1
|
Demarest K, Anantharajah A, Maxwell KN, Rohanizadegan M, Bradbury A, Nathanson KL, McCarthy AM, Domchek SM, Nayak A, Shah PD. Pathogenic Germline Variants in Patients With Metaplastic Breast Cancer. JAMA Netw Open 2025; 8:e2460312. [PMID: 39964682 PMCID: PMC11836754 DOI: 10.1001/jamanetworkopen.2024.60312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025] Open
Abstract
Importance Metaplastic breast cancer (MpBC) is a rare, heterogeneous disease often associated with inferior outcomes. A growing body of literature describes the clinical and molecular features of MpBC, yet limited data describe the pathogenic germline variants (PGVs) in breast cancer susceptibility genes among affected individuals. Objective To examine the frequency and types of PGVs in breast cancer genes among patients with MpBC. Design, Setting, and Participants This is a descriptive retrospective cohort study of patients who received a diagnosis of MpBC at the University of Pennsylvania between January 2010 and May 2023. Electronic medical records were reviewed for demographic, clinicopathologic, and germline genetic testing information. Germline variant status was independently confirmed by a licensed genetic counselor and a physician with expertise in genetics. MpBC diagnosis and subtype were confirmed by a breast pathologist. Participants were identified via query of an institutional pathology database for reports signed between January 2010 and May 2023 including the term metaplastic. Among 320 initially obtained reports, 272 individuals had confirmed MpBC and were included in the study. Exposure Germline genetic testing to investigate the presence of PGVs in breast cancer susceptibility genes. Main Outcomes and Measures The primary outcome measurement was the prevalence of PGVs in breast cancer susceptibility genes among participants. The hypothesis that individuals with MpBC have an enrichment of PGVs in genes associated with inherited breast cancer risk was formulated before data collection. Results The total sample size was 272 women, and the median age at diagnosis was 58 years (range, 20-102 years); all were biological female patients; 143 of 272 (52.6%) had documentation of germline genetic testing; and participants with testing were significantly younger than those without (median age, 53 years [range, 20-79 years] vs 63 years [range, 29-102 years]; P < .001). Of the 143 patients, 24 (16.8%) had a PGV in a breast cancer susceptibility gene (BRCA1, n = 17; BRCA2, n = 5; PALB2, n = 1; CHEK2, n = 1). Patients with PGV-associated MpBC received a diagnosis at a younger age than those with sporadic disease, but there were no significant differences in hormone receptor positivity, ERBB2 status, or metaplastic subtype. Conclusions and Relevance In this cohort study of patients with MpBC, a substantial proportion of clinically tested patients had a PGV in a breast cancer susceptibility gene, most commonly BRCA1. Germline testing was high yield in patients with MpBC, many of whom would be included in current germline testing eligibility criteria.
Collapse
Affiliation(s)
- Kaitlin Demarest
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
| | | | - Kara N. Maxwell
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Mersedeh Rohanizadegan
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
- Department of Medicine, Division of Translational Medicine & Human Genetics, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| | - Angela Bradbury
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Katherine L. Nathanson
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Anne Marie McCarthy
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Susan M. Domchek
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| | - Payal D. Shah
- Basser Center for BRCA, University of Pennsylvania, Philadelphia
- Department of Medicine, Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| |
Collapse
|
2
|
He S, Jin Y, Nazaret A, Shi L, Chen X, Rampersaud S, Dhillon BS, Valdez I, Friend LE, Fan JL, Park CY, Mintz RL, Lao YH, Carrera D, Fang KW, Mehdi K, Rohde M, McFaline-Figueroa JL, Blei D, Leong KW, Rudensky AY, Plitas G, Azizi E. Starfysh integrates spatial transcriptomic and histologic data to reveal heterogeneous tumor-immune hubs. Nat Biotechnol 2025; 43:223-235. [PMID: 38514799 PMCID: PMC11415552 DOI: 10.1038/s41587-024-02173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Spatially resolved gene expression profiling provides insight into tissue organization and cell-cell crosstalk; however, sequencing-based spatial transcriptomics (ST) lacks single-cell resolution. Current ST analysis methods require single-cell RNA sequencing data as a reference for rigorous interpretation of cell states, mostly do not use associated histology images and are not capable of inferring shared neighborhoods across multiple tissues. Here we present Starfysh, a computational toolbox using a deep generative model that incorporates archetypal analysis and any known cell type markers to characterize known or new tissue-specific cell states without a single-cell reference. Starfysh improves the characterization of spatial dynamics in complex tissues using histology images and enables the comparison of niches as spatial hubs across tissues. Integrative analysis of primary estrogen receptor (ER)-positive breast cancer, triple-negative breast cancer (TNBC) and metaplastic breast cancer (MBC) tissues led to the identification of spatial hubs with patient- and disease-specific cell type compositions and revealed metabolic reprogramming shaping immunosuppressive hubs in aggressive MBC.
Collapse
Grants
- U54 CA274492 NCI NIH HHS
- UH3 TR002151 NCATS NIH HHS
- P30 CA008748 NCI NIH HHS
- R35 HG011941 NHGRI NIH HHS
- R21 HG012639 NHGRI NIH HHS
- R01 HG012875 NHGRI NIH HHS
- E.A. is supported by NIH NHGRI grant R21HG012639, R01HG012875, NSF CBET 2144542, and grant number 2022-253560 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation.
- Y.J. acknowledges support from the Columbia University Presidential Fellowship.
- J.L.M-F is supported by the National Institute of Health (NIH) National Human Genome Research Institute (NHGRI) grant R35HG011941 and National Science Foundation (NSF) CBET 2146007.
- D.B. is supported by NSF IIS 2127869, ONR N00014-17-1-2131, ONR N00014-15-1-2209. K.W.L is supported by NIH UH3 TR002151.
- A.Y.R. is supported by NIH National Cancer Institute (NCI) U54 CA274492 (MSKCC Center for Tumor-Immune Systems Biology) and Cancer Center Support Grant P30 CA008748, and the Ludwig Center at the Memorial Sloan Kettering Cancer Center. A.Y.R. is an investigator with the Howard Hughes Medical Institute.
- K.W.L is supported by NIH UH3 TR002151.
- G.P. is supported by the Manhasset Women’s Coalition Against Breast Cancer. We acknowledge the use of the Precision Pathology Biobanking Center, Integrated Genomics Operation Core, and the Molecular Cytology Core, funded by the NCI Cancer Center Support Grant (CCSG, P30 CA08748), Cycle for Survival, and the Marie-Josée and Henry R. Kravis Center for Molecular Oncology.
Collapse
Affiliation(s)
- Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Yinuo Jin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Achille Nazaret
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Lingting Shi
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Xueer Chen
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Sham Rampersaud
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bahawar S Dhillon
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Izabella Valdez
- The Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E Friend
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Joy Linyue Fan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Cameron Y Park
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - David Carrera
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Kaylee W Fang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Kaleem Mehdi
- Department of Computer Science, Fordham University, New York, NY, USA
| | | | - José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - David Blei
- Department of Computer Science, Columbia University, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander Y Rudensky
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - George Plitas
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Surgery, Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elham Azizi
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA.
- Department of Computer Science, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Dai P, Song T, Liu J, He Z, Wang X, Hu R, Yang J. Therapeutic strategies and landscape of metaplastic breast cancer. Cancer Treat Rev 2025; 133:102885. [PMID: 39827533 DOI: 10.1016/j.ctrv.2025.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Metaplastic breast cancer is a rare and heterogeneous subtype of breast cancer, associated with a poor prognosis. Its distinct biological behavior and morphological features contribute to resistance to standard treatment regimens. Hitherto, the optimal therapeutic strategy for metaplastic breast cancer remains underexplored. Herein, we review the literature on the treatment of metaplastic breast cancer, summarizing current local and systemic therapies, and discuss potential therapeutic targets and novel strategies based on its pathological and molecular characteristics. Targeted therapy and immunotherapy may provide more personalized treatment options, with the potential to improve the prognosis of this disease.
Collapse
Affiliation(s)
- Peilin Dai
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China; West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Tianyi Song
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Junzhi Liu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zuer He
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China; West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaoli Wang
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China; West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ran Hu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jiqiao Yang
- Breast Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China; Institute of Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Dikoglu E, Pareja F. Molecular Basis of Breast Tumor Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:237-257. [PMID: 39821029 DOI: 10.1007/978-3-031-70875-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer (BC) is a profoundly heterogenous disease, with diverse molecular, histological, and clinical variations. The intricate molecular landscape of BC is evident even at early stages, illustrated by the complexity of the evolution from precursor lesions to invasive carcinoma. The key for therapeutic decision-making is the dynamic assessment of BC receptor status and clinical subtyping. Hereditary BC adds an additional layer of complexity to the disease, given that different cancer susceptibility genes contribute to distinct phenotypes and genomic features. Furthermore, the various BC subtypes display distinct metabolic demands and immune microenvironments. Finally, genotypic-phenotypic correlations in special histologic subtypes of BC inform diagnostic and therapeutic approaches, highlighting the significance of thoroughly comprehending BC heterogeneity.
Collapse
Affiliation(s)
- Esra Dikoglu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Lien HC, Yu HC, Yu WH, Lin SF, Chen TWW, Chen IC, Hsiao LP, Yeh LC, Li YC, Lo C, Lu YS. Characteristics and transcriptional regulators of spontaneous epithelial-mesenchymal transition in genetically unperturbed patient-derived non-spindled breast carcinoma. Breast Cancer Res 2024; 26:130. [PMID: 39256881 PMCID: PMC11385830 DOI: 10.1186/s13058-024-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Although tumor cells undergoing epithelial-mesenchymal transition (EMT) typically exhibit spindle morphology in experimental models, such histomorphological evidence of EMT has predominantly been observed in rare primary spindle carcinomas. The characteristics and transcriptional regulators of spontaneous EMT in genetically unperturbed non-spindled carcinomas remain underexplored. METHODS We used primary culture combined with RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and in situ RNA-seq to explore the characteristics and transcription factors (TFs) associated with potential spontaneous EMT in non-spindled breast carcinoma. RESULTS Our primary culture revealed carcinoma cells expressing diverse epithelial-mesenchymal traits, consistent with epithelial-mesenchymal plasticity. Importantly, carcinoma cells undergoing spontaneous EMT did not necessarily exhibit spindle morphology, even when undergoing complete EMT. EMT was a favored process, whereas mesenchymal-epithelial transition appeared to be crucial for secondary tumor growth. Through scRNA-seq, we identified TFs that were sequentially and significantly upregulated as carcinoma cells progressed through the EMT process, which correlated with increasing VIM expression. Once upregulated, the TFs remained active throughout the EMT process. ZEB1 was a key initiator and sustainer of EMT, as indicated by its earliest significant upregulation in the EMT process, its exact correlation with VIM expression, and the reversal of EMT and downregulation of EMT-upregulated TFs upon ZEB1 knockdown. The correlation between ZEB1 and vimentin expression in triple-negative breast cancer and metaplastic breast carcinoma tumor cohorts further highlighted its role. The immediate upregulation of ZEB2 following that of ZEB1, along with the observation that the knockdown of ZEB1 or ZEB2 downregulates both ZEB1 and ZEB2 concomitant with the reversal of EMT, suggests their functional cooperation in EMT. This finding, together with that of a lack of correlation of SNAI1, SNAI2, and TWIST1 expression with the mesenchymal phenotype, indicated EMT-TFs have a context-dependent role in EMT. Upregulation of EMT-related gene signatures during EMT correlated with poor patient outcomes, highlighting the biological importance of the model. Elevated EMT gene signatures and increased ZEB1 and ZEB2 expression in vimentin-positive compared to vimentin-negative carcinoma cells within the corresponding primary tumor tissue confirmed ZEB1 and ZEB2 as intrinsic, instead of microenvironmentally-induced, EMT regulators, and vimentin as an in vivo indicator of EMT. CONCLUSIONS Our findings provide insights into the characteristics and transcriptional regulators of spontaneous EMT in primary non-spindled carcinoma.
Collapse
Affiliation(s)
- Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Hui-Chieh Yu
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - Wen-Hsuan Yu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Tom Wei-Wu Chen
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - I-Chun Chen
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center Hospital, Taipei, Taiwan
| | - Li-Ping Hsiao
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - Ling-Chun Yeh
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan
| | - Yu-Chia Li
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, No. 1, Changde St., Zhongzheng District, Taipei City, Taiwan.
| |
Collapse
|
6
|
Kabeer F, Tran H, Andronescu M, Singh G, Lee H, Salehi S, Wang B, Biele J, Brimhall J, Gee D, Cerda V, O'Flanagan C, Algara T, Kono T, Beatty S, Zaikova E, Lai D, Lee E, Moore R, Mungall AJ, Williams MJ, Roth A, Campbell KR, Shah SP, Aparicio S. Single-cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers. Genome Biol 2024; 25:191. [PMID: 39026273 PMCID: PMC11256464 DOI: 10.1186/s13059-024-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. RESULTS We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. CONCLUSIONS Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.
Collapse
Affiliation(s)
- Farhia Kabeer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hoa Tran
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Mirela Andronescu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hakwoo Lee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Beixi Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Justina Biele
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Jazmine Brimhall
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - David Gee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Viviana Cerda
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Teresa Algara
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Takako Kono
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Elena Zaikova
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Eric Lee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Roth
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kieran R Campbell
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Huang CY, Jiang N, Shen M, Lai GG, Tan AC, Jain A, Saw SP, Ang MK, Ng QS, Lim DW, Kanesvaran R, Tan EH, Tan WL, Ong BH, Chua KL, Anantham D, Takano AM, Lim KH, Tam WL, Sim NL, Skanderup AJ, Tan DS, Rozen SG. Oncogene-Driven Non-Small Cell Lung Cancers in Patients with a History of Smoking Lack Smoking-Induced Mutations. Cancer Res 2024; 84:2009-2020. [PMID: 38587551 DOI: 10.1158/0008-5472.can-23-2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell lung cancers (NSCLC) in nonsmokers are mostly driven by mutations in the oncogenes EGFR, ERBB2, and MET and fusions involving ALK and RET. In addition to occurring in nonsmokers, alterations in these "nonsmoking-related oncogenes" (NSRO) also occur in smokers. To better understand the clonal architecture and genomic landscape of NSRO-driven tumors in smokers compared with typical-smoking NSCLCs, we investigated genomic and transcriptomic alterations in 173 tumor sectors from 48 NSCLC patients. NSRO-driven NSCLCs in smokers and nonsmokers had similar genomic landscapes. Surprisingly, even in patients with prominent smoking histories, the mutational signature caused by tobacco smoking was essentially absent in NSRO-driven NSCLCs, which was confirmed in two large NSCLC data sets from other geographic regions. However, NSRO-driven NSCLCs in smokers had higher transcriptomic activities related to the regulation of the cell cycle. These findings suggest that, whereas the genomic landscape is similar between NSRO-driven NSCLC in smokers and nonsmokers, smoking still affects the tumor phenotype independently of genomic alterations. SIGNIFICANCE Non-small cell lung cancers driven by nonsmoking-related oncogenes do not harbor genomic scars caused by smoking regardless of smoking history, indicating that the impact of smoking on these tumors is mainly nongenomic.
Collapse
Affiliation(s)
- Chen-Yang Huang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Hematology-Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Nanhai Jiang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Meixin Shen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Gillianne G Lai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Amit Jain
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Stephanie P Saw
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Mei Kim Ang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Quan Sing Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Darren W Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Eng Huat Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wan Ling Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore, Singapore
| | - Kevin L Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Devanand Anantham
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Angela M Takano
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ngak Leng Sim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anders J Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daniel S Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
8
|
Nahhat F, Doyya M, Zabad K, Ksiri H. Metaplastic breast cancer with a unique presentation and complete response to chemotherapy: a case report. BMC Womens Health 2024; 24:285. [PMID: 38734591 PMCID: PMC11088025 DOI: 10.1186/s12905-024-03134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Metaplastic breast carcinomas are a rare variant group of breast carcinomas. They are usually high-grade and triple-negative tumors. They often present with large primary tumor sizes. However, the involvement of axillary lymph nodes is infrequent at the time of diagnosis. Metaplastic breast carcinomas are associated with a worse prognosis and a poorer response to chemotherapy in comparison with other non-metaplastic triple-negative breast cancers. Up until this point, there are no specific treatment recommendations for metaplastic breast carcinomas beyond those intended for invasive breast cancer in general. CASE PRESENTATION A 40-year-old woman complained of a palpable mass in her left axilla. On ultrasonography, the mass was solid, spindle-shaped, hypoechoic with regular borders, and exhibited decreased vascularity. At first, the mass appeared to be of a muscular origin. There was not any clinical nor ultrasonic evidence of a primary breast tumor. On magnetic resonance imaging, the axillary mass was a well-defined with regular borders, measuring 24 × 35 mm. Needle biopsy showed a spindle cell tumor with mild to moderate atypia. The subsequent surgical resection revealed a spindle cell neoplasm within a lymph node, favoring a metastatic origin of the tumor. The tumor cells lacked expression of estrogen, progesterone, and HER2 receptors. PET-CT scan indicated pathological uptake in the left breast. Accordingly, the patient was diagnosed with metaplastic breast cancer that had metastasized to the axillary lymph node. She commenced a combined chemotherapy regimen of doxorubicin and cyclophosphamide. After six treatment cycles, she underwent left modified radical mastectomy with axillary lymph node dissection. Pathological examination of the specimens revealed a total burn-out tumor in the breast due to excellent treatment response. There were no residual tumor cells. All dissected lymph nodes were free of tumor. At the one-year follow-up, the patient showed no signs of tumor recurrence. CONCLUSION This report sheds light on a distinctive presentation of metaplastic breast carcinoma, emphasizing the need for vigilance in diagnosing this rare and aggressive breast cancer variant. In addition, the patient's remarkable response to chemotherapy highlights potential treatment avenues for metaplastic breast cancer.
Collapse
Affiliation(s)
- Fouad Nahhat
- Faculty of Medicine, Damascus University, Damascus, Syria.
| | - Modar Doyya
- Faculty of Medicine, Damascus University, Damascus, Syria
| | - Kareem Zabad
- Faculty of Medicine, Damascus University, Damascus, Syria
| | - Hazem Ksiri
- Department of Oncology, Albairouni University Hospital, Damascus, Syria
| |
Collapse
|
9
|
Thomas A, Shatsky R, Kalinsky K. Moving precision forward: extending next generation sequencing to operable disease in less common breast cancer subtypes. Ann Oncol 2024; 35:7-9. [PMID: 37871698 DOI: 10.1016/j.annonc.2023.10.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Affiliation(s)
- A Thomas
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem.
| | - R Shatsky
- Department of Medicine, University of California, San Diego. https://twitter.com/dr_rshatsky
| | - K Kalinsky
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, USA. https://twitter.com/kalinskykevin
| |
Collapse
|
10
|
Akrida I, Mulita F, Plachouri KM, Benetatos N, Maroulis I, Papadaki H. Epithelial to mesenchymal transition (EMT) in metaplastic breast cancer and phyllodes breast tumors. Med Oncol 2023; 41:20. [PMID: 38104042 DOI: 10.1007/s12032-023-02259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a transdifferentiation program whereby epithelial cells acquire mesenchymal phenotype, is essential during embryonic development. EMT has also been implicated in cancer progression by conferring migratory and metastatic potential, as well as cell plasticity and stem cell like traits, to cancer cells. Metaplastic breast carcinoma (MBC) is a rare aggressive type of breast cancer characterized by the presence of heterologous elements, typically by the existence of epithelial and mesenchymal components. Phyllodes tumors (PTs) are uncommon fibroepithelial neoplasms consisting of epithelial and mesenchymal elements. Although various hypotheses have been proposed on the pathogenesis of these biphasic tumors, there is growing evidence supporting the theory that PTs and MBC could both correlate with cancer related EMT. This review summarizes the existing literature on the emerging role of EMT in the pathogenesis of MBC and PTs. Both malignant PTs and MBC are characterized by poor prognosis. Therefore, several anti-EMT targeting strategies such as blocking upstream signaling pathways, targeting the molecular drivers of EMT and targeting mesenchymal cells and the extracellular matrix, could potentially represent a promising therapeutic approach for patients suffering from these aggressive neoplasms.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Francesk Mulita
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | | | - Nikolaos Benetatos
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | - Ioannis Maroulis
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
11
|
Webersinke G, Burghofer J, Malli T, Rammer M, Jahn SW, Niendorf A, Tavassoli FA, Moinfar F. TERT Promoter Mutation c.-124C>T Commonly Occurs in Low-Grade Fibromatosis-like Metaplastic Breast Carcinoma. Arch Pathol Lab Med 2023; 147:1451-1457. [PMID: 36897999 DOI: 10.5858/arpa.2022-0159-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 03/12/2023]
Abstract
CONTEXT.— Low-grade fibromatosis-like metaplastic carcinoma (FLMC) is a very rare subtype of triple-negative metaplastic (spindle cell) breast carcinoma. It is characterized by the proliferation of spindle cells closely resembling fibromatosis, which represents a benign fibroblastic/myofibroblastic breast proliferation. Unlike most triple-negative and basal-like breast cancers, FLMC has a very low potential for metastases, but demonstrates frequent local recurrences. OBJECTIVE.— To genetically characterize FLMC. DESIGN.— To this end, we analyzed 7 cases by targeted next-generation sequencing for 315 cancer-related genes and performed comparative microarray copy number analysis in 5 of these cases. RESULTS.— All cases shared TERT alterations (6 patients with recurrent c.-124C>T TERT promoter mutation and 1 patient with copy number gain encompassing the TERT locus), had oncogenic PIK3CA/PIK3R1 mutations (activation of the PI3K/AKT/mTOR pathway), and lacked mutations in TP53. TERT was overexpressed in all FLMCs. CDKN2A/B loss or mutation was observed in 4 of 7 cases (57%). Furthermore, tumors displayed chromosomal stability, with only few copy number variations and a low tumor mutational burden. CONCLUSIONS— We conclude that FLMCs typically show the recurrent TERT promoter mutation c.-124C>T, activation of the PI3K/AKT/mTOR pathway, low genomic instability, and wild-type TP53. In conjunction with previous data of metaplastic (spindle cell) carcinoma with and without fibromatosis-like morphology, FLMC is most likely distinguished by TERT promoter mutation. Thus, our data support the notion of a distinct subgroup within low-grade metaplastic breast cancer with spindle cell morphology and associated TERT mutations.
Collapse
Affiliation(s)
- Gerald Webersinke
- From the Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz/Hospital of the Sisters of Charity, Linz, Austria (Webersinke, Burghofer, Malli, Rammer)
| | - Jonathan Burghofer
- From the Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz/Hospital of the Sisters of Charity, Linz, Austria (Webersinke, Burghofer, Malli, Rammer)
| | - Theodora Malli
- From the Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz/Hospital of the Sisters of Charity, Linz, Austria (Webersinke, Burghofer, Malli, Rammer)
| | - Melanie Rammer
- From the Laboratory for Molecular Genetic Diagnostics, Ordensklinikum Linz/Hospital of the Sisters of Charity, Linz, Austria (Webersinke, Burghofer, Malli, Rammer)
| | - Stephan Wenzel Jahn
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria (Jahn, Moinfar)
| | - Axel Niendorf
- Department of Pathology and Molecular Diagnostic, Hamburg-West, Hamburg, Germany (Niendorf)
| | - Fattaneh A Tavassoli
- Department of Pathology, Yale University School of Medicine, New Haven Connecticut (Tavassoli)
| | - Farid Moinfar
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria (Jahn, Moinfar)
- Department of Pathology and Molecular Pathology, Vinzenz Pathologieverbund Linz, Austria (Moinfar)
- The Vincent Academy of Pathology, Linz, Austria (Moinfar)
| |
Collapse
|
12
|
Thomas A, Douglas E, Reis-Filho JS, Gurcan MN, Wen HY. Metaplastic Breast Cancer: Current Understanding and Future Directions. Clin Breast Cancer 2023; 23:775-783. [PMID: 37179225 PMCID: PMC10584986 DOI: 10.1016/j.clbc.2023.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
Metaplastic breast cancers (MBC) encompass a group of highly heterogeneous tumors which share the ability to differentiate into squamous, mesenchymal or neuroectodermal components. While often termed rare breast tumors, given the relatively high prevalence of breast cancer, they are seen with some frequency. Depending upon the definition applied, MBC represents 0.2% to 1% of breast cancers diagnosed in the United States. Less is known about the epidemiology of MBC globally, though a growing number of reports are providing information on this. These tumors are often more advanced at presentation relative to breast cancer broadly. While more indolent subtypes exist, the majority of MBC subtypes are associated with inferior survival. MBC is most commonly of triple-negative phenotype. In less common hormone receptor positive MBCs, hormone receptor status appears not to be prognostic. In contrast, relatively rare HER2-positive MBCs are associated with superior outcomes. Multiple potentially targetable molecular features are overrepresented in MBC including DNA repair deficiency signatures and PIK3/AKT/mTOR and WNT pathways alterations. Data on the prevalence of targets for novel antibody-drug conjugates is also emerging. While chemotherapy appears to be less active in MBC than in other breast cancer subtypes, efficacy is seen in some MBCs. Disease-specific trials, as well as reports of exceptional responses, may provide clues for novel approaches to this often hard-to-treat breast cancer. Strategies which harness newer research tools, such as large data and artificial intelligence hold the promise of overcoming historic barriers to the study of uncommon tumors and could markedly advance disease-specific understanding in MBC.
Collapse
Affiliation(s)
- Alexandra Thomas
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC.
| | - Emily Douglas
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Metin N Gurcan
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
13
|
Abstract
Breast carcinomas classified based on traditional morphologic assessment provide useful prognostic information. Although morphology is still the gold standard of classification, recent advances in molecular technologies have enabled the classification of these tumors into four distinct subtypes based on its intrinsic molecular profile that provide both predictive and prognostic information. This article describes the association between the different molecular subtypes with the histologic subtypes of breast cancer and illustrates how these subtypes may affect the appearance of tumors on imaging studies.
Collapse
Affiliation(s)
- Madhuchhanda Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, B1761 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA.
| | - Amy M Fowler
- Department of Radiology, Section of Breast Imaging and Intervention, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792-3252, USA
| | - Gary A Ulaner
- Hoag Family Cancer Institute, 16105 Sand Canyon Avenue, Ste 215, Irvine, CA 92618, USA; Department of Radiology, Department of Translational Genomics, University of Southern California, Los Angeles, CA 90007, USA
| | - Aparna Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, B1781 WIMR, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
14
|
Song Y, Bai G, Li X, Zhou L, Si Y, Liu X, Deng Y, Shi Y. Bioinformatics analysis of human kallikrein 5 ( KLK5) expression in metaplastic triple-negative breast cancer. CANCER INNOVATION 2023; 2:376-390. [PMID: 38090381 PMCID: PMC10686124 DOI: 10.1002/cai2.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2024]
Abstract
Background Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype; most cases are triple-negative breast cancers (TNBCs) and are poorly responsive to conventional systemic therapy. Few potential diagnostic and prognostic markers for distinguishing between metaplastic TNBC and nonmetaplastic TNBC have been discovered. We performed bioinformatic analysis to explore the underlying mechanism by which metaplastic TNBC differs from nonmetaplastic TNBC and provides potential pathogenic genes of metaplastic TNBC. Methods Differentially expressed genes (DEGs) in metaplastic tumors and nonmetaplastic tumors from TNBC patients were screened using GSE165407. The GSE76275 data set and The Cancer Genome Atlas (TCGA) database were used to screen DEGs in TNBC and non-TNBC. Metascape and DAVID were used for the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Ontology (GO) analysis of DEGs. Online databases, including UALCAN, GEPIA, HPA, Breast Cancer Gene-Expression Miner, and quantitative PCR and western blot, were used to examine KLK5 messenger RNA and protein expression in breast cancer. Analysis of KLK5‑associated genes was performed with TCGA data, and the LinkedOmics database was used to detect the genes co-expressed with KLK5. STRING (Search Tool for the Retrieval of Interacting Genes) and Cytoscape were used to screen for hub genes. Kaplan‑Meier plotter was used for survival analysis. Results KLK5 was identified among the DEGs in nonmetaplastic TNBC and metaplastic TNBC. The KLK5 gene was overexpressed in nonmetaplastic TNBC but downregulated in metaplastic TNBC. KEGG and GO analyses revealed that epithelial-to-mesenchymal transition was a pathogenic mechanism in metaplastic TNBC and an important pathway by which KLK5 and its associated genes DSG1 and DSG3 influence metaplastic TNBC progression. Prognosis analysis showed that only low expression of KLK5 in metaplastic TNBC had clinical significance. Conclusion Our research indicated that KLK5 may be a pivotal molecule with a key role in the mechanism of tumorigenesis in metaplastic TNBC.
Collapse
Affiliation(s)
- Yue Song
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Guiying Bai
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaoqing Li
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Liyan Zhou
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yiran Si
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xiaohui Liu
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yilin Deng
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Yehui Shi
- Department of Phase I Clinical TrialTianjin Medical University Cancer Institute and HospitalTianjinChina
- Medical Oncology Department of Breast CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- National Clinical Research Center for CancerTianjinChina
| |
Collapse
|
15
|
Corso G, Criscitiello C, Nicosia L, Pesapane F, Vicini E, Magnoni F, Sibilio A, Zanzottera C, De Scalzi AM, Mannucci S, Marabelli M, Calvello M, Feroce I, Zagami P, Porta FM, Toesca A, Tarantino P, Nicolò E, Mazzarol G, La Vecchia C, Bonanni B, Leonardi MC, Veronesi P, Fusco N. Metaplastic breast cancer: an all-round multidisciplinary consensus. Eur J Cancer Prev 2023; 32:348-363. [PMID: 37021548 DOI: 10.1097/cej.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Metaplastic breast cancer (MpBC) is a rare and aggressive histologic subtype of breast cancer (BC) characterized by the presence of at least two cellular types, commonly epithelial and mesenchymal components. Despite growing evidence that MpBC is a unique entity, it has long been treated as a variant of nonspecial type (NST) BC. MpBC typically shows the phenotype of triple-negative breast cancer (TNBC), but compared to NST-TNBC, it is a relatively chemorefractory tumor associated with worse outcomes. Therefore, there is an urgent need to develop management guidelines specifically for MpBC to improve the prognosis of patients with early MpBC. This expert consensus aims to guide diagnosis and standardize clinical management of early MpBC among treating physicians. We provide guidance on the challenging radiological and pathological diagnosis of MpBC. Evidence on the involvement of genetic predisposition in the development of MpBC is also explored. We emphasize the importance of a multidisciplinary approach for the treatment of patients with early MpBC. The optimal surgery and radiotherapy approach is presented, as well as the opportunity offered by novel therapeutic approaches to increase treatment response in this chemoresistant subtype. Appropriate management of patients with MpBC is critical to reduce the high risk of local and distant recurrence that characterizes this disease.
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan
- European Cancer Prevention Organization (ECP)
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology (IEO), IRCCS
| | - Luca Nicosia
- Breast Imaging Division, Radiology Department, European Institute of Oncology (IEO), IRCCS, Milan
| | - Filippo Pesapane
- Breast Imaging Division, Radiology Department, European Institute of Oncology (IEO), IRCCS, Milan
| | - Elisa Vicini
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS
| | - Francesca Magnoni
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS
| | - Andrea Sibilio
- Division of Breast Surgery Forlì (Ravenna), AUSL Romagna, Ravenna
| | - Cristina Zanzottera
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan
| | | | - Sara Mannucci
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan
- Division of Hematology, Clinica Moncucco, Lugano, Switzerland
| | - Irene Feroce
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology (IEO), IRCCS
- Department of Biomedical, Surgical and Dental Sciences
| | | | - Antonio Toesca
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo (TO), Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology (IEO), IRCCS
- Division of Breast Oncology, Dana-Farber Cancer Institute, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology (IEO), IRCCS
| | - Giovanni Mazzarol
- Division of Pathology, European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, Milan, and
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology (IEO), IRCCS, Milan
| | | | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology (IEO), IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Thomas A, Reis-Filho JS, Geyer CE, Wen HY. Rare subtypes of triple negative breast cancer: Current understanding and future directions. NPJ Breast Cancer 2023; 9:55. [PMID: 37353557 DOI: 10.1038/s41523-023-00554-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023] Open
Abstract
Rare subtypes of triple-negative breast cancers (TNBC) are a heterogenous group of tumors, comprising 5-10% of all TNBCs. Despite accounting for an absolute number of cases in aggregate approaching that of other less common, but well studied solid tumors, rare subtypes of triple-negative disease remain understudied. Low prevalence, diagnostic challenges and overlapping diagnoses have hindered consistent categorization of these breast cancers. Here we review epidemiology, histology and clinical and molecular characteristics of metaplastic, triple-negative lobular, apocrine, adenoid cystic, secretory and high-grade neuroendocrine TNBCs. Medullary pattern invasive ductal carcinoma no special type, which until recently was a considered a distinct subtype, is also discussed. With this background, we review how applying biological principals often applied to study TNBC no special type could improve our understanding of rare TNBCs. These could include the utilization of targeted molecular approaches or disease agnostic tools such as tumor mutational burden or germline mutation-directed treatments. Burgeoning data also suggest that pathologic response to neoadjuvant therapy and circulating tumor DNA have value in understanding rare subtypes of TNBC. Finally, we discuss a framework for advancing disease-specific knowledge in this space. While the conduct of randomized trials in rare TNBC subtypes has been challenging, re-envisioning trial design and technologic tools may offer new opportunities. These include embedding rare TNBC subtypes in umbrella studies of rare tumors, retrospective review of contemporary trials, prospective identification of patients with rare TNBC subtypes entering on clinical trials and querying big data for outcomes of patients with rare breast tumors.
Collapse
Affiliation(s)
- Alexandra Thomas
- Department of Internal Medicine, Atrium Health Wake Forest Baptist Cancer Center, Winston-Salem, NC, USA.
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles E Geyer
- Department of Medicine, University of Pittsburgh UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Khoury T. Metaplastic Breast Carcinoma Revisited; Subtypes Determine Outcomes: Comprehensive Pathologic, Clinical, and Molecular Review. Clin Lab Med 2023; 43:221-243. [PMID: 37169444 DOI: 10.1016/j.cll.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Metaplastic breast carcinoma (MpBC) is a heterogeneous group of tumors that clinically could be divided into low risk and high risk. It is important to recognize the different types of MpBC, as the high-risk subtypes have worse clinical outcomes than triple-negative breast cancer. It is important for the pathologist to be aware of the MpBC entities and use the proposed algorithms (morphology and immunohistochemistry) to assist in rendering the final diagnosis. Few pitfalls are discussed, including misinterpretation of immunohistochemistry and certain histomorphologies, particularly spindle lesions associated with complex sclerosing lesions.
Collapse
Affiliation(s)
- Thaer Khoury
- Pathology Department, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
18
|
Zhu QY, He ZM, Cao WM, Li B. The role of TSC2 in breast cancer: a literature review. Front Oncol 2023; 13:1188371. [PMID: 37251941 PMCID: PMC10213421 DOI: 10.3389/fonc.2023.1188371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
TSC2 is a tumor suppressor gene as well as a disease-causing gene for autosomal dominant disorder tuberous sclerosis complex (TSC). Research has found that some tumor tissues have lower TSC2 expression levels than normal tissues. Furthermore, low expression of TSC2 is associated with poor prognosis in breast cancer. TSC2 acts as a convergence point of a complex network of signaling pathways and receives signals from the PI3K, AMPK, MAPK, and WNT pathways. It also regulates cellular metabolism and autophagy through inhibition of a mechanistic target of rapamycin complex, which are processes relevant to the progression, treatment, and prognosis of breast cancer. In-depth study of TSC2 functions provides significant guidance for clinical applications in breast cancer, including improving the treatment efficacy, overcoming drug resistance, and predicting prognosis. In this review, protein structure and biological functions of TSC2 were described and recent advances in TSC2 research in different molecular subtypes of breast cancer were summarized.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhe-Min He
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Transcriptomic alterations underlying metaplasia into specific metaplastic components in metaplastic breast carcinoma. Breast Cancer Res 2023; 25:11. [PMID: 36707876 PMCID: PMC9883935 DOI: 10.1186/s13058-023-01608-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Metaplastic breast carcinoma (MpBC) typically consists of carcinoma of no special type (NST) with various metaplastic components. Although previous transcriptomic and proteomic studies have reported subtype-related heterogeneity, the intracase transcriptomic alterations between metaplastic components and paired NST components, which are critical for understanding the pathogenesis underlying the metaplastic processes, remain unclear. METHODS Fifty-nine NST components and paired metaplastic components (spindle carcinomatous [SPS], matrix-producing, rhabdoid [RHA], and squamous carcinomatous [SQC] components) were microdissected from specimens obtained from 27 patients with MpBC for gene expression profiling using the NanoString Breast Cancer 360 Panel on a NanoString nCounter FLEX platform. BC360-defined signatures were scored using nSolver software. RESULTS Hierarchical clustering and principal component analysis revealed a heterogeneous gene expression profile (GEP) corresponding to the NST components, but the GEP of metaplastic components exhibited subtype dependence. Compared with the paired NST components, the SPS components demonstrated the upregulation of genes related to stem cells and epithelial-mesenchymal transition and displayed enrichment in claudin-low and macrophage signatures. Despite certain overlaps in the enriched functions and signatures between the RHA and SPS components, the specific differentially expressed genes differed. We observed the RHA-specific upregulation of genes associated with vascular endothelial growth factor signaling. The chondroid matrix-producing components demonstrated the upregulation of hypoxia-related genes and the downregulation of the immune-related MHC2 signature and the TIGIT gene. In the SQC components, TGF-β and genes associated with cell adhesion were upregulated. The differentially expressed genes among metaplastic components in the 22 MpBC cases with one or predominantly one metaplastic component clustered paired NST samples into clusters with correlation with their associated metaplastic types. These genes could be used to separate the 31 metaplastic components according to respective metaplastic types with an accuracy of 74.2%, suggesting that intrinsic signatures of NST may determine paired metaplastic type. Finally, the EMT activity and stem cell traits in the NST components were correlated with specimens displaying lymph node metastasis. CONCLUSIONS We presented the distinct transcriptomic alterations underlying metaplasia into specific metaplastic components in MpBCs, which contributes to the understanding of the pathogenesis underlying morphologically distinct metaplasia in MpBCs.
Collapse
|
20
|
Nourieh M, Vibert R, Saint-Ghislain M, Cyrta J, Vincent-Salomon A. Next-generation sequencing in breast pathology: real impact on routine practice over a decade since its introduction. Histopathology 2023; 82:162-169. [PMID: 36482269 PMCID: PMC10108312 DOI: 10.1111/his.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
The diagnosis, histomolecular classes of breast cancers (luminal A, luminal B, HER2-enriched, and basal-like), and accurate prediction of prognosis are commonly determined using morphological and phenotypical analyses in clinical practice worldwide. Therapeutic strategies are mostly based on the disease stage and molecular subclasses of breast cancer. Targeted therapies, such as anti-HER2s, poly-ADP ribose polymerase inhibitors or, to a lesser extent, phosphatidylinositol 3 kinase inhibitors, have substantially improved breast cancer patient prognosis over the past decades. Human epidermal growth factor receptor 2 (HER2) overexpression is widely determined based on immunohistochemistry, while next-generation sequencing (NGS) is currently employed to assess the presence of molecular alterations, including breast cancer gene 1 (BRCA1) and 2 or phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations, which are targets of these new approved therapies. In addition, next-generation sequencing (NGS) can aid the pathologist in challenging situations, such as a diagnostic workup for a metastatic carcinoma in lymph nodes of unknown origin, differential diagnosis of spindle cell tumourtumor in the breast between metaplastic carcinoma, malignant PT and sarcoma, o, as well as determining relatedness between primary breast cancers and recurrences. NGS offers a powerful tool that enables the pathologist to combine morphological analyses together with molecular alterations in challenging diagnostic situations.
Collapse
Affiliation(s)
- Maya Nourieh
- Department of Diagnostic and Theranostic Medicine, Versailles Saint Quentin University UVSQ, Institut CURIE, Saint-Cloud, France
| | - Roseline Vibert
- Department of Diagnostic and Theranostic Medicine, Paris Sciences Lettres University PSL, Institut CURIE, Paris, France
| | - Mathilde Saint-Ghislain
- Department of Medical Oncology, Paris Sciences Lettres University PSL, Institut CURIE, Paris, France
| | - Joanna Cyrta
- Department of Diagnostic and Theranostic Medicine, Paris Sciences Lettres University PSL, Institut CURIE, Paris, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Paris Sciences Lettres University PSL, Institut CURIE, Paris, France
| |
Collapse
|
21
|
Thapa B, Arobelidze S, Clark BA, Xuefei J, Daw H, Cheng YC, Patel M, Spiro TPP, Haddad A. Metaplastic Breast Cancer: Characteristics and Survival Outcomes. Cureus 2022; 14:e28551. [PMID: 36185859 PMCID: PMC9517584 DOI: 10.7759/cureus.28551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Metaplastic breast cancer (MBC) is a rare neoplasm accounting for <1% of all breast cancer. We evaluated the clinical characteristics and survival outcomes of MBC. Methods Patients diagnosed with pathologically proven MBC were reviewed from the institutional breast cancer database from 2000 to 2017. Results A total of 136 patients diagnosed with MBC were included in the study. The median age of the diagnosis was 60 years, and 60% of patients were stage II at diagnosis, and 22% were stage III. About two-thirds of the patients were triple-negative; 93% had nuclear grade III, and 25% had a lymphovascular invasion. Squamous differentiation (29%) was the most common histologic subtype, followed by the spindle subtype (21%). The most common distant metastases were lung (22%), followed by bone (13%). Moreover, 60% had a mastectomy, 19% had endocrine therapy, 58% had radiation, 51% received anthracycline-based chemotherapy, 26% had non-anthracycline chemotherapy, and 22% received no chemotherapy. In the entire cohort, the two-year overall survival (OS) and five-year OS were 79% and 69%, respectively, and the two-year progression-free survival (PFS) and five-year PFS were 72% and 61%, respectively. On multivariable analysis, the stage of MBC (stage III: hazard ratio (HR), 5.065 (95% confidence interval (CI), 1.02-25.27) (p=0.048)), poor functional status (Eastern Cooperative Oncology Group (ECOG) score, 2; HR, 24.736 (95% CI, 1.92-318.73) (p=0.014)), and distant metastasis to the brain (HR, 8.453 (95% CI, 1.88-38.04) (p=0.005)) and lung (HR, 42.102 (95% CI, 7.20-246.36) (p<0.001)) were significant predictors of decreased OS. Conclusions MBC demonstrated early disease progression and poor overall survival. The stage of MBC, decreased performance status, and metastasis to the lung and brain were independent poor prognostic factors.
Collapse
|
22
|
Strillacci A, Sansone P, Rajasekhar VK, Turkekul M, Boyko V, Meng F, Houck-Loomis B, Brown D, Berger MF, Hendrickson RC, Chang Q, de Stanchina E, Pareja F, Reis-Filho JS, Rajappachetty RS, Del Priore I, Liu B, Cai Y, Penson A, Mastroleo C, Berishaj M, Borsetti F, Spisni E, Lyden D, Chandarlapaty S, Bromberg J. ERα-LBD, an isoform of estrogen receptor alpha, promotes breast cancer proliferation and endocrine resistance. NPJ Breast Cancer 2022; 8:96. [PMID: 35999225 PMCID: PMC9399095 DOI: 10.1038/s41523-022-00470-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα) drives mammary gland development and breast cancer (BC) growth through an evolutionarily conserved linkage of DNA binding and hormone activation functions. Therapeutic targeting of the hormone binding pocket is a widely utilized and successful strategy for breast cancer prevention and treatment. However, resistance to this endocrine therapy is frequently encountered and may occur through bypass or reactivation of ER-regulated transcriptional programs. We now identify the induction of an ERα isoform, ERα-LBD, that is encoded by an alternative ESR1 transcript and lacks the activation function and DNA binding domains. Despite lacking the transcriptional activity, ERα-LBD is found to promote breast cancer growth and resistance to the ERα antagonist fulvestrant. ERα-LBD is predominantly localized to the cytoplasm and mitochondria of BC cells and leads to enhanced glycolysis, respiration and stem-like features. Intriguingly, ERα-LBD expression and function does not appear to be restricted to cancers that express full length ERα but also promotes growth of triple-negative breast cancers and ERα-LBD transcript (ESR1-LBD) is also present in BC samples from both ERα(+) and ERα(-) human tumors. These findings point to ERα-LBD as a potential mediator of breast cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Antonio Strillacci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Sansone
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Children's Cancer and Blood Foundation Laboratories, Weill Cornell Medicine, New York, NY, USA
| | | | - Mesruh Turkekul
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vitaly Boyko
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanli Meng
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Houck-Loomis
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Brown
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramya Segu Rajappachetty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella Del Priore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bo Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Weill Cornell Medicine, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
24
|
Khoury T. Metaplastic Breast Carcinoma Revisited; Subtypes Determine Outcomes: Comprehensive Pathologic, Clinical, and Molecular Review. Surg Pathol Clin 2022; 15:159-174. [PMID: 35236632 DOI: 10.1016/j.path.2021.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metaplastic breast carcinoma (MpBC) is a heterogeneous group of tumors that clinically could be divided into low risk and high risk. It is important to recognize the different types of MpBC, as the high-risk subtypes have worse clinical outcomes than triple-negative breast cancer. It is important for the pathologist to be aware of the MpBC entities and use the proposed algorithms (morphology and immunohistochemistry) to assist in rendering the final diagnosis. Few pitfalls are discussed, including misinterpretation of immunohistochemistry and certain histomorphologies, particularly spindle lesions associated with complex sclerosing lesions.
Collapse
Affiliation(s)
- Thaer Khoury
- Pathology Department, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
25
|
Abstract
Triple-negative breast cancer (TNBC) encompasses a heterogeneous group of fundamentally different diseases with different histologic, genomic, and immunologic profiles, which are aggregated under this term because of their lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Massively parallel sequencing and other omics technologies have demonstrated the level of heterogeneity in TNBCs and shed light into the pathogenesis of this therapeutically challenging entity in breast cancer. In this review, we discuss the histologic and molecular classifications of TNBC, the genomic alterations these different tumor types harbor, and the potential impact of these alterations on the pathogenesis of these tumors. We also explore the role of the tumor microenvironment in the biology of TNBCs and its potential impact on therapeutic response. Dissecting the biology and understanding the therapeutic dependencies of each TNBC subtype will be essential to delivering on the promise of precision medicine for patients with triple-negative disease.
Collapse
Affiliation(s)
- Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| |
Collapse
|
26
|
Assessment of the Molecular Heterogeneity of E-Cadherin Expression in Invasive Lobular Breast Cancer. Cancers (Basel) 2022; 14:cancers14020295. [PMID: 35053458 PMCID: PMC8773871 DOI: 10.3390/cancers14020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Invasive lobular breast cancers (ILCs) are histologically classified by their discohesive growth pattern, due to loss of the cell adhesion glycoprotein E-cadherin (CDH1), which arises via mutation in CDH1 in around half of these tumours. A subset of these tumours, however, show mixed levels of E-cadherin expression. Here, we sought to address whether the distinct parts of individual tumours showing heterogeneous E-cadherin expression harbour distinct driver alterations. Using whole genome sequencing and methylation profiling of nine such cases, we identified that these tumours are clonally related, suggesting that they are part of the spectrum of ILC tumours. CDH1 mutant tumours showed a higher mutational burden indicative of APOBEC-mediated mutagenesis. In some cases, known clinically actionable driver mutations, such as PIK3CA, were exclusive to one component. Together, these results highlight the heterogeneity underpinning this special histological breast cancer. Abstract Mutations and loss of E-cadherin protein expression define the vast majority of invasive lobular carcinomas. In a subset of these cases, the heterogeneous expression of E-cadherin is observed either as wild-type (strong membranous) expression or aberrant expression (cytoplasmic expression). However, it is unclear as to whether the two components would be driven by distinct genetic or epigenetic alterations. Here, we used whole genome DNA sequencing and methylation array profiling of two separately dissected components of nine invasive lobular carcinomas with heterogeneous E-cadherin expression. E-cadherin negative and aberrant/positive components of E-cadherin heterogeneous tumours showed a similar mutational, copy number and promoter methylation repertoire, suggesting they arise from a common ancestor, as opposed to the collision of two independent tumours. We found that the majority of E-cadherin heterogeneous tumours harboured CDH1 mutations in both the E-cadherin negative and aberrant/positive components together with somatic mutations in additional driver genes known to be enriched in both pure invasive carcinomas of no special type and invasive lobular breast cancers, whereas these were less commonly observed in CDH1 wild-type tumours. CDH1 mutant tumours also exhibited a higher mutation burden as well as increased presence of APOBEC-dependent mutational signatures 2 and 13 compared to CDH1 wild-type tumours. Together, our results suggest that regardless of E-cadherin protein expression, tumours showing heterogeneous expression of E-cadherin should be considered as part of the spectrum of invasive lobular breast cancers.
Collapse
|
27
|
Breast carcinomas with osteoclast-like giant cells: a comprehensive clinico-pathological and molecular portrait and evidence of RANK-L expression. Mod Pathol 2022; 35:1624-1635. [PMID: 35697931 PMCID: PMC9596373 DOI: 10.1038/s41379-022-01112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
Breast carcinomas (BC) with osteoclast-like giant cells (OGC) are rare. Despite their distinct stromal features, their molecular characteristics remain unknown. Here, we report comprehensive clinico-pathological and molecular findings for 27 patients diagnosed with BC-OGC at Institut Curie between 2000 and 2021. Seventeen (63%) cases were invasive carcinomas of no special type (IC NST) with OGC (OGC-IC NST), four (15%) were mixed or multifocal cases with and without OGC (OGC-Mixed), and six (22%) were metaplastic carcinomas with OGC (OGC-MC). All OGC-IC NST and OGC-Mixed cases were ER+ HER2- tumors (most being luminal A based on transcriptomic subtyping, when available), while all OGC-MC were triple-negative. The median age at diagnosis was 46, 45 and 62 years for OGC-IC NST, OGC-Mixed and OGC-MC, respectively. Three patients developed distant metastases (one OGC-IC NST, two OGC-Mixed), one of whom died of metastatic disease (OGC-Mixed), and one other patient died of locally advanced disease (OGC-MC). Histopathological evaluation comparing 13 OGC-IC NST and 19 control IC NST without OGC confirmed that OGC-IC NST showed significantly higher density of vessels (by CD34 immunohistochemistry (IHC)), iron deposits (Perls stain), and CD68 and CD163-positive cell infiltrates. Genomic findings for nine OGC-IC NST and four OGC-MC were consistent with the underlying histologic subtype, including activating alterations of the PI3K/AKT/mTOR pathway in 7/13 cases. Using RNA-seq data, differential gene expression analysis between OGC-IC NST (n = 7) and control IC NST without OGC (n = 7) revealed significant overexpression of TNFSF11 (RANK-L), TNFRSF11A (RANK), CSF1 (M-CSF), CSF1R, and genes encoding osteoclastic enzymes (MMP9, ACP5, CTSK, CTSB) in OGC-IC NST, while OPG (osteoprotegerin) was underexpressed. We also confirmed for the first time RANK-L expression in BC with OGC by IHC (seen in 15 out of 16 cases, and only in 2 of 16 controls without OGC). These findings could offer a rationale for further investigating RANK-L as a therapeutic target in BC with OGC.
Collapse
|
28
|
Vohra P, Chen YY, Krings G. Less Common Triple-Negative Breast Cancers. A COMPREHENSIVE GUIDE TO CORE NEEDLE BIOPSIES OF THE BREAST 2022:463-573. [DOI: 10.1007/978-3-031-05532-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Usui Y, Matsunuma R, Yamaguchi K, Hayami R, Muramatsu A, Suzuki M, Tsuneizumi M. Pathological Complete Response to Neoadjuvant Chemotherapy in a Patient with HER2-Positive Squamous Cell Carcinoma of the Breast. Case Rep Oncol 2021; 14:1536-1541. [PMID: 34899248 PMCID: PMC8613576 DOI: 10.1159/000519746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Squamous cell carcinoma (SCC) of the breast is a rare malignancy that usually has a triple-negative phenotype and poor clinical outcomes. Because HER2-positive SCC of the breast is extremely rare, its clinicopathologic features are understudied, and the effects of neoadjuvant chemotherapy including anti-HER2-targeted therapy on the tumor are unclear, although treatment resistance was described in some reports. In this study, we reported a case of HER2-positive SCC of the breast in which a pathological complete response to neoadjuvant chemotherapy was observed.
Collapse
Affiliation(s)
- Yuki Usui
- Department of Breast Surgery, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| | - Ryoichi Matsunuma
- Department of Breast Surgery, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| | - Kei Yamaguchi
- Department of Breast Surgery, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| | - Ryosuke Hayami
- Department of Breast Surgery, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| | - Aya Muramatsu
- Department of Pathology, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| | - Makoto Suzuki
- Department of Pathology, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| | - Michiko Tsuneizumi
- Department of Breast Surgery, Shizuoka Prefectural Hospital Organization, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
30
|
Chouliaras K, Oshi M, Asaoka M, Tokumaru Y, Khoury T, Endo I, Ishikawa T, Takabe K. Increased intratumor heterogeneity, angiogenesis and epithelial to mesenchymal transition pathways in metaplastic breast cancer. Am J Cancer Res 2021; 11:4408-4420. [PMID: 34659895 PMCID: PMC8493380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023] Open
Abstract
Metaplastic breast cancer (MBC) constitutes a rare but unique histologic entity with poor prognosis. We hypothesized that MBC possesses unique genetic profile and tumor immune microenvironment. MBC cases were identified from a total of 10827 breast cancer entries in the Cancer Genome Atlas Data Set (TCGA) and the AACR-GENIE (Genomics Evidence Neoplasia Information Exchange) cohorts. Tumor infiltrated immune cells were estimated by xCell. Baseline clinical characteristics were compared, and gene set enrichment analysis (GSEA) was performed. MBC comprised 0.66% of the cohorts (1.2% of TCGA and 0.6% of GENIE). MBC cases were predominantly triple-negative (TNBC) (8 (61.5%) vs 151 (14.4%), P<0.001), and high Nottingham histological grade (8 (61.5%) vs 222 (21.1%), P=0.02) compared to non-MBC in the TCGA cohort. Increased infiltration of M1 macrophages (P=0.012), dendritic cells (P<0.001) and eosinophils (P=0.036) was noted in the MBC cohort however there was no difference in cytolytic activity (P=0.806), CD4 memory (P=0.297) or CD8 T-cells (P=0.864). Tumor mutation burden was lower in the MBC compared to the non-MBC, median: 0.4 vs 1.6/Mb in the TCGA-TNBC cohort (P=0.67) and 3.0 vs 4.0/Mb (P=0.1) in the GENIE-cohort. MBC had increased intratumor heterogeneity (P<0.001), macrophage regulation (P=0.008) and TGF-beta response (P<0.001). Disease-specific survival was decreased in MBC (P=0.018). Angiogenesis and epithelial-to-mesenchymal transition pathways were enriched in triple-negative MBC by GSEA (P=0.004 and P<0.001, respectively). Our results suggest that high intratumor heterogeneity, enriched angiogenesis and EMT pathway expression represent possible mechanisms leading to worse disease-specific survival found in metaplastic breast cancer.
Collapse
Affiliation(s)
- Konstantinos Chouliaras
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Japan
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu UniversityGifu, Japan
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
31
|
González-Martínez S, Pérez-Mies B, Pizarro D, Caniego-Casas T, Cortés J, Palacios J. Epithelial Mesenchymal Transition and Immune Response in Metaplastic Breast Carcinoma. Int J Mol Sci 2021; 22:ijms22147398. [PMID: 34299016 PMCID: PMC8306902 DOI: 10.3390/ijms22147398] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent triple negative (TN) invasive carcinomas with poor prognosis. MBCs have a different clinical behavior from other types of triple negative breast cancer (TNBC), being more resistant to standard chemotherapy. MBCs are an example of tumors with activation of epithelial–mesenchymal transition (EMT). The mechanisms involved in EMT could be responsible for the increase in the infiltrative and metastatic capacity of MBCs and resistance to treatments. In addition, a relationship between EMT and the immune response has been seen in these tumors. In this sense, MBC differ from other TN tumors showing a lower number of tumor-infiltrating lymphocytes (TILS) and a higher percentage of tumor cells expressing programmed death-ligand 1 (PD-L1). A better understanding of the relationship between the immune system and EMT could provide new therapeutic approaches in MBC.
Collapse
Affiliation(s)
| | - Belén Pérez-Mies
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
| | - David Pizarro
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Tamara Caniego-Casas
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Breast Cancer Center (IBCC), Quironsalud Group, 08017 Barcelona, Spain
- Medica Scientia Innovation Research, 08007 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain;
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain; (D.P.); (T.C.-C.)
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
32
|
Gorshein E, Matsuda K, Riedlinger G, Sokol L, Rodriguez-Rodriguez L, Eladoumikdachi F, Grandhi M, Ganesan S, Toppmeyer DL, Potdevin L, Toomey K, Hirshfield KM, Chan N. Durable Response to PD1 Inhibitor Pembrolizumab in a Metastatic, Metaplastic Breast Cancer. Case Rep Oncol 2021; 14:931-937. [PMID: 34248561 PMCID: PMC8255711 DOI: 10.1159/000515510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/01/2022] Open
Abstract
Metaplastic breast cancer (MBC) is a rare and aggressive subtype of breast cancer. Tumor characteristics typically feature estrogen receptor, progesterone receptor, and HER2-negative, triple-negative breast cancer (TNBC), with a poorer prognosis relative to pure invasive ductal or lobular disease. Resistance to chemotherapy often leads to local recurrence and distant metastasis. Genomic profiling has identified multiple molecular abnormalities that may translate to targetable therapies in MBC. These tumors are known to display higher PD-L1 expressivity than other subtypes of breast cancer, and disease control with pembrolizumab and chemotherapy has been documented. We identify a patient with metastatic, metaplastic TNBC, with mesenchymal components and osseous differentiation, who completed 2 years of pembrolizumab treatment and has remained without evidence of disease after 32 months of observation, while maintaining good quality of life. Future efforts should focus on immunotherapy response with respect to the various subtypes of MBC, and treatment should continue to be incorporated in clinical trials to maximize disease response.
Collapse
Affiliation(s)
- Elan Gorshein
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Kant Matsuda
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Gregory Riedlinger
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Levi Sokol
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Lorna Rodriguez-Rodriguez
- Department of Gynecologic Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Firas Eladoumikdachi
- Division of Surgical Oncology, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Miral Grandhi
- Division of Surgical Oncology, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Shridar Ganesan
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Deborah L Toppmeyer
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Lindsay Potdevin
- Division of Surgical Oncology, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Kathleen Toomey
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Steeplechase Cancer Center, Somerville, New Jersey, USA
| | - Kim M Hirshfield
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nancy Chan
- Division of Medical Oncology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
33
|
Kim I, Rajamanickam V, Bernard B, Chun B, Wu Y, Martel M, Sun Z, Redmond WL, Sanchez K, Basho R, McArthur H, Page DB. A Case Series of Metastatic Metaplastic Breast Carcinoma Treated With Anti-PD-1 Therapy. Front Oncol 2021; 11:635237. [PMID: 34168978 PMCID: PMC8217650 DOI: 10.3389/fonc.2021.635237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Metaplastic breast cancer is a rare and often chemo-refractory subtype of breast cancer with poor prognosis and limited treatment options. Recent studies have reported overexpression of programmed death ligand 1 (PD-L1) in metaplastic breast cancers, and there are several reports of anti-PD-1/L1 being potentially active in this disease. In this case series, we present 5 patients with metastatic metaplastic breast cancer treated with anti-PD-1-based therapy at a single center, with 3 of 5 cases demonstrating a response to therapy, and one of the responding cases being a metaplastic lobular carcinoma with low-level hormone receptor expression. Cases were evaluated for PD-L1 expression, tumor infiltrating lymphocytes (TILs), DNA mutations, RNA sequencing, and T-cell receptor sequencing. Duration of the response in these cases was limited, in contrast to the more durable responses noted in other recently published reports.
Collapse
Affiliation(s)
- Isaac Kim
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Brady Bernard
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Brie Chun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Yaping Wu
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Maritza Martel
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Zhaoyu Sun
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - William L. Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Katherine Sanchez
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Reva Basho
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Heather McArthur
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - David B. Page
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| |
Collapse
|
34
|
Ordonez LD, Melchor L, Greenow KR, Kendrick H, Tornillo G, Bradford J, Giles P, Smalley MJ. Reproductive history determines Erbb2 locus amplification, WNT signalling and tumour phenotype in a murine breast cancer model. Dis Model Mech 2021; 14:264801. [PMID: 34003256 PMCID: PMC8188886 DOI: 10.1242/dmm.048736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER−) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER− mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER− cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity. Summary: Using a mouse model of breast cancer, the authors show mammary epithelial cell-type sensitivity to transformation by HER2, as well as a change in tumour phenotype associated with reproductive history and driven by WNT signalling.
Collapse
Affiliation(s)
- Liliana D Ordonez
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lorenzo Melchor
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kirsty R Greenow
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Peter Giles
- Wales Gene Park, University Hospital Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute and Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
35
|
Chao X, Tan W, Tsang JY, Tse GM, Hu J, Li P, Hou J, Li M, He J, Sun P. Clinicopathologic and genetic features of metaplastic breast cancer with osseous differentiation: a series of 6 cases. Breast Cancer 2021; 28:1100-1111. [PMID: 33942253 DOI: 10.1007/s12282-021-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 01/12/2023]
Abstract
AIMS Metaplastic breast cancer (MBC) comprises a heterogeneous group of tumors, of which MBC with osseous differentiation (MBC-OD) is extremely rare that only few cases have been reported. This study aimed to present the clinicopathologic and molecular features of MBC-OD. METHODS We collected 6 cases of MBC-OD from five different centers and described its clinicopathologic and molecular characteristics based on the next-generation sequencing. Another 11 cases from the literature were also reviewed to better characterize the tumor. RESULTS The tumor primarily showed an osteosarcoma-like appearance, which composed of high cellularity with spindle cells and osteoblast-like cells producing coarse lace-like neoplastic bone (4/6) or osteoid matrix (6/6). 55 somatic mutations including 39 missenses (70.9%), 9 frameshifts (16.4%), 3 splice sites (5.5%), 3 in-frame InDels (5.5%) and 1 nonsense (1.8%) were identified. TP53 was the most frequently mutated genes (5/6, 83.3%), followed by RB1 (3/6, 50.0%), BCOR (2/6, 33.3%), MED12 (2/6, 33.3%), PIK3CA (2/6, 33.3%), and TET2 (2/6, 33.3%). Genetic alterations suggesting therapies with clinical benefit, including mTOR inhibitors, tyrosine kinase inhibitors (TKI), and poly-ADP ribose polymerase inhibitor (PARPi), were observed in five cases. The median follow-up was 21 months (range, 3-80 months). Local recurrence was observed in two cases and three patients displayed distant metastasis. Two patients died of the disease at 3 months and 7 months, respectively. CONCLUSIONS Based on this series, MBC-OD is a highly aggressive breast tumor with osteosarcoma-like morphology and a high incidence of recurrent disease showing specific genetic profiles.
Collapse
Affiliation(s)
- Xue Chao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China
| | - Wanlin Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China
| | - Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jintao Hu
- Department of Pathology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Ping Li
- Department of Pathology, Shenzhen Hospital of Peking University, Shenzhen, China
| | - Jinghui Hou
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China
| | - Jiehua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China.
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
36
|
Lan T, Lu Y, Zheng R, Shao X, Luo H, He J, Yang H, Xu H, Wang X, Hu Z. The Role of Adjuvant Chemotherapy in Metaplastic Breast Carcinoma: A Competing Risk Analysis of the SEER Database. Front Oncol 2021; 11:572230. [PMID: 33981594 PMCID: PMC8107469 DOI: 10.3389/fonc.2021.572230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/19/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose: Chemotherapy is the clinically recommended treatment for patients with operable metaplastic breast carcinoma (MBC); however, its impact remains controversial. This study investigated the possible role of chemotherapy in the treatment of MBC. Methods: The Surveillance, Epidemiology, and End Results (SEER) database was used to identify the operable MBC patients. The competing risk analysis along with the propensity score matching (PSM) method was performed to evaluate the effect of chemotherapy. Moreover, a competing risk nomogram was built to identify prognosis in patients with MBC. Results: Of the 1137 patients with MBC, 775 received chemotherapy and 362 did not receive chemotherapy. The 5-year cumulative incidence of breast cancer-specific death (BCSD) showed similar outcomes in both the Chemo and No-Chemo groups (21.1 vs. 24.3%, p = 0.57). Chemotherapy showed no apparent association with BCSD (HR, 1.07; 95% CI, 0.72–1.60; p = 0.72), even after subgroup analysis or PSM. Race, tumor size, lymph node status, and radiation were identified as the significant factors for MBC after a penalized variable selection process. In addition, a competing risk nomogram showed relatively good accuracy of prediction with a C-index of 0.766 (95% CI, 0.700–0.824). Conclusion: Our findings demonstrated that chemotherapy did not improve BCSD for operable MBC patients. Thus, it may indicate the need to reduce exposure to the current chemotherapy strategies for patients with resectable MBC. Additionally, some novel treatment strategies are required urgently to identify and target the potential biomarkers.
Collapse
Affiliation(s)
- Tian Lan
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunyan Lu
- Department of Cardiology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Ruzhen Zheng
- Department of Radiotherapy, Hangzhou Cancer Hospital, Hangzhou, China
| | - Xiying Shao
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Hua Luo
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Junling He
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Huifen Yang
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Haibin Xu
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xiaojia Wang
- Department of Medical Oncology (Breast), Zhejiang Cancer Hospital, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Zujian Hu
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
37
|
da Silva EM, Selenica P, Vahdatinia M, Pareja F, Da Cruz Paula A, Ferrando L, Gazzo AM, Dopeso H, Ross DS, Bakhteri A, Riaz N, Chandarlapaty S, Razavi P, Norton L, Wen HY, Brogi E, Weigelt B, Zhang H, Reis-Filho JS. TERT promoter hotspot mutations and gene amplification in metaplastic breast cancer. NPJ Breast Cancer 2021; 7:43. [PMID: 33863915 PMCID: PMC8052452 DOI: 10.1038/s41523-021-00250-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Metaplastic breast cancers (MBCs) are characterized by complex genomes, which seem to vary according to their histologic subtype. TERT promoter hotspot mutations and gene amplification are rare in common forms of breast cancer, but present in a subset of phyllodes tumors. Here, we sought to determine the frequency of genetic alterations affecting TERT in a cohort of 60 MBCs with distinct predominant metaplastic components (squamous, 23%; spindle, 27%; osseous, 8%; chondroid, 42%), and to compare the repertoire of genetic alterations of MBCs according to the presence of TERT promoter hotspot mutations or gene amplification. Forty-four MBCs were subjected to: whole-exome sequencing (WES; n = 27) or targeted sequencing of 341-468 cancer-related genes (n = 17); 16 MBCs were subjected to Sanger sequencing of the TERT promoter, TP53 and selected exons of PIK3CA, HRAS, and BRAF. TERT promoter hotspot mutations (n = 9) and TERT gene amplification (n = 1) were found in 10 of the 60 MBCs analyzed, respectively. These TERT alterations were less frequently found in MBCs with predominant chondroid differentiation than in other MBC subtypes (p = 0.01, Fisher's exact test) and were mutually exclusive with TP53 mutations (p < 0.001, CoMEt). In addition, a comparative analysis of the MBCs subjected to WES or targeted cancer gene sequencing (n = 44) revealed that MBCs harboring TERT promoter hotspot mutations or gene amplification (n = 6) more frequently harbored PIK3CA than TERT wild-type MBCs (n = 38; p = 0.001; Fisher's exact test). In conclusion, TERT somatic genetic alterations are found in a subset of TP53 wild-type MBCs with squamous/spindle differentiation, highlighting the genetic diversity of these cancers.
Collapse
Affiliation(s)
- Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahsa Vahdatinia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Ferrando
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Andrea M Gazzo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dara S Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariya Bakhteri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Moukarzel LA, Ferrando L, Da Cruz Paula A, Brown DN, Geyer FC, Pareja F, Piscuoglio S, Papanastasiou AD, Fusco N, Marchiò C, Abu‐Rustum NR, Murali R, Brogi E, Wen HY, Norton L, Soslow RA, Vincent‐Salomon A, Reis‐Filho JS, Weigelt B. The genetic landscape of metaplastic breast cancers and uterine carcinosarcomas. Mol Oncol 2021; 15:1024-1039. [PMID: 33021035 PMCID: PMC8024717 DOI: 10.1002/1878-0261.12813] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) and uterine carcinosarcoma (UCS) are rare aggressive cancers, characterized by an admixture of adenocarcinoma and areas displaying mesenchymal/sarcomatoid differentiation. We sought to define whether MBCs and UCSs harbor similar patterns of genetic alterations, and whether the different histologic components of MBCs and UCSs are clonally related. Whole-exome sequencing (WES) data from MBCs (n = 35) and UCSs (n = 57, The Cancer Genome Atlas) were reanalyzed to define somatic genetic alterations, altered signaling pathways, mutational signatures, and genomic features of homologous recombination DNA repair deficiency (HRD). In addition, the carcinomatous and sarcomatous components of an additional cohort of MBCs (n = 11) and UCSs (n = 6) were microdissected separately and subjected to WES, and their clonal relatedness was assessed. MBCs and UCSs harbored recurrent genetic alterations affecting TP53, PIK3CA, and PTEN, similar patterns of gene copy number alterations, and an enrichment in alterations affecting the epithelial-to-mesenchymal transition (EMT)-related Wnt and Notch signaling pathways. Differences were observed, however, including a significantly higher prevalence of FAT3 and FAT1 somatic mutations in MBCs compared to UCSs, and conversely, UCSs significantly more frequently harbored somatic mutations affecting FBXW7 and PPP2R1A as well as HER2 amplification than MBCs. Genomic features of HRD and biallelic alterations affecting bona fide HRD-related genes were found to be more prevalent in MBCs than in UCSs. The distinct histologic components of MBCs and UCSs were clonally related in all cases, with the sarcoma component likely stemming from a minor subclone of the carcinoma component in the samples with interpretable chronology of clonal evolution. Despite the similar histologic features and pathways affected by genetic alterations, UCSs differ from MBCs on the basis of FBXW7 and PPP2R1A mutations, HER2 amplification, and lack of HRD, supporting the notion that these entities are more than mere phenocopies of the same tumor type in different anatomical sites.
Collapse
Affiliation(s)
- Lea A. Moukarzel
- Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Lorenzo Ferrando
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Internal MedicineUniversity of GenoaItaly
| | | | - David N. Brown
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Felipe C. Geyer
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Fresia Pareja
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Salvatore Piscuoglio
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Visceral Surgery Research Laboratory, ClarunisDepartment of BiomedicineUniversity of BaselSwitzerland
| | - Anastasios D. Papanastasiou
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece
| | - Nicola Fusco
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Division of PathologyFondazione IRCCS Ca' Grande – Ospedale Maggiore PoliclinicoMilanItaly
| | - Caterina Marchiò
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Department of Medical SciencesUniversity of TurinItaly
| | | | - Rajmohan Murali
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Edi Brogi
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Hannah Y. Wen
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Larry Norton
- Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Robert A. Soslow
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | | | - Britta Weigelt
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| |
Collapse
|
39
|
Wu HJ, Chu PY. Recent Discoveries of Macromolecule- and Cell-Based Biomarkers and Therapeutic Implications in Breast Cancer. Int J Mol Sci 2021; 22:ijms22020636. [PMID: 33435254 PMCID: PMC7827149 DOI: 10.3390/ijms22020636] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related mortality in women worldwide. Breast cancer is fairly heterogeneous and reveals six molecular subtypes: luminal A, luminal B, HER2+, basal-like subtype (ER−, PR−, and HER2−), normal breast-like, and claudin-low. Breast cancer screening and early diagnosis play critical roles in improving therapeutic outcomes and prognosis. Mammography is currently the main commercially available detection method for breast cancer; however, it has numerous limitations. Therefore, reliable noninvasive diagnostic and prognostic biomarkers are required. Biomarkers used in cancer range from macromolecules, such as DNA, RNA, and proteins, to whole cells. Biomarkers for cancer risk, diagnosis, proliferation, metastasis, drug resistance, and prognosis have been identified in breast cancer. In addition, there is currently a greater demand for personalized or precise treatments; moreover, the identification of novel biomarkers to further the development of new drugs is urgently needed. In this review, we summarize and focus on the recent discoveries of promising macromolecules and cell-based biomarkers for the diagnosis and prognosis of breast cancer and provide implications for therapeutic strategies.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, No. 542, Sec. 1 Chung-Shan Rd., Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975-611-855; Fax: +886-4-7227-116
| |
Collapse
|
40
|
Xu J, Weisman P. Dedifferentiated secretory breast carcinoma with fibrosarcomatous features harboring an ETV6-NTRK3 fusion in both components. Genes Chromosomes Cancer 2020; 60:447-451. [PMID: 33342011 DOI: 10.1002/gcc.22929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/05/2022] Open
Abstract
Secretory carcinomas are low-grade translocation-driven carcinomas occurring in patients over a wide age range. These tumors most frequently arise in the breast and salivary gland, but may occasionally arise at other anatomic sites, such as the skin, the thyroid gland or the upper or lower respiratory tract. In concert with their low-grade morphology, secretory carcinomas most often follow an indolent clinical course. However, rare cases have shown dedifferentiation (also known as high-grade transformation) and aggressive clinical behavior. To date, the dedifferentiated component in all molecularly confirmed cases of secretory carcinoma has taken the form of a high-grade carcinoma. Here we present a case of an ETV6-NTRK3 fusion-positive secretory carcinoma of the breast with sarcomatous dedifferentiation. The sarcomatous component showed an infantile or adult fibrosarcoma-like morphology including a herringbone fascicular pattern and a hemangiopericytic vascular pattern. By immunohistochemistry, the sarcomatous component showed focal CD34 immunoreactivity and loss of all of the markers expressed in the conventional secretory carcinoma component, including SOX10, S100, GATA-3, AE1/AE3 and E-cadherin. Fluorescence in situ hybridization analysis revealed that the sarcomatous component retained the ETV6-NTRK3 fusion, but also acquired homozygous deletion of CDKN2A. The tumor followed an aggressive clinical course and the patient eventually succumbed to her disease 14 months after diagnosis. The histomorphologic and molecular genetic features of this tumor are discussed, including its ability to mimic kinase-rearranged infantile or adult fibrosarcomas at extramammary sites and the theragnostic importance of its distinction from conventional metaplastic spindle cell carcinomas in the breast.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul Weisman
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Solid-papillary carcinoma with reverse polarity (SPCRP) harboring a novel IDH1 R132C mutation: A case confirming the expected IDH1/IDH2 dichotomy. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2020.200396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Beca F, Sebastiao APM, Pareja F, Dessources K, Lozada JR, Geyer F, Selenica P, Zeizafoun N, Wen HY, Norton L, Brogi E, Weigelt B, Reis-Filho JS. Whole-exome analysis of metaplastic breast carcinomas with extensive osseous differentiation. Histopathology 2020; 77:321-326. [PMID: 32043609 PMCID: PMC7518240 DOI: 10.1111/his.14088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/08/2020] [Indexed: 01/08/2023]
Abstract
AIMS Metaplastic breast carcinoma (MBC) is a rare type of triple-negative breast cancer that shows vast histological and genetic heterogeneity. Osseous differentiation can be found in different subtypes of MBC. Whether MBCs with osseous differentiation are underpinned by specific genetic alterations has yet to be defined. The aim of this study was to investigate the repertoire of somatic mutations and copy number alterations (CNAs) in three MBCs with extensive osseous differentiation. METHODS AND RESULTS Tumour and normal DNA samples from three MBCs with extensive osseous differentiation were subjected to whole-exome sequencing. Somatic mutations, CNAs and mutational signatures were determined by use of a validated bioinformatics pipeline. Our analyses revealed clonal TP53 hotspot mutations associated with loss of heterozygosity of the wild-type allele coupled with mutations affecting genes related to the Wnt and/or the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathways in all cases analysed. All cases showed a dominant mutational signature 1, with two cases showing a secondary signature 3 in addition to other features of homologous recombination DNA repair defects. The oncostatin M receptor gene, which plays a role in mesenchymal differentiation and bone formation, was found to be mutated in two MBCs with extensive osseous differentiation and in none of 35 previously published 35 MBCs. CONCLUSION Our findings suggest that MBCs with osseous differentiation have somatic mutations similar to those of other forms of MBC.
Collapse
Affiliation(s)
- Francisco Beca
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ana P M Sebastiao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Positivo University Medical School, Curitiba, Brazil
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kimberly Dessources
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John R Lozada
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Felipe Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nebras Zeizafoun
- Department of Pathology and Laboratory Medicine, Mount Sinai Healthcare System, New York, NY, USA
| | - Hannah Y Wen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
43
|
González-Martínez S, Pérez-Mies B, Carretero-Barrio I, Palacios-Berraquero ML, Perez-García J, Cortés J, Palacios J. Molecular Features of Metaplastic Breast Carcinoma: An Infrequent Subtype of Triple Negative Breast Carcinoma. Cancers (Basel) 2020; 12:cancers12071832. [PMID: 32650408 PMCID: PMC7408634 DOI: 10.3390/cancers12071832] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent invasive carcinomas that display differentiation of the neoplastic epithelium towards squamous cells and/or mesenchymal-type elements. Most MBC have a triple negative phenotype and poor prognosis. Thus, MBC have worse survival rates than other invasive breast carcinomas, including other triple negative breast carcinomas (TNBC). In this study, we reviewed the molecular features of MBC, pointing out the differences among subtypes. The most frequently mutated genes in MBC were TP53 and PIK3CA. Additionally, mutations in the other genes of the PI3K/AKT pathway indicated its importance in the pathogenesis of MBC. Regarding copy number variations (CNVs), MYC was the most frequently amplified gene, and the most frequent gene loss affected the CDKN2A/CDKN2B locus. Furthermore, the pattern of mutations and CNVs of MBC differed from those reported in other TNBC. However, the molecular profile of MBC was not homogeneous among histological subtypes, being the alterations in the PI3K pathway most frequent in spindle cell carcinomas. Transcriptomic studies have demonstrated an epithelial to mesenchymal program activation and the enrichment of stemness genes in most MBC. In addition, current studies are attempting to define the immune microenvironment of these tumors. In conclusion, due to specific molecular features, MBC have a different clinical behavior from other types of TNBC, being more resistant to standard chemotherapy. For this reason, new therapeutic approaches based on tumor molecular characteristics are needed to treat MBC.
Collapse
Affiliation(s)
| | - Belén Pérez-Mies
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (B.P.-M.); (I.C.-B.)
- Instituto Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Breast Pathology Unit, Hospital Universitario Ramón y Cajal, 28801 Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (B.P.-M.); (I.C.-B.)
| | | | - José Perez-García
- IOB Institute of Oncology, Quironsalud Group, Hospital Quiron, 08023 Barcelona, Spain;
| | - Javier Cortés
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- IOB Institute of Oncology, Quironsalud Group, Hospital Quiron, 08023 Barcelona, Spain;
- IOB Institute of Oncology, Quironsalud Group, 28006 Madrid, Spain
- Medica Scientia Innovation Research, 08018 Barcelona, Spain
- Medica Scientia Innovation Research, Ridgewood, NJ 07450, USA
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
- Correspondence: (J.C.); (J.P.)
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (B.P.-M.); (I.C.-B.)
- Instituto Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain
- Breast Pathology Unit, Hospital Universitario Ramón y Cajal, 28801 Madrid, Spain
- Correspondence: (J.C.); (J.P.)
| |
Collapse
|
44
|
Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes. NPJ Breast Cancer 2020; 6:20. [PMID: 32550265 PMCID: PMC7275089 DOI: 10.1038/s41523-020-0164-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Primary pleomorphic adenomas (PAs) and mucoepidermoid carcinomas (MECs) of the breast are vanishingly rare. Here we sought to determine whether breast PAs and MECs would be underpinned by the fusion genes reported to occur in their salivary gland counterparts. Our study included three breast PAs and one breast MEC, which were subjected to RNA sequencing (PAs, n = 2; MEC, n = 1) or to Archer FusionPlex sequencing (PA, n = 1). Our analyses revealed the presence of the HMGA2-WIF1 fusion gene in breast PA3, the CTNNB1-PLAG1 fusion gene in breast PA2, and the CRTC1-MAML2 fusion gene in the breast MEC analyzed (1/1). No oncogenic fusion genes were detected in breast PA1, and no additional oncogenic fusion genes were detected in the cases studied. The presence of the fusion genes identified was validated by fluorescence in situ hybridization (n = 1), reverse transcription-PCR (n = 1), or by both methods (n = 1). Taken together, our findings indicate that PAs and MECs arising in the breast resemble their salivary gland counterparts not only phenotypically but also at the genetic level. Furthermore, our data suggest that the molecular analysis of breast PAs and MECs might constitute a useful tool to aid in their differential diagnosis.
Collapse
|
45
|
Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. Nat Commun 2020; 11:1723. [PMID: 32265444 PMCID: PMC7138853 DOI: 10.1038/s41467-020-15283-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Metaplastic breast carcinoma (MBC) is a highly aggressive form of triple-negative cancer (TNBC), defined by the presence of metaplastic components of spindle, squamous, or sarcomatoid histology. The protein profiles underpinning the pathological subtypes and metastatic behavior of MBC are unknown. Using multiplex quantitative tandem mass tag-based proteomics we quantify 5798 proteins in MBC, TNBC, and normal breast from 27 patients. Comparing MBC and TNBC protein profiles we show MBC-specific increases related to epithelial-to-mesenchymal transition and extracellular matrix, and reduced metabolic pathways. MBC subtypes exhibit distinct upregulated profiles, including translation and ribosomal events in spindle, inflammation- and apical junction-related proteins in squamous, and extracellular matrix proteins in sarcomatoid subtypes. Comparison of the proteomes of human spindle MBC with mouse spindle (CCN6 knockout) MBC tumors reveals a shared spindle-specific signature of 17 upregulated proteins involved in translation and 19 downregulated proteins with roles in cell metabolism. These data identify potential subtype specific MBC biomarkers and therapeutic targets. Metaplastic breast carcinoma (MBC) is among the most aggressive subtypes of triple-negative breast cancer (TNBC) but the underlying proteome profiles are unknown. Here, the authors characterize the protein signatures of human MBC tissue samples and their relationship to TNBC and normal breast tissue.
Collapse
|
46
|
Kutasovic JR, McCart Reed AE, Sokolova A, Lakhani SR, Simpson PT. Morphologic and Genomic Heterogeneity in the Evolution and Progression of Breast Cancer. Cancers (Basel) 2020; 12:E848. [PMID: 32244556 PMCID: PMC7226487 DOI: 10.3390/cancers12040848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
: Breast cancer is a remarkably complex and diverse disease. Subtyping based on morphology, genomics, biomarkers and/or clinical parameters seeks to stratify optimal approaches for management, but it is clear that every breast cancer is fundamentally unique. Intra-tumour heterogeneity adds further complexity and impacts a patient's response to neoadjuvant or adjuvant therapy. Here, we review some established and more recent evidence related to the complex nature of breast cancer evolution. We describe morphologic and genomic diversity as it arises spontaneously during the early stages of tumour evolution, and also in the context of treatment where the changing subclonal architecture of a tumour is driven by the inherent adaptability of tumour cells to evolve and resist the selective pressures of therapy.
Collapse
Affiliation(s)
- Jamie R. Kutasovic
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- QIMR Berghofer Medical Research Institute, Herston 4006, Australia
| | - Anna Sokolova
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
- Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane 4029, Australia; (J.R.K.); (A.E.M.R.); (A.S.); (S.R.L.)
| |
Collapse
|
47
|
Molecular Profiling of the Metaplastic Spindle Cell Carcinoma of the Breast Reveals Potentially Targetable Biomarkers. Clin Breast Cancer 2020; 20:326-331.e1. [PMID: 32197944 DOI: 10.1016/j.clbc.2020.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Spindle cell carcinoma is a rare subtype of metaplastic breast cancer, with triple-negative (TNBC: estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor 2-negative) phenotype. It is associated with a marked resistance to conventional chemotherapy and has an overall poor outcome. MATERIALS AND METHODS Twenty-three pure spindle cell carcinomas of the breast (18 primary and 5 recurrent/metastatic) were comprehensively explored for biomarkers of immuno-oncology and targeted therapies using immunohistochemistry and DNA/RNA sequencing. RESULTS The majority (21/23) of spindle cell carcinomas were TNBC. Estrogen and androgen receptor expression above the therapeutic thresholds were detected in 2 cases each. Pathogenic gene mutations were identified in 21 of 23 cases, including PIK3CA, TP53, HRAS, NF1, and PTEN. One case with matched pre- and post-chemotherapy samples exhibited a consistent mutational profile (PIK3CA and HRAS mutations) in both samples. Gene amplifications were present in 5 cases, including 1 case without detectable mutations. The spindle cell carcinomas cohort had consistently low total mutational burden (all below the 80th percentile for the entire TNBC cohort). All tumors were microsatellite stable. Programmed death-ligand 1 expression was observed on both tumor cells (in 7/21 cases), and in tumor-infiltrating immune cells (2/21 cases). CONCLUSIONS Spindle cell carcinomas are characterized by targetable molecular alterations in the majority of cases, but owing to the lack of uniform findings, individual patient profiling is necessary. Detection of individual combinations of biomarkers should improve treatment options for this rare but aggressive disease.
Collapse
|
48
|
Coussy F, El Botty R, Lavigne M, Gu C, Fuhrmann L, Briaux A, de Koning L, Dahmani A, Montaudon E, Morisset L, Huguet L, Sourd L, Painsec P, Chateau-Joubert S, Larcher T, Vacher S, Melaabi S, Salomon AV, Marangoni E, Bieche I. Combination of PI3K and MEK inhibitors yields durable remission in PDX models of PIK3CA-mutated metaplastic breast cancers. J Hematol Oncol 2020; 13:13. [PMID: 32087759 PMCID: PMC7036180 DOI: 10.1186/s13045-020-0846-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Metaplastic breast cancer (MBC) is a rare form of breast cancer characterized by an aggressive clinical presentation, with a poor response to standard chemotherapy. MBCs are typically triple-negative breast cancers (TNBCs), frequently with alterations to genes of the PI3K-AKT-mTOR and RTK-MAPK signaling pathways. The objective of this study was to determine the response to PI3K and MAPK pathway inhibitors in patient-derived xenografts (PDXs) of MBCs with targetable alterations. Methods We compared survival between triple-negative MBCs and other histological subtypes, in a clinical cohort of 323 TNBC patients. PDX models were established from primary breast tumors classified as MBC. PI3K-AKT-mTOR and RTK-MAPK pathway alterations were detected by targeted next-generation sequencing (NGS) and analyses of copy number alterations. Activation of the PI3K-AKT-mTOR and RTK-MAPK signaling pathways was analyzed with reverse-phase protein arrays (RPPA). PDXs carrying an activating mutation of PIK3CA and genomic changes to the RTK-MAPK signaling pathways were treated with a combination consisting of a PI3K inhibitor and a MEK inhibitor. Results In our clinical cohort, the patients with MBC had a worse prognosis than those with other histological subtypes. We established nine metaplastic TNBC PDXs. Three had a pathogenic mutation of PIK3CA and additional alterations to genes associated with RTK-MAPK signaling. The MBC PDXs expressed typical EMT and stem cell genes and were of the mesenchymal or mesenchymal stem-like TNBC subtypes. On histological analysis, MBC PDXs presented squamous or chondroid differentiation. RPPA analysis showed activation of the PI3K-AKT-mTOR and RTK-MAPK signaling pathways. In vivo, the combination of PI3K and MAPK inhibitors displayed marked antitumor activity in PDXs carrying genomic alterations of PIK3CA, AKT1, BRAF, and FGFR4. Conclusion The treatment of metaplastic breast cancer PDXs by activation of the PI3K-AKT-mTOR and RTK-MAPK pathways at the genomic and protein levels with a combination of PI3K and MEK inhibitors resulted in tumor regression in mutated models and may therefore be of interest for therapeutic purposes.
Collapse
Affiliation(s)
- F Coussy
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France. .,Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France. .,Department of Medical Oncology, Institut Curie, Paris, France.
| | - R El Botty
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - M Lavigne
- Department of Biopathology, Institut Curie, Paris, France
| | - C Gu
- Department of Biopathology, Institut Curie, Paris, France
| | - L Fuhrmann
- Department of Biopathology, Institut Curie, Paris, France
| | - A Briaux
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - L de Koning
- Translational Research Department, RPPA Platform, Institut Curie Research Center, Paris, France
| | - A Dahmani
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - E Montaudon
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - L Morisset
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - L Huguet
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - L Sourd
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - P Painsec
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - S Chateau-Joubert
- BioPôle Alfort, National Veterinary School of Alfort, Maison Alfort, France
| | - T Larcher
- INRA, APEX-PAnTher, Oniris, Nantes, France
| | - S Vacher
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - S Melaabi
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | | | - E Marangoni
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie Research Center, Paris, France
| | - I Bieche
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.,Inserm U1016, University Paris Descartes, Paris, France
| |
Collapse
|
49
|
Febres-Aldana CA, Alvarez Moreno JC, Rivera M, Kaplan S, Paramo J, Poppiti R. Understanding the histogenesis of a HRAS-PIK3R1 co-driven metastatic metaplastic breast carcinoma associated with squamous metaplasia of lactiferous ducts. Pathol Int 2019; 70:101-107. [PMID: 31867792 DOI: 10.1111/pin.12887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
Metaplastic breast carcinoma (MBC) represents a heterogeneous group of aggressive primary breast cancers that can show differentiation into carcinomatous and sarcomatous elements. Due to its rapid growth, this malignancy can replace precursor lesions, which remain unknown in most cases. Herein, we describe a MBC presenting as a deceptive post-biopsy hematoma. Histopathological and immunohistochemical evaluation of the primary tumor revealed a squamous cell carcinoma arising in a background of squamous metaplasia of lactiferous ducts (SMOLD). In the absence of ductal carcinoma in situ, we consider SMOLD as a nonobligatory precursor of MBC. The tumor showed 'dedifferentiation' into spindle, mucin-producing, osteoclast-like giant cell and fibromatosis-like carcinoma. Next-generation sequencing revealed the driver mutations HRASQ61R and PIK3R1c.1738_1745+2del in addition to MYH11S638L and amplification of ERCC5 and FGF14, which were potential contributors to tumor phenotype. Tumor dedifferentiation was probably facilitated by epithelial-to-mesenchymal transition (EMT) with aberrant expression of platelet and endothelial adhesion molecule-1, leading to early metastasis via hematogenous route rather than lymphatic. The co-occurrence of phosphoinositide 3-kinase and mitogen-activated protein kinase pathway abnormalities along with EMT could mediate divergent growth in breast cancer.
Collapse
Affiliation(s)
| | - Juan C Alvarez Moreno
- A.M. Rywlin, Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Melissa Rivera
- Department of Radiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Stuart Kaplan
- Department of Radiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Juan Paramo
- Department of Surgery, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Robert Poppiti
- A.M. Rywlin, Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL, USA.,Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
50
|
Vranic S. Letter to editor/comment. Breast J 2019; 25:1330-1331. [DOI: 10.1111/tbj.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Semir Vranic
- College of Medicine, QU Health Qatar University Doha Qatar
| |
Collapse
|