1
|
Qi W, Niu X, Zhan X, Ren Y, He J, Li J, Hou X, Li H. Multimodal magnetic resonance imaging studies on non-motor symptoms of Parkinson's disease. IBRO Neurosci Rep 2025; 18:180-190. [PMID: 39896716 PMCID: PMC11787613 DOI: 10.1016/j.ibneur.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Objective This study aims to investigate the diagnostic value of multi-modal magnetic resonance imaging (MRI) utilizing arterial spin labeling (ASL), quantitative susceptibility mapping (QSM), and 3D T1-weighted imaging (3DT1WI) in patients with Parkinson's disease (PD). Additionally, it evaluates the relationship between MRI findings and non-motor symptoms associated with PD. Methods ASL, QSM, and 3DT1WI scans were performed on 48 PD patients and 46 healthy controls (HC). We extracted and analyzed differences in regional cerebral blood flow (rCBF), magnetic susceptibility, and gray matter density parameters between the two groups. These MRI parameters were correlated with clinical scale scores assessing non-motor symptoms, including cognitive function, sleep quality, olfaction, autonomic function, anxiety, depression, and fatigue. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic accuracy of each imaging modality in distinguishing PD from HC. Results The areas under the ROC curve (AUC) for rCBF, magnetic susceptibility, and gray matter density were 0.941, 0.979, and 0.624, respectively. In PD patients, a negative correlation was found between Unified Parkinson's Disease Rating Scale Part II (UPDRS II) scores and rCBF in the bilateral precuneus. The Pittsburgh Sleep Quality Index (PSQI) scores negatively correlated with rCBF in the left middle temporal gyrus and right middle occipital gyrus. Hamilton Depression Rating Scale (HAMD) scores positively correlated with QSM values in the right supplementary motor area, while scores on the Argentine Smell Identification Test (AHRS) negatively correlated with QSM values in the same area. Disease duration showed a positive correlation with QSM values in the right middle cingulate gyrus. Additionally, PSQI scores positively correlated with QSM values in the left middle cingulate gyrus, and fatigue severity scale (FSS) scores also positively correlated with QSM values in the left middle cingulate gyrus. Gray matter atrophy in the left inferior temporal gyrus was associated with cognitive impairment in PD. Conclusion Occipital hypoperfusion and cortical atrophy in the left inferior temporal gyrus may serve as novel imaging biomarkers for PD and are associated with sleep disturbances and cognitive impairment in PD patients. Extensive iron deposition in the bilateral cerebral cortex of PD patients may be a contributing factor to non-motor symptoms such as sleep disturbances and fatigue. Multimodal imaging techniques, including ASL, QSM, and 3DT1WI, can enhance the diagnostic accuracy for PD.
Collapse
Affiliation(s)
| | | | - Xiuping Zhan
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yazhou Ren
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jianhang He
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jianxia Li
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolin Hou
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Haining Li
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
2
|
Bouhadoun S, Delva A, Schwarzschild MA, Postuma RB. Preparing for Parkinson's disease prevention trials: Current progress and future directions. JOURNAL OF PARKINSON'S DISEASE 2025:1877718X251334050. [PMID: 40289581 DOI: 10.1177/1877718x251334050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In recent decades, numerous clinical trials have aimed to delay or prevent Parkinson's disease (PD) progression. Despite the theoretical promise and encouraging preclinical data, none have shown clear efficacy in slowing or preventing PD progression, related to several key limitations. Conventional motor and non-motor scales often fall short in detecting early disease changes, while the heterogeneity of PD phenotypes complicates treatment efficacy. The timing of interventions is also critical, as most trials target patients already in advanced stages of neurodegeneration. A deeper understanding of the preclinical phase and the emergence of new pathological frameworks have shifted the focus toward preventing the onset of clinical PD. Recent advances in biomarker research, including tissue, fluid, and imaging markers, are poised to transform PD research by improving patient selection, stratification, and disease progression monitoring. New biologically grounded frameworks for classifying synucleinopathies aim to distinguish biological subtypes from clinical phenotypes, enabling more targeted prevention trials. Successful PD prevention trials will require early enrollment of individuals at the highest risk, employing low-risk personalized interventions, with biomarkers or sensitive clinical markers as endpoints. Early involvement of key stakeholders will be essential to ensure that trials are timely, ethically sound, and aligned with the needs of the PD community.
Collapse
Affiliation(s)
- Sarah Bouhadoun
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Aline Delva
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Michael A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ronald B Postuma
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
3
|
Wang X, Xiong Y, Duan C, Hu J, Lu H, Yang M, Huang J, Li Y, Li Z, Wang S, Wang M, Yin X, Zhao J, Gao Z, Lou X. The disease-specific structural pattern in Parkinson's disease and its cortical characteristics associated with gene function: a 7-Tesla MRI study. J Neurol 2025; 272:300. [PMID: 40159562 DOI: 10.1007/s00415-025-13035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Brain structure characteristics form the basis on regulating neuroplastic processes by genes, and structural alterations may contribute to the progression of Parkinson's disease (PD) and their divergent clinical manifestations. However, the neural mechanisms underlying the relations between the genetic signatures to structural alterations in PD patients are unclear. This study aimed to integrate alterations in cortical thickness and subcortical nuclei volume (thalamus, hippocampus, and amygdala) in PD, and to explore global cortical thickness differences associated with gene function. 7-Tesla magnetic resonance imaging scans were obtained for 98 patients with PD and 74 healthy controls (HC). Cortical thickness and subcortical nuclei volume were extracted based on FreeSurfer and were analyzed using general linear model to find significant differences between two groups. Regression model was used for cross-sectional the impact of structural alterations on motor signs as well as non-motor symptoms. Gene-imaging association analysis was used to characterize its gene signatures. Compared with HC, PD patients exhibited the disease-specific structural pattern, characterized by reduced cortical thickness in the right pars triangularis and altered volumes of specific nuclei subfields. Moreover, the Cornu Ammonis 1 head volume was significantly correlated with rigidity scores. Using human brain gene expression data, genes identified in this study were enriched for ribosome and synaptic organization and explain significant variation in global cortical thickness differences. Taken together, these findings may contribute to a better understanding of neural mechanisms in PD and the functional roles of genes that influence brain structure.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jianxing Hu
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mingliang Yang
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- College of Medical Technology, Beijing Institute of Technology, No.5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yan Li
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhixuan Li
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Song Wang
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Miao Wang
- Department of Neurology, the Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xi Yin
- Department of Neurology, the Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jing Zhao
- Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhongbao Gao
- Department of Neurology, the Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, China.
| |
Collapse
|
4
|
Zhang X, Yan F, He XJ, Chen Y, Gu R, Dong X, Wei Y, Bai L, Bai J. Thioredoxin-1 Downregulation in the SNpc Exacerbates the Cognitive Impairment Induced by MPTP. Antioxid Redox Signal 2025. [PMID: 40135707 DOI: 10.1089/ars.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims: Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuron degeneration in the substantia nigra pars compacta (SNpc). Thioredoxin-1 (Trx-1) is a redox protein that protects neurons from various injuries. Our study revealed that Trx-1 overexpression improved the learning and memory impairments induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the role of the specific transmission of signals from the SNpc to the hippocampus regulated by Trx-1 in cognition deficits associated with PD is still unknown. Results: We observed that Trx-1 downregulation in the SNpc aggravated cognitive dysfunction induced by MPTP. Importantly, we observed that the SNpc directly projects to the hippocampus. We found that the loss of DAergic neurons in the SNpc induced by MPTP resulted in a decrease in dopamine D1 receptor (D1R) expression in the hippocampus, which was promoted by Trx-1 downregulation in the SNpc. The levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated cAMP-response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and postsynaptic density protein 95 (PSD95) in the hippocampus were decreased by MPTP and further decreased by Trx-1 downregulation in the SNpc. Finally, the number of synapses in the hippocampus was decreased by MPTP in the hippocampus and further reduced by Trx-1 downregulation in the SNpc. Innovation: Trx-1 downregulation accelerated the loss of DAergic neurons in the SNpc, leading to a decrease in the number dopaminergic projections to the hippocampus, subsequently inhibiting the D1R-ERK1/2-CREB-BDNF pathway in the hippocampus, and ultimately impairing hippocampus-dependent cognition. Conclusions: These results indicate that a decrease in Trx-1 level in the SNpc plays a critical regulatory role in cognitive dysfunction in individuals with PD by decreasing the hippocampal D1R signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xianwen Zhang
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Jie He
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Rou Gu
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Xianghuan Dong
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yonghang Wei
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Firbank MJ, Pasquini J, Best L, Foster V, Sigurdsson HP, Anderson KN, Petrides G, Brooks DJ, Pavese N. Cerebellum and basal ganglia connectivity in isolated REM sleep behaviour disorder and Parkinson's disease: an exploratory study. Brain Imaging Behav 2024; 18:1428-1437. [PMID: 39320619 DOI: 10.1007/s11682-024-00939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
REM sleep behaviour disorder (RBD) is a parasomnia characterised by dream-enacting behaviour with loss of muscle atonia during REM sleep and is a prodromal feature of α-synucleinopathies like Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Although cortical-to-subcortical connectivity is well-studied in RBD, cerebellar and subcortical nuclei reciprocal connectivity is less established. Nonetheless, it could be relevant since RBD pathology involves brainstem structures with an ascending gradient. In this study, we utilised resting-state functional MRI to investigate 13 people with isolated RBD (iRBD), 17 with Parkinson's disease and 16 healthy controls. We investigated the connectivity between the basal ganglia, thalamus and regions of the cerebellum. The cerebellum was segmented using a functional atlas, defined by a resting-state network-based parcellation, rather than an anatomical one. Controlling for age, we found a significant group difference (F4,82 = 5.47, pFDR = 0.017) in cerebellar-thalamic connectivity, with iRBD significantly lower compared to both control and Parkinson's disease. Specifically, cerebellar areas involved in this connectivity reduction were related to the default mode, language and fronto-parietal resting-state networks. Our findings show functional connectivity abnormalities in subcortical structures that are specific to iRBD and may be relevant from a pathophysiological standpoint. Further studies are needed to investigate how connectivity changes progress over time and whether specific changes predict disease course or phenoconversion.
Collapse
Affiliation(s)
- Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Jacopo Pasquini
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Best
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Victoria Foster
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Kirstie N Anderson
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - George Petrides
- Nuclear Medicine Department, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David J Brooks
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Pang H, Li X, Yu Z, Yu H, Bu S, Wang J, Zhao M, Liu Y, Jiang Y, Fan G. Disentangling gray matter atrophy and its neurotransmitter architecture in drug-naïve Parkinson's disease: an atlas-based correlation analysis. Cereb Cortex 2024; 34:bhae420. [PMID: 39420471 DOI: 10.1093/cercor/bhae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease is characterized by multiple neurotransmitter systems beyond the traditional dopaminergic pathway, yet their influence on volumetric alterations is not well comprehended. We included 72 de novo, drug-naïve Parkinson's disease patients and 61 healthy controls. Voxel-wise gray matter volume was evaluated between Parkinson's disease and healthy controls, as well as among Parkinson's disease subgroups categorized by clinical manifestations. The Juspace toolbox was utilized to explore the spatial relationship between gray matter atrophy and neurotransmitter distribution. Parkinson's disease patients exhibited widespread GM atrophy in the cerebral and cerebellar regions, with spatial correlations with various neurotransmitter receptors (FDR-P < 0.05). Cognitively impaired Parkinson's disease patients showed gray matter atrophy in the left middle temporal atrophy, which is associated with serotoninergic, dopaminergic, cholinergic, and glutamatergic receptors (FDR-P < 0.05). Postural and gait disorder patients showed atrophy in the right precuneus, which is correlated with serotoninergic, dopaminergic, gamma-aminobutyric acid, and opioid receptors (FDR-P < 0.05). Patients with anxiety showed atrophy in the right superior orbital frontal region; those with depression showed atrophy in the left lingual and right inferior occipital regions. Both conditions were linked to serotoninergic and dopaminergic receptors (FDR-P < 0.05). Parkinson's disease patients exhibited regional gray matter atrophy with a significant distribution of specific neurotransmitters, which might provide insights into the underlying pathophysiology of clinical manifestations and develop targeted intervention strategies.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Ziyang Yu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, Zhejiang Province, 310027, China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, 7 Wangjing Zhonghuan South Road, Chaoyang District, Beijing, 100102, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| |
Collapse
|
7
|
Fernandes C, Forny-Germano L, Andrade MM, Lyra E Silva NM, Ramos-Lobo AM, Meireles F, Tovar-Moll F, Houzel JC, Donato J, De Felice FG. Leptin receptor reactivation restores brain function in early-life Lepr-deficient mice. Brain 2024; 147:2706-2717. [PMID: 38650574 PMCID: PMC11292908 DOI: 10.1093/brain/awae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) is involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has crucial developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems in young adult mice, including an imbalance in energy homeostasis, alterations in melanocortin and the reproductive system and a reduction in brain mass. Given that in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early-life leptin deficiency on brain structure and memory function. Here, we demonstrate that leptin-deficient (LepOb) mice exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, in addition to neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signalling in adulthood.
Collapse
Affiliation(s)
- Caroline Fernandes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Leticia Forny-Germano
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayara M Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Natalia M Lyra E Silva
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda Meireles
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Fernanda Tovar-Moll
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| | - Jean Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, RJ 22281-100, Brazil
| |
Collapse
|
8
|
Pardo J, Montal V, Campabadal A, Oltra J, Uribe C, Roura I, Bargalló N, Martí MJ, Compta Y, Iranzo A, Fortea J, Junqué C, Segura B. Cortical Macro- and Microstructural Changes in Parkinson's Disease with Probable Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2024; 39:814-824. [PMID: 38456361 DOI: 10.1002/mds.29761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Evidence regarding cortical atrophy patterns in Parkinson's disease (PD) with probable rapid eye movement sleep behavior disorder (RBD) (PD-pRBD) remains scarce. Cortical mean diffusivity (cMD), as a novel imaging biomarker highly sensitive to detecting cortical microstructural changes in different neurodegenerative diseases, has not been investigated in PD-pRBD yet. OBJECTIVES The aim was to investigate cMD as a sensitive measure to identify subtle cortical microstructural changes in PD-pRBD and its relationship with cortical thickness (CTh). METHODS Twenty-two PD-pRBD, 31 PD without probable RBD (PD-nonpRBD), and 28 healthy controls (HC) were assessed using 3D T1-weighted and diffusion-weighted magnetic resonance imaging on a 3-T scanner and neuropsychological testing. Measures of cortical brain changes were obtained through cMD and CTh. Two-class group comparisons of a general linear model were performed (P < 0.05). Cohen's d effect size for both approaches was computed. RESULTS PD-pRBD patients showed higher cMD than PD-nonpRBD patients in the left superior temporal, superior frontal, and precentral gyri, precuneus cortex, as well as in the right middle frontal and postcentral gyri and paracentral lobule (d > 0.8), whereas CTh did not detect significant differences. PD-pRBD patients also showed increased bilateral posterior cMD in comparison with HCs (d > 0.8). These results partially overlapped with CTh results (0.5 < d < 0.8). PD-nonpRBD patients showed no differences in cMD when compared with HCs but showed cortical thinning in the left fusiform gyrus and lateral occipital cortex bilaterally (d > 0.5). CONCLUSIONS cMD may be more sensitive than CTh displaying significant cortico-structural differences between PD subgroups, indicating this imaging biomarker's utility in studying early cortical changes in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Grants
- PID2020-114640GB-I00/AEI/10.13039/501100011033 Ministerio de Economía y Competitividad
- H2020-SC1-BHC-2018-2020/GA 965422 European Union's Horizon 2020, "MES-CoBraD"
- FI18/00275 Instituto de Salud Carlos III
- IIBSP-DOW-2020-151 Departament de Salut, Generalitat de Catalunya, Fundación Tatiana Pérez de Guzmán el Bueno
- PRE2018-086675 Ministerio de Ciencia, Innovación y Universidades
- PI20/01473 Fondo de Investigaciones Sanitario, Carlos III Health Institute
- SGR 2021SGR00801 Generalitat de Catalunya
- 1R01AG056850-01A1 CIBERNED Program 1, National Institutes of Health (NIH) grants
- 3RF1AG056850-01S1 CIBERNED Program 1, National Institutes of Health (NIH) grants
- AG056850 CIBERNED Program 1, National Institutes of Health (NIH) grants
- R01AG061566 CIBERNED Program 1, National Institutes of Health (NIH) grants
- R21AG056974 CIBERNED Program 1, National Institutes of Health (NIH) grants
- 888692 H2020 Marie Skłodowska-Curie Actions
- LCF/BQ/DR22/11950012 'la Caixa' Foundation
- PRE2021-099689 Ministerio de Ciencia e Innovación
- CEX2021-001159-M María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona), Ministry of Science and Innovation
Collapse
Affiliation(s)
- Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Victor Montal
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neurology Service, Consorci Corporació Sanitària Parc Taulí de Sabadell, Barcelona, Spain
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Ignacio Roura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Imaging Diagnostic Center (CDI), Hospital Clínic Universitari de Barcelona, Barcelona, Spain
| | - Maria J Martí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Parkinson's Disease and Movement Disorders Unit, Hospital Clínic Universitari de Barcelona, UBNeuro Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Yaroslau Compta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Parkinson's Disease and Movement Disorders Unit, Hospital Clínic Universitari de Barcelona, UBNeuro Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Alex Iranzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Sleep Disorders Center, Neurology Service, Hospital Clínic Universitari de Barcelona, University of Barcelona, Barcelona, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Bàrbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| |
Collapse
|
9
|
Oltra J, Segura B, Strafella AP, van Eimeren T, Ibarretxe-Bilbao N, Diez-Cirarda M, Eggers C, Lucas-Jiménez O, Monté-Rubio GC, Ojeda N, Peña J, Ruppert MC, Sala-Llonch R, Theis H, Uribe C, Junque C. A multi-site study on sex differences in cortical thickness in non-demented Parkinson's disease. NPJ Parkinsons Dis 2024; 10:69. [PMID: 38521776 PMCID: PMC10960793 DOI: 10.1038/s41531-024-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Clinical, cognitive, and atrophy characteristics depending on sex have been previously reported in Parkinson's disease (PD). However, though sex differences in cortical gray matter measures in early drug naïve patients have been described, little is known about differences in cortical thickness (CTh) as the disease advances. Our multi-site sample comprised 211 non-demented PD patients (64.45% males; mean age 65.58 ± 8.44 years old; mean disease duration 6.42 ± 5.11 years) and 86 healthy controls (50% males; mean age 65.49 ± 9.33 years old) with available T1-weighted 3 T MRI data from four international research centers. Sex differences in regional mean CTh estimations were analyzed using generalized linear models. The relation of CTh in regions showing sex differences with age, disease duration, and age of onset was examined through multiple linear regression. PD males showed thinner cortex than PD females in six frontal (bilateral caudal middle frontal, bilateral superior frontal, left precentral and right pars orbitalis), three parietal (bilateral inferior parietal and left supramarginal), and one limbic region (right posterior cingulate). In PD males, lower CTh values in nine out of ten regions were associated with longer disease duration and older age, whereas in PD females, lower CTh was associated with older age but with longer disease duration only in one region. Overall, male patients show a more widespread pattern of reduced CTh compared with female patients. Disease duration seems more relevant to explain reduced CTh in male patients, suggesting worse prognostic over time. Further studies should explore sex-specific cortical atrophy trajectories using large longitudinal multi-site data.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain.
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Hospital Clínic Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Catalonia, Spain.
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., M5T 1R8, Toronto, ON, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, 399 Bathurst Street, M5T 2S8, Toronto, ON, Canada
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
- Department of Neurology, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
| | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Maria Diez-Cirarda
- Department of Neurology, Hospital Clínico San Carlos, Health Research Institute 'San Carlos' (IdISCC), Complutense University of Madrid, Calle del Profesor Martín Lagos, s/n, 28040, Madrid, Spain
| | - Carsten Eggers
- Department of Neurology, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
- Department of Neurology, University Hospital of Giessen and Marburg, Center for Mind, Brain and Behavior, University of Marburg and Giessen Universiy, Hans-Meerwein-Straße, 6, 35043, Marburg, Germany
| | - Olaia Lucas-Jiménez
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Gemma C Monté-Rubio
- Centre for Comparative Medicine and Bioimaging (CMCiB), Gemans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Catalonia, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Marina C Ruppert
- Department of Neurology, University Hospital of Giessen and Marburg, Center for Mind, Brain and Behavior, University of Marburg and Giessen Universiy, Hans-Meerwein-Straße, 6, 35043, Marburg, Germany
| | - Roser Sala-Llonch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain
- Department of Biomedicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain
- Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN: CB06/01/1039-ISCIII), Carrer de Casanova, 143, 08036, Barcelona, Catalonia, Spain
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
- Department of Neurology, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., M5T 1R8, Toronto, ON, Canada
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Hospital Clínic Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Liu L, Shi Z, Gan J, Liu S, Wen C, Yang Y, Yang F, Ji Y. Characterization of de novo Dementia with Lewy Body with different duration of rapid eye movement sleep behavior disorder. Sleep Med 2024; 114:101-108. [PMID: 38176204 DOI: 10.1016/j.sleep.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Cognitive disorder, parkinsonism, autonomic dysfunction (AuD) and rapid eye movement sleep behavior disorder (RBD) can occur prior to or simultaneously with Dementia with Lewy Body (DLB) onset. RBD is generally linked with progressive neurodegenerative traits. However, associations between RBD with DLB, RBD without DLB, and RBD duration effects on DLB symptoms remain unclear. OBJECTIVES To examine DLB symptom frequency and subtypes in RBD, and explore the effects of different RBD onset times on symptoms in de novo DLB patients. METHODS In this multicenter investigation, we consecutively recruited 271 de novo DLB patients. All had standardized clinical and comprehensive neuropsychological evaluations. Subgroup analyses, performed based on the duration of RBD confirmed by polysomnography before the DLB diagnosis, we compared the proportion of patients with cognitive impairment, parkinsonism, and AuD features between groups. RESULTS Parkinsonism and AuD incidences were significantly elevated in DLB patients with RBD when compared with patients without RBD. Subgroup analyses indicated no significant differences in parkinsonism between DLB patients who developed RBD ≥10 years prior to the DLB diagnosis and DLB patients without RBD. The incidence of non-tremor-predominant parkinsonism and AuD was significantly higher in DLB patients whose RBD duration before the DLB diagnosis was <10 years when compared with DLB patients without RBD. CONCLUSIONS We identified significant symptom and phenotypic variability between DLB patients with and without RBD. Also, different RBD duration effects before the DLB diagnosis had a significant impact on symptomatic phenotypes, suggesting the existence of a slowly progressive DLB neurodegenerative subtype.
Collapse
Affiliation(s)
- Lixin Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China; The Psycho Department of Beijing Geriatric Hospital, Beijing, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China
| | - Chen Wen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yaqi Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Fan Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin, China.
| |
Collapse
|
11
|
Shiraishi T, Yoshimaru D, Umehara T, Ozawa M, Omoto S, Okumura M, Kokubu T, Takahashi J, Sato T, Onda A, Komatsu T, Sakai K, Mitsumura H, Murakami H, Okano HJ, Iguchi Y. Interactive effect of orthostatic hypotension on gray matter atrophy associated with hyposmia and RBD in de novo Parkinson's disease. J Neurol 2023; 270:5924-5934. [PMID: 37626243 DOI: 10.1007/s00415-023-11934-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Orthostatic hypotension (OH) is a potential modifiable risk factor for cognitive impairment in patients with Parkinson's disease (PD). Although other risk factors for dementia, hyposmia and REM sleep behavior disorder (RBD), are closely associated with autonomic dysfunction in PD, little is known about how these risk factors influence cognitive function and cerebral pathology. OBJECTIVE We investigated how these three factors contribute to gray matter atrophy by considering the interaction of OH with hyposmia and RBD. METHODS We analyzed cortical thickness, subcortical gray matter volume, and cognitive measures from 78 patients with de novo PD who underwent the head-up tilt test for the diagnosis of OH. RESULTS Whole-brain analyses with Monte Carlo corrections revealed that hyposmia was associated with decreased cortical thickness in a marginal branch of the cingulate sulcus among patients with OH, and cortical thickness in this area correlated with cognitive functioning only in patients with OH. Subcortical gray matter volume analysis indicated that severe RBD was associated with decreased volume in the left hippocampus and bilateral amygdala among patients with OH. CONCLUSION Even in early PD, OH exerts effects on gray matter atrophy and cognitive dysfunction by interacting with RBD and hyposmia. OH might exacerbate cerebral pathology induced by hyposmia or RBD.
Collapse
Affiliation(s)
- Tomotaka Shiraishi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Daisuke Yoshimaru
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Masakazu Ozawa
- Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, Tokyo, Japan
| | - Shusaku Omoto
- Department of Neurology, The Jikei University Katsushika Medical Center, Tokyo, Japan
| | - Motohiro Okumura
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Tatsushi Kokubu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Junichiro Takahashi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Asako Onda
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Kenichiro Sakai
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hidetomo Murakami
- Department of Neurology, Showa University East Hospital, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
12
|
Figorilli M, Meloni M, Lanza G, Casaglia E, Lecca R, Saibene FL, Congiu P, Puligheddu M. Considering REM Sleep Behavior Disorder in the Management of Parkinson's Disease. Nat Sci Sleep 2023; 15:333-352. [PMID: 37180094 PMCID: PMC10167974 DOI: 10.2147/nss.s266071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is the result of the loss of physiological inhibition of muscle tone during REM sleep, characterized by dream-enacting behavior and widely recognized as a prodromal manifestation of alpha-synucleinopathies. Indeed, patients with isolated RBD (iRBD) have an extremely high estimated risk to develop a neurodegenerative disease after a long follow up. Nevertheless, in comparison with PD patients without RBD (PDnoRBD), the occurrence of RBD in the context of PD (PDRBD) seems to identify a unique, more malignant phenotype, characterized by a more severe burden of disease in terms of both motor and non-motor symptoms and increased risk for cognitive decline. However, while some medications (eg, melatonin, clonazepam, etc.) and non-pharmacological options have been found to have some therapeutic benefits on RBD there is no available treatment able to modify the disease course or, at least, slow down the neurodegenerative process underlying phenoconversion. In this scenario, the long prodromal phase may allow an early therapeutic window and, therefore, the identification of multimodal biomarkers of disease onset and progression is becoming increasingly crucial. To date, several clinical (motor, cognitive, olfactory, visual, and autonomic features) neurophysiological, neuroimaging, biological (biofluids or tissue biopsy), and genetic biomarkers have been identified and proposed, also in combination, as possible diagnostic or prognostic markers, along with a potential role for some of them as outcome measures and index of treatment response. In this review, we provide an insight into the present knowledge on both existing and future biomarkers of iRBD and highlight the difference with PDRBD and PDnoRBD, including currently available treatment options.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elisa Casaglia
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
13
|
Wenke Š, Mana J, Havlík F, Cohn M, Nikolai T, Buschke H, Nepožitek J, Peřinová P, Dostálová S, Ibarburu Lorenzo Y Losada V, Růžička E, Šonka K, Dušek P, Bezdicek O. Characterization of memory profile in idiopathic REM sleep behavior disorder. J Clin Exp Neuropsychol 2022; 44:237-250. [DOI: 10.1080/13803395.2022.2107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Štěpán Wenke
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Josef Mana
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Filip Havlík
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Melanie Cohn
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Tomáš Nikolai
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Herman Buschke
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York City, New York, USA
| | - Jiří Nepožitek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavla Peřinová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Simona Dostálová
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Veronika Ibarburu Lorenzo Y Losada
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondrej Bezdicek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|