstract
This work reviews biofilm investigation techniques and highlights the benefits and drawbacks of each approach focusing especially on Pseudomonas syringae and may serve as a comprehensive guide for any early-career researchers starting with the topic of biofilm. Each approach with applications of individual microscopy and spectroscopy techniques is summarized together with characterization of Pseudomonas syringae and its role in pathogenesis.
Collapse
Affiliation(s)
- Jakub Budil
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Petra Lišková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
- Research and breeding institute of pomology Holovousy Ltd., Holovousy 129, 508 01, Horice, Czech Republic
| |
Collapse
|
11
|
Blanco-Romero E, Garrido-Sanz D, Durán D, Rybtke M, Tolker-Nielsen T, Redondo-Nieto M, Rivilla R, Martín M. Role of extracellular matrix components in biofilm formation and adaptation of Pseudomonas ogarae F113 to the rhizosphere environment. Front Microbiol 2024; 15:1341728. [PMID: 38333580 PMCID: PMC10850567 DOI: 10.3389/fmicb.2024.1341728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Regulating the transition of bacteria from motile to sessile lifestyles is crucial for their ability to compete effectively in the rhizosphere environment. Pseudomonas are known to rely on extracellular matrix (ECM) components for microcolony and biofilm formation, allowing them to adapt to a sessile lifestyle. Pseudomonas ogarae F113 possesses eight gene clusters responsible for the production of ECM components. These gene clusters are tightly regulated by AmrZ, a major transcriptional regulator that influences the cellular levels of c-di-GMP. The AmrZ-mediated transcriptional regulation of ECM components is primarily mediated by the signaling molecule c-di-GMP and the flagella master regulator FleQ. To investigate the functional role of these ECM components in P. ogarae F113, we performed phenotypic analyses using mutants in genes encoding these ECM components. These analyses included assessments of colony morphology, dye-staining, static attachment to abiotic surfaces, dynamic biofilm formation on abiotic surfaces, swimming motility, and competitive colonization assays of the rhizosphere. Our results revealed that alginate and PNAG polysaccharides, along with PsmE and the fimbrial low molecular weight protein/tight adherence (Flp/Tad) pilus, are the major ECM components contributing to biofilm formation. Additionally, we found that the majority of these components and MapA are needed for a competitive colonization of the rhizosphere in P. ogarae F113.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Mielnichuk N, Joya CM, Monachesi MA, Bertani RP. Exopolysaccharide Production and Precipitation Method as a Tool to Study Virulence Factors. Methods Mol Biol 2024; 2751:71-79. [PMID: 38265710 DOI: 10.1007/978-1-0716-3617-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Acidovorax avenae subsp. avenae (Aaa) is the causal agent of red stripe in sugarcane, a disease characterized by two forms: leaf stripe and top rot. Despite the importance of this disease, little is known about Aaa virulence factors (VFs) and their function in the infection process. Among the different array of VFs exerted by phytopathogenic bacteria, exopolysaccharides (EPSs) often confer a survival advantage by protecting the cell against abiotic and biotic stresses, including host defensive factors. They are also main components of the extracellular matrix involved in cell-cell recognition, surface adhesion, and biofilm formation. EPS composition and properties have been well studied for some plant pathogenic bacteria; nevertheless, there is no knowledge about Aaa-EPS. In this work, we describe a simple and reliable method for EPS production, precipitation, and quantification based on cold precipitation after ethanol addition, which will allow to study EPS characteristics of different Aaa strains and to evaluate the association among EPS (e.g., amount, composition, viscosity) and Aaa pathogenicity.
Collapse
Affiliation(s)
- Natalia Mielnichuk
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Constanza M Joya
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - María A Monachesi
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| | - Romina P Bertani
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tucumán, Argentina
| |
Collapse
|
13
|
Budil J, Štenclová P, Kromka A, Lišková P. Development of the Pseudomonas syringae pv. morsprunorum Biofilm Monitored in Real Time Using Attenuated Total Reflection Fourier Transform Infrared Measurements in a Flow Cell Chamber. APPLIED SPECTROSCOPY 2023; 77:500-512. [PMID: 36898963 DOI: 10.1177/00037028231165057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biofilms of sessile Pseudomonas syringae cells formed on top of plant host's leaves or fruits allow surviving harsh environmental conditions (desiccation) and improve their resistance to antibacterial treatments of crops. A better understanding of these biofilms can help minimize their effect on harvests. In the present study, infrared attenuated total reflection spectroscopy coupled with optical and confocal laser scanning microscopy has been applied for the first time to analyze Pseudomonas syringae pathovar morsprunorum biofilm development in real time. The biofilm development was observed within a spectral window 4000-800 cm-1 under constant flow conditions for 72 h. The kinetics of representative integrated band areas (nucleic acids with polysaccharides at 1141-1006 cm-1, amino acid side chains with free fatty acids at 1420-1380 cm-1, proteins at 1580-1490 cm-1, and lipids with proteins at 2935-2915 cm-1) were analyzed with regard to the observed biofilm structure and the following P. syringae biofilm developmental stages were attributed: The inoculation phase, washing of weakly attached bacteria closely followed by recolonization of the vacated surface, the restructuration phase, and finally the maturation phase.
Collapse
Affiliation(s)
- Jakub Budil
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Štenclová
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexander Kromka
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Lišková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
14
|
Wang D, Fletcher GC, Gagic D, On SLW, Palmer JS, Flint SH. Comparative genome identification of accessory genes associated with strong biofilm formation in Vibrio parahaemolyticus. Food Res Int 2023; 166:112605. [PMID: 36914349 DOI: 10.1016/j.foodres.2023.112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Vibrio parahaemolyticus biofilms on the seafood processing plant surfaces are a potential source of seafood contamination and subsequent food poisoning. Strains differ in their ability to form biofilm, but little is known about the genetic characteristics responsible for biofilm development. In this study, pangenome and comparative genome analysis of V. parahaemolyticus strains reveals genetic attributes and gene repertoire that contribute to robust biofilm formation. The study identified 136 accessory genes that were exclusively present in strong biofilm forming strains and these were functionally assigned to the Gene Ontology (GO) pathways of cellulose biosynthesis, rhamnose metabolic and catabolic processes, UDP-glucose processes and O antigen biosynthesis (p < 0.05). Strategies of CRISPR-Cas defence and MSHA pilus-led attachment were implicated via Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Higher levels of horizontal gene transfer (HGT) were inferred to confer more putatively novel properties on biofilm-forming V. parahaemolyticus. Furthermore, cellulose biosynthesis, a neglected potential virulence factor, was identified as being acquired from within the order Vibrionales. The cellulose synthase operons in V. parahaemolyticus were examined for their prevalence (22/138, 15.94 %) and were found to consist of the genes bcsG, bcsE, bcsQ, bcsA, bcsB, bcsZ, bcsC. This study provides insights into robust biofilm formation of V. parahaemolyticus at the genomic level and facilitates: identification of key attributes for robust biofilm formation, elucidation of biofilm formation mechanisms and development of potential targets for novel control strategies of persistent V. parahaemolyticus.
Collapse
Affiliation(s)
- Dan Wang
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Graham C Fletcher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Dragana Gagic
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Stephen L W On
- Faculty of Agriculture and Life Sciences, Lincoln University, Private Bag 85084, Canterbury, New Zealand
| | - Jon S Palmer
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Steve H Flint
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
15
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
16
|
Martínez-Rodríguez L, López-Sánchez A, García-Alcaide A, Govantes F, Gallegos MT. FleQ, FleN and c-di-GMP coordinately regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front Mol Biosci 2023; 10:1155579. [PMID: 37051327 PMCID: PMC10083355 DOI: 10.3389/fmolb.2023.1155579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The second messenger cyclic di-GMP (c-di-GMP) controls the transition between motility and sessility in many bacterial species by a variety of mechanisms, including the production of multiple exopolysaccharides. Pseudomonas syringae pv. tomato (Pto) DC3000 is a plant pathogenic bacteria able to synthesize acetylated cellulose under high c-di-GMP levels thanks to the expression of the wssABCDEFGHI operon. Increased cellulose production enhances air-liquid biofilm formation and generates a wrinkled colony phenotype on solid media. We previously showed that under low levels of c-di-GMP, the regulators FleQ and AmrZ bound to adjacent sequences at the wss promoter inhibiting its expression, but only FleQ responded to the presence of c-di-GMP by activating cellulose production. In the present work, we advance in the knowledge of this complex regulation in Pto DC3000 by shedding light over the role of FleN in this process. The distinctive features of this system are that FleN and FleQ are both required for repression and activation of the wss operon under low and high c-di-GMP levels, respectively. We have also identified three putative FleQ binding sites at the wss promoter and show that FleQ/FleN-ATP binds at those sites under low c-di-GMP levels, inducing a distortion of DNA, impairing RNA polymerase binding, and repressing wss transcription. However, binding of c-di-GMP induces a conformational change in the FleQ/FleN-ATP complex, which relieves the DNA distortion, allows promoter access to the RNA polymerase, and leads to activation of wss transcription. On the other hand, AmrZ is always bound at the wss promoter limiting its expression independently of FleQ, FleN and c-di-GMP levels.
Collapse
Affiliation(s)
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Andrea García-Alcaide
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - María-Trinidad Gallegos
- Department of Soil and Plant Microbiology, Granada, Spain
- *Correspondence: María-Trinidad Gallegos,
| |
Collapse
|
17
|
Garg A, Nam W, Wang W, Vikesland P, Zhou W. In Situ Spatiotemporal SERS Measurements and Multivariate Analysis of Virally Infected Bacterial Biofilms Using Nanolaminated Plasmonic Crystals. ACS Sens 2023; 8:1132-1142. [PMID: 36893064 DOI: 10.1021/acssensors.2c02412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In situ spatiotemporal biochemical characterization of the activity of living multicellular biofilms under external stimuli remains a significant challenge. Surface-enhanced Raman spectroscopy (SERS), combining the molecular fingerprint specificity of vibrational spectroscopy with the hotspot sensitivity of plasmonic nanostructures, has emerged as a promising noninvasive bioanalysis technique for living systems. However, most SERS devices do not allow reliable long-term spatiotemporal SERS measurements of multicellular systems because of challenges in producing spatially uniform and mechanically stable SERS hotspot arrays to interface with large cellular networks. Furthermore, very few studies have been conducted for multivariable analysis of spatiotemporal SERS datasets to extract spatially and temporally correlated biological information from multicellular systems. Here, we demonstrate in situ label-free spatiotemporal SERS measurements and multivariate analysis of Pseudomonas syringae biofilms during development and upon infection by bacteriophage virus Phi6 by employing nanolaminate plasmonic crystal SERS devices to interface mechanically stable, uniform, and spatially dense hotspot arrays with the P. syringae biofilms. We exploited unsupervised multivariate machine learning methods, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), to resolve the spatiotemporal evolution and Phi6 dose-dependent changes of major Raman peaks originating from biochemical components in P. syringae biofilms, including cellular components, extracellular polymeric substances (EPS), metabolite molecules, and cell lysate-enriched extracellular media. We then employed supervised multivariate analysis using linear discriminant analysis (LDA) for the multiclass classification of Phi6 dose-dependent biofilm responses, demonstrating the potential for viral infection diagnosis. We envision extending the in situ spatiotemporal SERS method to monitor dynamic, heterogeneous interactions between viruses and bacterial networks for applications such as phage-based anti-biofilm therapy development and continuous pathogenic virus detection.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Electronic Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Ranković T, Nikolić I, Berić T, Popović T, Lozo J, Medić O, Stanković S. Genome Analysis of Two Pseudomonas syringae pv. aptata Strains with Different Virulence Capacity Isolated from Sugar Beet: Features of Successful Pathogenicity in the Phyllosphere Microbiome. Microbiol Spectr 2023; 11:e0359822. [PMID: 36912660 PMCID: PMC10100878 DOI: 10.1128/spectrum.03598-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Members of the Pseudomonas syringae species complex are heterogeneous bacteria that are the most abundant bacterial plant pathogens in the plant phyllosphere, with strong abilities to exist on and infect different plant hosts and survive in/outside agroecosystems. In this study, the draft genome sequences of two pathogenic P. syringae pv. aptata strains with different in planta virulence capacities isolated from the phyllosphere of infected sugar beet were analyzed to evaluate putative features of survival strategies and to determine the pathogenic potential of the strains. The draft genomes of P. syringae pv. aptata strains P16 and P21 are 5,974,057 bp and 6,353,752 bp in size, have GC contents of 59.03% and 58.77%, respectively, and contain 3,439 and 3,536 protein-coding sequences, respectively. For both average nucleotide identity and pangenome analysis, P16 and P21 largely clustered with other pv. aptata strains from the same isolation source. We found differences in the repertoire of effectors of the type III secretion system among all 102 selected strains, suggesting that the type III secretion system is a critical factor in the different virulent phenotypes of P. syringae pv. aptata. During genome analysis of the highly virulent strain P21, we discovered genes for T3SS effectors (AvrRpm1, HopAW1, and HopAU1) that were not previously found in genomes of P. syringae pv. aptata. We also identified coding sequences for pantothenate kinase, VapC endonuclease, phospholipase, and pectate lyase in both genomes, which may represent novel effectors of the type III secretion system. IMPORTANCE Genome analysis has an enormous effect on understanding the life strategies of plant pathogens. Comparing similarities with pathogens involved in other epidemics could elucidate the pathogen life cycle when a new outbreak happens. This study represents the first in-depth genome analysis of Pseudomonas syringae pv. aptata, the causative agent of leaf spot disease of sugar beet. Despite the increasing number of disease reports in recent years worldwide, there is still a lack of information about the genomic features, epidemiology, and pathogenic life strategies of this particular pathogen. Our findings provide advances in disease etiology (especially T3SS effector repertoire) and elucidate the role of environmental adaptations required for prevalence in the pathobiome of the sugar beet. From the perspective of the very heterogeneous P. syringae species complex, this type of analysis has specific importance in reporting the characteristics of individual strains.
Collapse
Affiliation(s)
- Tamara Ranković
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Ivan Nikolić
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Tanja Berić
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Tatjana Popović
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Jelena Lozo
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Olja Medić
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| | - Slaviša Stanković
- University of Belgrade, Faculty of Biology, Center for Biological Control and Plant Growth Promotion, Belgrade, Serbia
| |
Collapse
|
19
|
Gutiérrez-Barranquero JA, Heredia-Ponce Z, Aguilera-Cobos L, Pintado A, Claros MG, Ramos C, Cazorla FM, de Vicente A. The Genomic Landscape Resource of Pseudomonas syringae pv. syringae Strains Isolated from Mango Trees. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1109-1114. [PMID: 36508485 DOI: 10.1094/mpmi-05-22-0107-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- José A Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Zaira Heredia-Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | - Adrián Pintado
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Departamento de Biología Celular, Genética y Fisiología, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Departamento de Biología Celular, Genética y Fisiología, Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC)
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
20
|
Djitro N, Roach R, Mann R, Campbell PR, Rodoni B, Gambley C. Comparative genomics and genomic diversity of Pseudomonas syringae clade 2b-a in Australia. BMC Microbiol 2022; 22:278. [PMID: 36411421 PMCID: PMC9677677 DOI: 10.1186/s12866-022-02678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/21/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A zucchini disease outbreak with unusual symptoms associated with Pseudomonas syringae clade 2b was identified in Bundaberg, Australia during autumn 2016. To investigate the genetic diversity of the 11 Australian isolates obtained from the outbreak, the genomes were compared to the publicly available P. syringae strains in phylogroup 2. RESULTS Average nucleotide identity refined the P. syringae clade 2b-a into four clusters (Cluster A, B, C1 and C2), an expansion from the previously identified A, B and C. Australian isolates were in Cluster A, C1 and C2. Genomic analyses highlighted several key factors that may contribute to the virulence of these isolates. Six orthologous groups, including three virulence factors, were associated with P. syringae phylogroup 2 cucurbit-infecting strains. A region of genome plasticity analysis identified a type VI secretion system pathway in clade 2b-a strains which could also contribute to virulence. Pathogenicity assays on isolates KL004-k1, KFR003-1 and 77-4C, as representative isolates of Cluster A, C1 and C2, respectively, determined that all three isolates can infect pumpkin, squash, watermelon and zucchini var. Eva with different levels of disease severity. Subsequently, type III effectors were investigated and four type III effectors (avrRpt2, hopZ5, hopC1 and hopH1) were associated with host range. The hopZ effector family was also predicted to be associated with disease severity. CONCLUSIONS This study refined the taxonomy of the P. syringae clade 2b-a, supported the association between effector profile and pathogenicity in cucurbits established in a previous study and provides new insight into important genomic features of these strains. This study also provided a detailed and comprehensive resource for future genomic and functional studies of these strains.
Collapse
Affiliation(s)
- Noel Djitro
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia.
| | - Rebecca Roach
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Australia
| | - Rachel Mann
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Australia
| | - Paul R Campbell
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Australia
| | - Brendan Rodoni
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Australia
| | - Cherie Gambley
- Department of Agriculture and Fisheries, Maroochy Research Facility, Nambour, Australia
| |
Collapse
|
21
|
Rath S, Palit K, Das S. Variable pH and subsequent change in pCO 2 modulates the biofilm formation, synthesis of extracellular polymeric substances, and survivability of a marine bacterium Bacillus stercoris GST-03. ENVIRONMENTAL RESEARCH 2022; 214:114128. [PMID: 36007573 DOI: 10.1016/j.envres.2022.114128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Biofilm-forming bacteria adhere to the substrates and engage in the nutrient cycling process. However, environmental conditions may interrupt the biofilm formation ability, which ultimately may affect various biogeochemical cycles. The present study reports the effect of varying pH and subsequent change in pCO2 on the survivability, biofilm formation, and synthesis of extracellular polymeric substances (EPS) of a biofilm-forming marine bacterium Bacillus stercoris GST-03 isolated from the Bhitarkanika mangrove ecosystem, Odisha, India. Understanding the pH-dependent alteration in EPS constituents, and associated functional groups of a marine bacterium will provide better insight into the adaptability of the bacteria in future ocean acidification scenarios. The strain was found to tolerate and form biofilm up to pH 4, with the maximum biofilm formation at pH 6. EPS yield and the synthesis of the key components of the EPS, including carbohydrate, protein, and lipid, were found maximum at pH 6. Changes in biofilm formation patterns and various topological parameters at varying pH/pCO2 conditions were observed. A cellular chaining pattern was observed at pH 4, and maximum biofilm formation was obtained at pH 6 with biomass of 5.28582 ± 0.5372 μm3/μm2 and thickness of 9.982 ± 1.5288 μm. Structural characterization of EPS showed changes in various functional groups of constituent macromolecules with varying pH. The amorphous nature of the EPS and the changes in linkages and associated functional groups (-R2CHOR, -CH3, and -CH2) with pH variation was confirmed. EPS showed a two-step degradation with a maximum weight loss of 59.147% and thermal stability up to 480 °C at pH 6. The present work efficiently demonstrates the role of EPS in providing structural and functional stability to the biofilm in varying pH conditions. The findings will provide a better understanding of the adaptability of marine bacteria in the future effect of ocean acidification.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
22
|
Abdul Hamid NW, Nadarajah K. Microbe Related Chemical Signalling and Its Application in Agriculture. Int J Mol Sci 2022; 23:ijms23168998. [PMID: 36012261 PMCID: PMC9409198 DOI: 10.3390/ijms23168998] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The agriculture sector has been put under tremendous strain by the world’s growing population. The use of fertilizers and pesticides in conventional farming has had a negative impact on the environment and human health. Sustainable agriculture attempts to maintain productivity, while protecting the environment and feeding the global population. The importance of soil-dwelling microbial populations in overcoming these issues cannot be overstated. Various processes such as rhizospheric competence, antibiosis, release of enzymes, and induction of systemic resistance in host plants are all used by microbes to influence plant-microbe interactions. These processes are largely founded on chemical signalling. Producing, releasing, detecting, and responding to chemicals are all part of chemical signalling. Different microbes released distinct sorts of chemical signal molecules which interacts with the environment and hosts. Microbial chemicals affect symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm growth, to name a few. We present an in-depth overview of chemical signalling between bacteria-bacteria, bacteria-fungi, and plant-microbe and the diverse roles played by these compounds in plant microbe interactions. These compounds’ current and potential uses and significance in agriculture have been highlighted.
Collapse
|
23
|
Wang X, Zhang X, Lu BH, Gao J. The periplasmic chaperone protein Psg_2795 contributes to the virulence of Pseudomonas savastanoi pv. glycinea: the causal agent of bacterial blight of soybean. J Microbiol 2022; 60:478-487. [PMID: 35246805 DOI: 10.1007/s12275-022-1469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
Pseudomonas savastanoi pv. glycinea (Psg also named P. syringae pv. glycinea and P. amygdali pv. glycinea) is the causative agent of bacterial blight in soybean. The identification of virulence factors is essential for understanding the pathogenesis of Psg. In this study, a mini-Tn5 transposon mutant library of Psg strain PsgNC12 was screened on soybean, and one low-virulent mini-Tn5 mutant, designated as 4573, was identified. Sequence analysis of the 4573-mutant revealed that the mini-Tn5 transposon was inserted in the Psg_2795 gene. Psg_2795 encodes a FimC-domain protein that is highly conserved in Pseudomonas. Further analysis revealed that the mutation and knockout of Psg_2795 results in a reduced virulence phenotype on soybean, decreased motility, weakened bacterial attachment to a glass surface and delayed the population growth within soybean leaves. The phenotype of the 4573-mutant could be complemented nearly to wild-type levels using an intact Psg_2795 gene. Collectively, our results demonstrate that Psg_2795 plays an important role in the virulence, motility, attachment and the population growth of PsgNC12 in soybean. This finding provides a new insight into the function of periplasmic chaperone proteins in a type I pilus and provides reference information for identifying Psg_2795 homologues in P. savastanoi and other bacteria.
Collapse
Affiliation(s)
- Xiuhua Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Xiaoyan Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Bao-Hui Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, P. R. China.
| |
Collapse
|
24
|
Krishna PS, Woodcock SD, Pfeilmeier S, Bornemann S, Zipfel C, Malone JG. Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2206-2221. [PMID: 34905021 PMCID: PMC8982409 DOI: 10.1093/jxb/erab550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Prior to infection, phytopathogenic bacteria face a challenging environment on the plant surface, where they are exposed to nutrient starvation and abiotic stresses. Pathways enabling surface adhesion, stress tolerance, and epiphytic survival are important for successful plant pathogenesis. Understanding the roles and regulation of these pathways is therefore crucial to fully understand bacterial plant infections. The phytopathogen Pseudomonas syringae pv. tomato (Pst) encodes multiple polysaccharides that are implicated in biofilm formation, stress survival, and virulence in other microbes. To examine how these polysaccharides impact Pst epiphytic survival and pathogenesis, we analysed mutants in multiple polysaccharide loci to determine their intersecting contributions to epiphytic survival and infection. In parallel, we used qRT-PCR to analyse the regulation of each pathway. Pst polysaccharides are tightly coordinated by multiple environmental signals. Nutrient availability, temperature, and surface association strongly affect the expression of different polysaccharides under the control of the signalling protein genes ladS and cbrB and the second messenger cyclic-di-GMP. Furthermore, functionally redundant, combinatorial phenotypes were observed for several polysaccharides. Exopolysaccharides play a role in mediating leaf adhesion, while α-glucan and alginate together confer desiccation tolerance. Our results suggest that polysaccharides play important roles in overcoming environmental challenges to Pst during plant infection.
Collapse
Affiliation(s)
- Pilla Sankara Krishna
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stuart Daniel Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sebastian Pfeilmeier
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Stephen Bornemann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jacob George Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
25
|
Roychoudhury T, Ray B, Seal A. Metabolically dependent consortia in biofilm: A new horizon for green agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
A regulatory network involving Rpo, Gac and Rsm for nitrogen-fixing biofilm formation by Pseudomonas stutzeri. NPJ Biofilms Microbiomes 2021; 7:54. [PMID: 34210981 PMCID: PMC8249394 DOI: 10.1038/s41522-021-00230-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Biofilm and nitrogen fixation are two competitive strategies used by many plant-associated bacteria; however, the mechanisms underlying the formation of nitrogen-fixing biofilms remain largely unknown. Here, we examined the roles of multiple signalling systems in the regulation of biofilm formation by root-associated diazotrophic P. stutzeri A1501. Physiological analysis, construction of mutant strains and microscale thermophoresis experiments showed that RpoN is a regulatory hub coupling nitrogen fixation and biofilm formation by directly activating the transcription of pslA, a major gene involved in the synthesis of the Psl exopolysaccharide component of the biofilm matrix and nifA, the transcriptional activator of nif gene expression. Genetic complementation studies and determination of the copy number of transcripts by droplet digital PCR confirmed that the regulatory ncRNA RsmZ serves as a signal amplifier to trigger biofilm formation by sequestering the translational repressor protein RsmA away from pslA and sadC mRNAs, the latter of which encodes a diguanylate cyclase that synthesises c-di-GMP. Moreover, RpoS exerts a braking effect on biofilm formation by transcriptionally downregulating RsmZ expression, while RpoS expression is repressed posttranscriptionally by RsmA. These findings provide mechanistic insights into how the Rpo/Gac/Rsm regulatory networks fine-tune nitrogen-fixing biofilm formation in response to the availability of nutrients.
Collapse
|
27
|
Rather MA, Gupta K, Bardhan P, Borah M, Sarkar A, Eldiehy KSH, Bhuyan S, Mandal M. Microbial biofilm: A matter of grave concern for human health and food industry. J Basic Microbiol 2021; 61:380-395. [PMID: 33615511 DOI: 10.1002/jobm.202000678] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Pathogenic microorganisms have adapted different strategies during the course of time to invade host defense mechanisms and overcome the effect of potent antibiotics. The formation of biofilm on both biotic and abiotic surfaces by microorganisms is one such strategy to resist and survive even in presence of antibiotics and other adverse environmental conditions. Biofilm is a safe home of microorganisms embedded within self-produced extracellular polymeric substances comprising of polysaccharides, extracellular proteins, nucleic acid, and water. It is because of this adaptation strategy that pathogenic microorganisms are taking a heavy toll on the health and life of organisms. In this review, we discuss the colonization of pathogenic microorganisms on tissues and medically implanted devices in human beings. We also focus on food spoilage, disease outbreaks, biofilm-associated deaths, burden on economy, and other major concerns of biofilm-forming pathogenic microorganisms in food industries like dairy, poultry, ready-to-eat food, meat, and aquaculture.
Collapse
Affiliation(s)
- Muzamil A Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Pritam Bardhan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Munmi Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupama Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Khalifa S H Eldiehy
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
28
|
Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial Plant-Associated Pseudomonas. Microorganisms 2021; 9:microorganisms9020445. [PMID: 33670010 PMCID: PMC7926942 DOI: 10.3390/microorganisms9020445] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of biofilms results from a multicellular mode of growth, in which bacteria remain enwrapped by an extracellular matrix of their own production. Many different bacteria form biofilms, but among the most studied species are those that belong to the Pseudomonas genus due to the metabolic versatility, ubiquity, and ecological significance of members of this group of microorganisms. Within the Pseudomonas genus, biofilm studies have mainly focused on the opportunistic human pathogen Pseudomonas aeruginosa due to its clinical importance. The extracellular matrix of P. aeruginosa is mainly composed of exopolysaccharides, which have been shown to be important for the biofilm architecture and pathogenic features of this bacterium. Notably, some of the exopolysaccharides recurrently used by P. aeruginosa during biofilm formation, such as the alginate and polysaccharide synthesis loci (Psl) polysaccharides, are also used by pathogenic and beneficial plant-associated Pseudomonas during their interaction with plants. Interestingly, their functions are multifaceted and seem to be highly dependent on the bacterial lifestyle and genetic context of production. This paper reviews the functions and significance of the exopolysaccharides produced by plant-associated Pseudomonas, particularly the alginate, Psl, and cellulose polysaccharides, focusing on their equivalents produced in P. aeruginosa within the context of pathogenic and beneficial interactions.
Collapse
|
29
|
A Large Tn7-like Transposon Confers Hyper-Resistance to Copper in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 2021; 87:AEM.02528-20. [PMID: 33361370 PMCID: PMC8090865 DOI: 10.1128/aem.02528-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Copper resistance mechanisms provide an important adaptive advantage to plant pathogenic bacteria under exposure to copper treatments. Copper resistance determinants have been described in Pseudomonas syringae pv. syringae (Pss) strains isolated from mango intimately associated with 62 kb plasmids belonging to the pPT23A family (PFP). It has been previously described that the indiscriminate use of copper-based compounds promotes the selection of copper resistant bacterial strains and constitutes a selective pressure in the evolution of copper resistance determinants. Hence, we have explored in this study the copper resistance evolution and the distribution of specific genetic determinants in two different Pss mango populations isolated from the same geographical regions, mainly from southern Spain with an average of 20 years of difference. The total content of plasmids, in particular the 62 kb plasmids, and the number of copper resistant Pss strains were maintained at similar levels over the time. Interestingly, the phylogenetic analysis indicated the presence of a phylogenetic subgroup (PSG) in the Pss mango phylotype, mostly composed of the recent Pss population analyzed in this study that was strongly associated with a hyper-resistant phenotype to copper. Genome sequencing of two selected Pss strains from this PSG revealed the presence of a large Tn7-like transposon of chromosomal location, which harbored putative copper and arsenic resistance genes (COARS Tn7-like). Transformation of the copper sensitive Pss UMAF0158 strain with some putative copper resistance genes and RT-qPCR experiments brought into light the role of COARS Tn7-like transposon in the hyper-resistant phenotype to copper in Pss.IMPORTANCECopper compounds have traditionally been used as standard bactericides in agriculture in the past few decades. However, the extensive use of copper has fostered the evolution of bacterial copper resistance mechanisms. Pseudomonas syringae is a plant pathogenic bacterium used worldwide as a model to study plant-pathogen interactions. The adaption of P. syringae to plant surface environment is the most important step prior to an infection. In this scenario, copper resistance mechanisms could play a key role in improving its epiphytic survival. In this work, a novel Tn7-like transposon of chromosomal location was detected in P. syringae pv. syringae strains isolated from mango. This transposon conferred the highest resistance to copper sulfate described to date for this bacterial phytopathogen. Understanding in depth the copper resistance mechanisms and their evolution are important steps to the agricultural industry to get a better improvement of disease management strategies.
Collapse
|
30
|
Heredia-Ponce Z, Gutiérrez-Barranquero JA, Purtschert-Montenegro G, Eberl L, de Vicente A, Cazorla FM. Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of Pseudomonas chlororaphis PCL1606. Environ Microbiol 2020; 23:2086-2101. [PMID: 33314481 DOI: 10.1111/1462-2920.15355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) displays plant-colonizing features and exhibits antagonistic traits against soil-borne phytopathogenic fungi. Biofilm formation could be relevant for the PcPCL1606 lifestyle, and in this study the role of some putative extracellular matrix components (EMC; Fap-like fibre, alginate and Psl-like polysaccharides) in the biofilm architecture and biocontrol activity of this bacterium were determined. EMC such as the Fap-like fibre and alginate polysaccharide play secondary roles in biofilm formation in PcPCL1606, because they are not fundamental to its biofilm architecture in flow cell chamber, but synergistically they have shown to favour bacterial competition during biofilm formation. Conversely, studies on Psl-like polysaccharide have revealed that it may contain mannose, and that it is strongly involved in the PcPCL1606 biofilm architecture and niche competition. Furthermore, the Fap-like fibre and Psl-like exopolysaccharide play roles in early surface attachment and contribute to biocontrol activity against the white root rot disease caused by Rosellinia necatrix in avocado plants. These results constitute the first report regarding the study of the extracellular matrix of the PcPCL1606 strain and highlight the importance of a putative Fap-like fibre and Psl-like exopolysaccharide produced by PcPCL1606 in the biofilm formation process and interactions with the host plant root.
Collapse
Affiliation(s)
- Zaira Heredia-Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - José Antonio Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| |
Collapse
|