1
|
Van Loon JC, Le Mauff F, Vargas MA, Gilbert S, Pfoh R, Morrison ZA, Razvi E, Nitz M, Sheppard DC, Howell PL. Structural and functional analysis of Pseudomonas aeruginosa PelA provides insight into the modification of the Pel exopolysaccharide. J Biol Chem 2025; 301:108432. [PMID: 40120681 DOI: 10.1016/j.jbc.2025.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
A major biofilm matrix determinant of Pseudomonas aeruginosa is the partially deacetylated α-1,4 linked N-acetylgalactosamine polymer, Pel. After synthesis and transport of the GalNAc polysaccharide across the inner membrane, PelA partially deacetylates and hydrolyzes Pel before its export out of the cell via PelB. While the Pel modification and export proteins are known to interact in the periplasm, it is unclear how the interaction of PelA and PelB coordinates these processes. To determine how PelA modifies the polymer, we determined its structure to 2.1 Å and found a unique arrangement of four distinct domains. We have shown previously that the hydrolase domain exhibits endo-α-1,4-N-acetylgalactosaminidase activity. Characterization of the deacetylase domain revealed that PelA is the founding member of a new carbohydrate esterase family, CE21. Further, we found that the PelAB interaction enhances the deacetylation of N-acetylgalactosamine oligosaccharides. Using the PelA structure in conjunction with AlphaFold2 modeling of the PelAB complex, we propose a model wherein PelB guides Pel to the deacetylase domain of PelA and subsequently to the porin domain of PelB for export. Perturbation or loss of the PelAB interaction would result in less efficient deacetylation and potentially increased Pel hydrolysis. In PelA homologs across many phyla, the predicted structure and active sites are conserved, suggesting a common modification mechanism in Gram-negative bacterial species containing a functional pel operon.
Collapse
Affiliation(s)
- Jaime C Van Loon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada; GlycoNET Integrated Services, Microbial Glycomic Node, Montreal, Quebec, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Gilbert
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roland Pfoh
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zachary A Morrison
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Erum Razvi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Infectious Disease and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Zhou Y, Zhou X, Zhang J, Zhao Y, Ye Z, Xu F, Li F. Confined Mechanical Microenvironment Regulated Antibiotic Resistance in 3D Biofilm Aggregates Probed by Scanning Electrochemical Microscopy. Anal Chem 2025; 97:5517-5526. [PMID: 40029802 DOI: 10.1021/acs.analchem.4c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Antibiotic resistance is a significant global concern. Clinical trials have highlighted discrepancies in antibiotic doses between in vivo three-dimensional (3D) biofilms and in vitro two-dimensional biofilm models. A critical factor often overlooked is the confined mechanical microenvironment (e.g., host extracellular matrix (ECM) stiffness) surrounding the in vivo biofilms, leading to inaccurate diagnosis and increased antibiotic resistance. Herein, we designed a 3D agarose-gel-based in vitro biofilm model and applied scanning electrochemical microscopy (SECM) to monitor the metabolic dynamics in situ, including cellular respiration and reactive oxygen species of an embedded single biofilm aggregate. We discovered distinct respiration patterns for biofilm aggregates embedded in stiff and soft gels at the single aggregate level, which was corroborated by transcriptional analysis. Our findings indicate that mechanical cues mediate antibiotic tolerance by reducing metabolic activity and increasing the production of extracellular polymeric substances (EPS). Additionally, we identified that metabolite glycine enhances the tricarboxylic acid cycle, suggesting its potential as an adjuvant to improve antibiotic efficacy. Knocking out the upregulated EPS-related gene (ΔyjbE) results in significantly reduced survival rates of ΔyjbE mutants in stiff agarose gels compared to the wild type, thereby enhancing antibiotic efficacy. Overall, our study demonstrates the versatility of the SECM-based strategy for investigating both metabolic dynamics and antibiotic resistance in biofilms and uncovers the role of ECM stiffness in mediating antibiotic resistance in 3D biofilms, paving the way for improved clinical strategies in antibiotic treatment.
Collapse
Affiliation(s)
- Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Reichhardt C, Matwichuk ML, Lewerke LT, Jacobs HM, Yan J, Parsek MR. Non-disruptive matrix turnover is a conserved feature of biofilm aggregate growth in paradigm pathogenic species. mBio 2025; 16:e0393524. [PMID: 39982068 PMCID: PMC11898600 DOI: 10.1128/mbio.03935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Bacteria form multicellular aggregates called biofilms. A crucial component of these aggregates is a protective matrix that holds the community together. Biofilm matrix composition varies depending upon bacterial species but typically includes exopolysaccharides (EPS), proteins, and extracellular DNA. Pseudomonas aeruginosa is a model organism for the study of biofilms, and in non-mucoid biofilms, it uses the structurally distinct EPS Psl and Pel, the EPS-binding protein CdrA, and eDNA as key matrix components. An interesting phenomenon that we and others have observed is that the periphery of a biofilm aggregate can be EPS-rich and contain very few cells. In this study, we investigated two possible models of assembly and dynamics of this EPS-rich peripheral region: (i) newly synthesized EPS is inserted and incorporated into the existing EPS-rich region at the periphery during biofilm aggregate growth or (ii) EPS is continuously turned over and newly synthesized EPS is deposited at the outermost edge of the aggregate. Our results support the latter model. Specifically, we observed that new EPS is continually deposited at the aggregate periphery, which is necessary for continued aggregate growth but not aggregate stability. We made similar observations in another paradigm biofilm-forming species, Vibrio cholerae. This pattern of deposition raises the question of how EPS is retained. Specifically, for P. aeruginosa biofilms, the matrix adhesin CdrA is thought to retain EPS. However, current thinking is that cell-associated CdrA is responsible for this retention, and it is not clear how CdrA might function in the relatively cell-free aggregate periphery. We observed that CdrA is enzymatically degraded during aggregate growth without negatively impacting biofilm stability and that cell-free CdrA can partially maintain aggregation and Psl retention. Overall, this study shows that the matrix of P. aeruginosa biofilms undergoes both continuous synthesis of matrix material and matrix turnover to accommodate biofilm aggregate growth and that cell-free matrix can at least partially maintain biofilm aggregation and EPS localization. Furthermore, our similar observations for V. cholerae biofilms suggest that our findings may represent basic principles of aggregate assembly in bacteria. IMPORTANCE Here, we show that, to accommodate growing cellular biomass, newly produced Psl is deposited over existing Psl at the periphery of biofilm aggregates. We demonstrated that V. cholerae employs a similar mechanism with its biofilm matrix EPS, VPS. In addition, we found that the protease LasB is present in the biofilm matrix, resulting in degradation of CdrA to lower molecular weight cell-free forms. We then show that the released forms of CdrA are retained in the matrix and remain functional. Together, our findings support that the P. aeruginosa biofilm matrix is dynamic during the course of aggregate growth and that other species may employ similar mechanisms to remodel their matrix.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Lincoln T. Lewerke
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Holly M. Jacobs
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
da Cruz Nizer WS, Allison KN, Adams ME, Vargas MA, Ahmed D, Beaulieu C, Raju D, Cassol E, Howell PL, Overhage J. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol Spectr 2024; 12:e0092224. [PMID: 39194290 PMCID: PMC11448232 DOI: 10.1128/spectrum.00922-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Pseudomonas aeruginosa is well-known for its antimicrobial resistance and the ability to survive in harsh environmental conditions due to an abundance of resistance mechanisms, including the formation of biofilms and the production of exopolysaccharides. Exopolysaccharides are among the major components of the extracellular matrix in biofilms and aggregates of P. aeruginosa. Although their contribution to antibiotic resistance has been previously shown, their roles in resistance to oxidative stressors remain largely elusive. Here, we studied the function of the exopolysaccharides Psl and Pel in the resistance of P. aeruginosa to the commonly used disinfectants and strong oxidizing agents NaOCl and H2O2. We observed that the simultaneous inactivation of Psl and Pel in P. aeruginosa PAO1 mutant strain ∆pslA pelF resulted in a significant increase in susceptibility to both NaOCl and H2O2. Further analyses revealed that Pel is more important for oxidative stress resistance in P. aeruginosa and that the form of Pel (i.e., cell-associated or cell-free) did not affect NaOCl susceptibility. Additionally, we show that Psl/Pel-negative strains are protected against oxidative stress in co-culture biofilms with P. aeruginosa PAO1 WT. Taken together, our results demonstrate that the EPS matrix and, more specifically, Pel exhibit protective functions against oxidative stressors such as NaOCl and H2O2 in P. aeruginosa. IMPORTANCE Biofilms are microbial communities of cells embedded in a self-produced polymeric matrix composed of polysaccharides, proteins, lipids, and extracellular DNA. Biofilm bacteria have been shown to possess unique characteristics, including increased stress resistance and higher antimicrobial tolerance, leading to failures in bacterial eradication during chronic infections or in technical settings, including drinking and wastewater industries. Previous studies have shown that in addition to conferring structure and stability to biofilms, the polysaccharides Psl and Pel are also involved in antibiotic resistance. This work provides evidence that these biofilm matrix components also contribute to the resistance of Pseudomonas aeruginosa to oxidative stressors including the widely used disinfectant NaOCl. Understanding the mechanisms by which bacteria escape antimicrobial agents, including strong oxidants, is urgently needed in the fight against antimicrobial resistance and will help in developing new strategies to eliminate resistant strains in any environmental, industrial, and clinical setting.
Collapse
Affiliation(s)
| | - Kira N. Allison
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Madison E. Adams
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Mario A. Vargas
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Carole Beaulieu
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Deepa Raju
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - P. Lynne Howell
- Program in Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Yang S, Stern A, Duncan G. Synthetic mucus biomaterials synergize with antibiofilm agents to combat Pseudomonas aeruginosa biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607383. [PMID: 39149383 PMCID: PMC11326292 DOI: 10.1101/2024.08.09.607383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bacterial biofilms are often highly resistant to antimicrobials causing persistent infections which when not effectively managed can significantly worsen clinical outcomes. As such, alternatives to standard antibiotic therapies have been highly sought after to address difficult-to-treat biofilm-associated infections. We hypothesized a biomaterial-based approach using the innate functions of mucins to modulate bacterial surface attachment and virulence could provide a new therapeutic strategy against biofilms. Based on our testing in Pseudomonas aeruginosa biofilms, we found synthetic mucus biomaterials can inhibit biofilm formation and significantly reduce the thickness of mature biofilms. In addition, we evaluated if synthetic mucus biomaterials could work synergistically with DNase and/or α-amylase for enhanced biofilm dispersal. Combination treatment with these antibiofilm agents and synthetic mucus biomaterials resulted in up to 3 log reductions in viability of mature P. aeruginosa biofilms. Overall, this work provides a new bio-inspired, combinatorial approach to address biofilms and antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Alexa Stern
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregg Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Amyx-Sherer K, Reichhardt C. Challenges and opportunities in elucidating the structures of biofilm exopolysaccharides: A case study of the Pseudomonas aeruginosa exopolysaccharide called Pel. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:361-369. [PMID: 37919227 DOI: 10.1002/mrc.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Biofilm formation protects bacteria from antibiotic treatment and host immune responses, making biofilm infections difficult to treat. Within biofilms, bacterial cells are entangled in a self-produced extracellular matrix that typically includes exopolysaccharides. Molecular-level descriptions of biofilm matrix components, especially exopolysaccharides, have been challenging to attain due to their complex nature and lack of solubility and crystallinity. Solid-state nuclear magnetic resonance (NMR) has emerged as a key tool to determine the structure of biofilm matrix exopolysaccharides without degradative sample preparation. In this review, we discuss challenges of studying biofilm matrix exopolysaccharides and opportunities to develop solid-state NMR approaches to study these generally intractable materials. We specifically highlight investigations of the exopolysaccharide called Pel made by the opportunistic pathogen, Pseudomonas aeruginosa. We provide a roadmap for determining exopolysaccharide structure and discuss future opportunities to study such systems using solid-state NMR. The strategies discussed for elucidating biofilm exopolysaccharide structure should be broadly applicable to studying the structures of other glycans.
Collapse
Affiliation(s)
- Kristen Amyx-Sherer
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Courtney Reichhardt
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Xu Y, Liang X, Hyun CG. Isolation, Characterization, Genome Annotation, and Evaluation of Hyaluronidase Inhibitory Activity in Secondary Metabolites of Brevibacillus sp. JNUCC 41: A Comprehensive Analysis through Molecular Docking and Molecular Dynamics Simulation. Int J Mol Sci 2024; 25:4611. [PMID: 38731830 PMCID: PMC11083829 DOI: 10.3390/ijms25094611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brevibacillus sp. JNUCC 41, characterized as a plant-growth-promoting rhizobacterium (PGPR), actively participates in lipid metabolism and biocontrol based on gene analysis. This study aimed to investigate the crucial secondary metabolites in biological metabolism; fermentation, extraction, and isolation were performed, revealing that methyl indole-3-acetate showed the best hyaluronidase (HAase) inhibitory activity (IC50: 343.9 μM). Molecular docking results further revealed that the compound forms hydrogen bonds with the residues Tyr-75 and Tyr-247 of HAase (binding energy: -6.4 kcal/mol). Molecular dynamics (MD) simulations demonstrated that the compound predominantly binds to HAase via hydrogen bonding (MM-PBSA binding energy: -24.9 kcal/mol) and exhibits good stability. The residues Tyr-247 and Tyr-202, pivotal for binding in docking, were also confirmed via MD simulations. This study suggests that methyl indole-3-acetate holds potential applications in anti-inflammatory and anti-aging treatments.
Collapse
Affiliation(s)
| | | | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| |
Collapse
|
8
|
Granton E, Brown L, Defaye M, Moazen P, Almblad H, Randall TE, Rich JD, Geppert A, Abdullah NS, Hassanabad MF, Hiroki CH, Farias R, Nguyen AP, Schubert C, Lou Y, Andonegui G, Iftinca M, Raju D, Vargas MA, Howell PL, Füzesi T, Bains J, Kurrasch D, Harrison JJ, Altier C, Yipp BG. Biofilm exopolysaccharides alter sensory-neuron-mediated sickness during lung infection. Cell 2024; 187:1874-1888.e14. [PMID: 38518773 DOI: 10.1016/j.cell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/04/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.
Collapse
Affiliation(s)
- Elise Granton
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luke Brown
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Manon Defaye
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Parisa Moazen
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Trevor E Randall
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jacquelyn D Rich
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew Geppert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Nasser S Abdullah
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mortaza F Hassanabad
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlos H Hiroki
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Courtney Schubert
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graciela Andonegui
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mircea Iftinca
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deepa Raju
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mario A Vargas
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tamás Füzesi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Cumming School of Medicine Optogenetics Core Facility, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jaideep Bains
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Deborah Kurrasch
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Joe Jonathan Harrison
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Christophe Altier
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Van Loon JC, Whitfield GB, Wong N, O'Neal L, Henrickson A, Demeler B, O'Toole GA, Parsek MR, Howell PL. Binding of GTP to BifA is required for the production of Pel-dependent biofilms in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0033123. [PMID: 38197635 PMCID: PMC10882990 DOI: 10.1128/jb.00331-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.
Collapse
Affiliation(s)
- Jaime C. Van Loon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Gregory B. Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Wong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Lindsey O'Neal
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - P. Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Chen YT, Lohia GK, Chen S, Riquelme SA. Immunometabolic Regulation of Bacterial Infection, Biofilms, and Antibiotic Susceptibility. J Innate Immun 2024; 16:143-158. [PMID: 38310854 PMCID: PMC10914382 DOI: 10.1159/000536649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.
Collapse
Affiliation(s)
- Ying-Tsun Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Gaurav Kumar Lohia
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Samantha Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LEP. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol 2024; 22:e3002205. [PMID: 38300958 PMCID: PMC10833521 DOI: 10.1371/journal.pbio.3002205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jasmine A. Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
12
|
Kalia M, Amari D, Davies DG, Sauer K. cis-DA-dependent dispersion by Pseudomonas aeruginosa biofilm and identification of cis-DA-sensory protein DspS. mBio 2023; 14:e0257023. [PMID: 38014955 PMCID: PMC10746223 DOI: 10.1128/mbio.02570-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Dispersion is an essential stage of the biofilm life cycle resulting in the release of bacteria from a biofilm into the surrounding environment. Dispersion contributes to bacterial survival by relieving overcrowding within a biofilm and allowing dissemination of cells into new habitats for colonization. Thus, dispersion can contribute to biofilm survival as well as disease progression and transmission. Cells dispersed from a biofilm rapidly lose their recalcitrant antimicrobial-tolerant biofilm phenotype and transition to a state that is susceptible to antibiotics. However, much of what is known about this biofilm developmental stage has been inferred from exogenously induced dispersion. Our findings provide the first evidence that native dispersion is coincident with reduced cyclic dimeric guanosine monophosphate levels, while also relying on at least some of the same factors that are central to the environmentally induced dispersion response, namely, BdlA, DipA, RbdA, and AmrZ. Additionally, we demonstrate for the first time that cis-DA signaling to induce dispersion is attributed to the two-component sensor/response regulator DspS, a homolog of the DSF sensor RpfC. Our findings also provide a path toward manipulating the native dispersion response as a novel and highly promising therapeutic intervention.
Collapse
Affiliation(s)
- Manmohit Kalia
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Diana Amari
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - David G. Davies
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
13
|
Bao X, Goeteyn E, Crabbé A, Coenye T. Effect of malate on the activity of ciprofloxacin against Pseudomonas aeruginosa in different in vivo and in vivo-like infection models. Antimicrob Agents Chemother 2023; 67:e0068223. [PMID: 37819115 PMCID: PMC10649037 DOI: 10.1128/aac.00682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Castro C, Ndukwe I, Heiss C, Black I, Ingel BM, Guevara M, Sun Y, Azadi P, Sun Q, Roper MC. Xylella fastidiosa modulates exopolysaccharide polymer length and the dynamics of biofilm development with a β-1,4-endoglucanase. mBio 2023; 14:e0139523. [PMID: 37830811 PMCID: PMC10653819 DOI: 10.1128/mbio.01395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE It is well established that exopolysaccharide (EPS) is an integral structural component of bacterial biofilms necessary for assembly and maintenance of the three-dimensional architecture of the biofilm. However, the process and role of EPS turnover within a developing biofilm is not fully understood. Here, we demonstrated that Xylella fastidiosa uses a self-produced endoglucanase to enzymatically process its own EPS to modulate EPS polymer length. This enzymatic processing of EPS dictates the early stages of X. fastidiosa's biofilm development, which, in turn, affects its behavior in planta. A deletion mutant that cannot produce the endoglucanase was hypervirulent, thereby linking enzymatic processing of EPS to attenuation of virulence in symptomatic hosts, which may be a vestige of X. fastidiosa's commensal behavior in many of its other non-symptomatic hosts.
Collapse
Affiliation(s)
- Claudia Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Ikenna Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Brian M. Ingel
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Matthew Guevara
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Yuling Sun
- Department of Computer Science, Wellesley College, Wellesley, Massachusetts, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, Wisconsin, USA
| | - M. Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| |
Collapse
|
16
|
Ruhal R, Ghosh M, Kumar V, Jain D. Mutation of putative glycosyl transferases PslC and PslI confers susceptibility to antibiotics and leads to drastic reduction in biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001392. [PMID: 37702709 PMCID: PMC10569066 DOI: 10.1099/mic.0.001392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic, multidrug-resistant pathogen capable of adapting to numerous environmental conditions and causing fatal infections in immunocompromised patients. The predominant lifestyle of P. aeruginosa is in the form of biofilms, which are structured communities of bacteria encapsulated in a matrix containing exopolysaccharides, extracellular DNA (eDNA) and proteins. The matrix is impervious to antibiotics, rendering the bacteria tolerant to antimicrobials. P. aeruginosa also produces a plethora of virulence factors such as pyocyanin, rhamnolipids and lipopolysaccharides among others. In this study we present the molecular characterization of pslC and pslI genes, of the exopolysaccharide operon, that code for putative glycosyltransferases. PslC is a 303 amino acid containing putative GT2 glycosyltrasferase, whereas PslI is a 367 aa long protein, possibly functioning as a GT4 glycosyltransferase. Mutation in either of these two genes results in a significant reduction in biofilm biomass with concomitant decline in c-di-GMP levels in the bacterial cells. Moreover, mutation in pslC and pslI dramatically increased susceptibility of P. aeruginosa to tobramycin, colistin and ciprofloxacin. Additionally, these mutations also resulted in an increase in rhamnolipids and pyocyanin formation. We demonstrate that elevated rhamnolipids promote a swarming phenotype in the mutant strains. Together these results highlight the importance of PslC and PslI in the biogenesis of biofilms and their potential as targets for increased antibiotic susceptibility and biofilm inhibition.
Collapse
Affiliation(s)
- Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Vineet Kumar
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
17
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LE. Cell arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545666. [PMID: 37645902 PMCID: PMC10462148 DOI: 10.1101/2023.06.20.545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | | | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
18
|
Razvi E, DiFrancesco BR, Wasney GA, Morrison ZA, Tam J, Auger A, Baker P, Alnabelseya N, Rich JD, Sivarajah P, Whitfield GB, Harrison JJ, Melnyk RA, Nitz M, Howell PL. Small Molecule Inhibition of an Exopolysaccharide Modification Enzyme is a Viable Strategy To Block Pseudomonas aeruginosa Pel Biofilm Formation. Microbiol Spectr 2023; 11:e0029623. [PMID: 37098898 PMCID: PMC10269871 DOI: 10.1128/spectrum.00296-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 04/27/2023] Open
Abstract
Biosynthesis of the Pel exopolysaccharide in Pseudomonas aeruginosa requires all seven genes of the pelABCDEFG operon. The periplasmic modification enzyme PelA contains a C-terminal deacetylase domain that is necessary for Pel-dependent biofilm formation. Herein, we show that extracellular Pel is not produced by a P. aeruginosa PelA deacetylase mutant. This positions PelA deacetylase activity as an attractive target to prevent Pel-dependent biofilm formation. Using a high-throughput screen (n = 69,360), we identified 56 compounds that potentially inhibit PelA esterase activity, the first enzymatic step in the deacetylase reaction. A secondary biofilm inhibition assay identified methyl 2-(2-pyridinylmethylene) hydrazinecarbodithioate (SK-017154-O) as a specific Pel-dependent biofilm inhibitor. Structure-activity relationship studies identified the thiocarbazate as a necessary functional group and that the pyridyl ring could be replaced with a phenyl substituent (compound 1). Both SK-017154-O and compound 1 inhibit Pel-dependent biofilm formation in Bacillus cereus ATCC 10987, which has a predicted extracellular PelA deacetylase in its pel operon. Michaelis-Menten kinetics determined SK-017154-O to be a noncompetitive inhibitor of PelA, while compound 1 did not directly inhibit PelA esterase activity. Cytotoxicity assays using human lung fibroblast cells showed that compound 1 is less cytotoxic than SK-017154-O. This work provides proof of concept that biofilm exopolysaccharide modification enzymes are important for biofilm formation and can serve as useful antibiofilm targets. IMPORTANCE Present in more than 500 diverse Gram-negative and 900 Gram-positive organisms, the Pel polysaccharide is one of the most phylogenetically widespread biofilm matrix determinants found to date. Partial de-N-acetylation of this α-1,4 linked N-acetylgalactosamine polymer by the carbohydrate modification enzyme PelA is required for Pel-dependent biofilm formation in Pseudomonas aeruginosa and Bacillus cereus. Given this and our observation that extracellular Pel is not produced by a P. aeruginosa PelA deactylase mutant, we developed an enzyme-based high-throughput screen and identified methyl 2-(2-pyridinylmethylene) hydrazinecarbodithioate (SK-017154-O) and its phenyl derivative as specific Pel-dependent biofilm inhibitors. Michaelis-Menten kinetics revealed SK-017154-O is a noncompetitive inhibitor and that its noncytotoxic, phenyl derivative does not directly inhibit P. aeruginosa PelA esterase activity. We provide proof of concept that exopolysaccharide modification enzymes can be targeted with small molecule inhibitors to block Pel-dependent biofilm development in both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Erum Razvi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Gregory A. Wasney
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Structural & Biophysical Core Facility, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - John Tam
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anick Auger
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- SPARC BioCentre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Noor Alnabelseya
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jacquelyn D. Rich
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Piyanka Sivarajah
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory B. Whitfield
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Roman A. Melnyk
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|