1
|
Zebrack JE, Gao J, Verhey B, Tian L, Stave C, Farhadian B, Ma M, Silverman M, Xie Y, Tran P, Thienemann M, Wilson JL, Frankovich J. Neurological Soft Signs at Presentation in Patients With Pediatric Acute-Onset Neuropsychiatric Syndrome. JAMA Netw Open 2025; 8:e250314. [PMID: 40053347 PMCID: PMC11889471 DOI: 10.1001/jamanetworkopen.2025.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/05/2025] [Indexed: 03/10/2025] Open
Abstract
Importance Studies of brain imaging and movements during rapid eye movement sleep indicate basal ganglia involvement in pediatric acute-onset neuropsychiatric syndrome (PANS). Characterizing neurological findings that commonly present among patients with PANS could improve diagnostic accuracy. Objectives To evaluate the prevalence of neurological soft signs (NSSs) that may be associated with basal ganglia dysfunction among youths presenting with PANS and assess whether clinical characteristics of PANS correlate with NSSs that may be associated with basal ganglia dysfunction. Design, Setting, and Participants This cohort study included 135 new patients who met strict PANS criteria and were evaluated at the Stanford Children's Immune Behavioral Health Clinic between November 1, 2014, and March 1, 2020. Data on these patients were retrospectively reviewed between December 13, 2020, and September 25, 2023. Sixteen patients were excluded because they had no neurological examination within the first 3 visits and within 3 months of clinical presentation. Statistical analysis was conducted between September 26, 2023, and November 22, 2024. Main Outcomes and Measures The following NSSs that may be associated with basal ganglia dysfunction were recorded from medical record review: (1) glabellar tap reflex, (2) tongue movements, (3) milkmaid's grip, (4) choreiform movements, (5) spooning, and (6) overflow movements. Data from prospectively collected symptoms and impairment scales (Global Impairment Score [GIS; score range, 1-100, with higher scores indicating greater impairment] and Caregiver Burden Inventory [score range, 0-96, with higher scores indicating greater caregiver burden]) were included. Results The study included 119 patients; the mean (SD) age at PANS onset was 8.2 (3.6) years, the mean (SD) age at initial presentation was 10.4 (3.6) years, and 66 (55.5%) were boys. At least 1 NSS that may be associated with basal ganglia dysfunction was observed in 95 patients (79.8%); the mean (SD) number of NSSs was 2.1 (1.6). Patients with 4 or more NSSs had higher GISs (mean [SD] score, 56.0 [22.6] vs 40.6 [26.7]; P = .05) and more symptoms (mean [SD] number, 15.1 [4.9] vs 11.5 [4.2]; P = .008) than patients with 0 NSSs. There was no significant difference in age at visit or in Caregiver Burden Inventory score. On Poisson and linear regression, the number of NSSs was associated with global impairment, with 1 more sign increasing the GIS by 2.86 (95% CI, 0.09-5.62; P = .04), and with the number of symptoms, with 1 more sign increasing the number of symptoms by 5% (1.05; 95% CI, 1.02-1.08; P = .002), but not with age or duration of PANS at presentation. Conclusions and Relevance This cohort study of patients with PANS found a high prevalence of NSSs that may be associated with basal ganglia dysfunction and an association between these NSSs and disease severity that was not associated with younger age. PANS may have a unique profile, suggesting that targeted neurological examinations may support PANS diagnosis.
Collapse
Affiliation(s)
- Jane E. Zebrack
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
| | - Jaynelle Gao
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
| | - Britta Verhey
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California
| | - Christopher Stave
- Lane Medical Library, Stanford University School of Medicine, Stanford, California
| | - Bahare Farhadian
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
| | - Meiqian Ma
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
| | - Melissa Silverman
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Yuhuan Xie
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Paula Tran
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Margo Thienemann
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland
| | - Jennifer Frankovich
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children’s Hospital, Stanford, California
| |
Collapse
|
2
|
Guan L, Yu H, Chen Y, Gong C, Hao H, Guo Y, Xu S, Zhang Y, Yuan X, Yin G, Zhang J, Tan H, Li L. Subthalamic γ Oscillation Underlying Rapid Eye Movement Sleep Abnormality in Parkinsonian Patients. Mov Disord 2025; 40:456-467. [PMID: 39707598 PMCID: PMC7617463 DOI: 10.1002/mds.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Abnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM-specific neuromodulation interventions. OBJECTIVE This study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients. METHODS Ten PD patients implanted with bilateral subthalamic nucleus-deep brain stimulation (STN-DBS) were included in this study, of whom 4 were diagnosed with RBD. Sleep monitoring was conducted 1 month after surgery. Subthalamic local field potentials (LFP) were recorded through sensing-enabled DBS. The neurophysiological features of subthalamic LFP during phasic and tonic microstates of REM sleep and their correlation with REM sleep fragmentation and RBD were analyzed. RESULTS Differences in subthalamic γ oscillation between phasic and tonic REM correlated positively with the severity of REM sleep fragmentation. Patients with RBD also exhibited stronger γ oscillations during REM sleep compared with non-RBD patients, and both increased β and γ were found before the onset of RBD episodes. Stimulation changes in simulated γ-triggered feedback modulation followed more closely with phasic REM density, whereas an opposite trend was found in simulated β-triggered feedback modulation. CONCLUSION Excess subthalamic γ oscillations may contribute to REM instability and RBD, suggesting that γ oscillation could serve as a feedback signal for adaptive DBS for REM sleep disorders. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lingxiao Guan
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Huiling Yu
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yue Chen
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Chen Gong
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Hongwei Hao
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
| | - Yi Guo
- Department of NeurosurgeryPeking Union Medical College HospitalBeijingChina
| | - Shujun Xu
- Department of NeurosurgeryQilu Hospital of Shandong University (Qingdao)QingdaoChina
| | - Yuhuan Zhang
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tsinghua Changgung HospitalBeijingChina
| | - Xuemei Yuan
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tsinghua Changgung HospitalBeijingChina
| | - Guoping Yin
- Department of Otolaryngology, Head and Neck SurgeryBeijing Tsinghua Changgung HospitalBeijingChina
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUnited Kingdom
| | - Luming Li
- National Engineering Research Center of Neuromodulation, School of Aerospace EngineeringTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
| |
Collapse
|
3
|
Yin Z, Yuan T, Yang A, Xu Y, Zhu G, An Q, Ma R, Gan Y, Shi L, Bai Y, Zhang N, Wang C, Jiang Y, Meng F, Neumann WJ, Tan H, Zhang JG. Contribution of basal ganglia activity to REM sleep disorder in Parkinson's disease. J Neurol Neurosurg Psychiatry 2024; 95:947-955. [PMID: 38641368 PMCID: PMC7616468 DOI: 10.1136/jnnp-2023-332014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Tianshuo Yuan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zebrack JE, Gao J, Verhey B, Tian L, Stave C, Farhadian B, Ma M, Silverman M, Xie Y, Tran P, Thienemann M, Wilson JL, Frankovich J. Prevalence of Neurological Soft Signs at Presentation in Pediatric Acute-Onset Neuropsychiatric Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.26.24306193. [PMID: 38746142 PMCID: PMC11092680 DOI: 10.1101/2024.04.26.24306193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Importance Studies of brain imaging and movements during REM sleep indicate basal ganglia involvement in pediatric acute-onset neuropsychiatric syndrome (PANS). Characterizing neurological findings commonly present in patients with PANS could improve diagnostic accuracy. Objective To determine the prevalence of neurological soft signs which may reflect basal ganglia dysfunction (NSS-BG) in youth presenting with PANS and whether clinical characteristics of PANS correlate with NSS-BG. Design, Setting, and Participants: 135 new patients who were evaluated at the Stanford Children's Immune Behavioral Health Clinic between November 1, 2014 and March 1, 2020 and met strict PANS criteria were retrospectively reviewed for study inclusion. 16 patients were excluded because they had no neurological exam within the first three visits and within three months of clinical presentation. Main Outcomes and Measures The following NSS-BG were recorded from medical record review: 1) glabellar tap reflex, 2) tongue movements, 3) milkmaid's grip, 4) choreiform movements, 5) spooning, and 6) overflow movements. We included data from prospectively collected symptoms and impairment scales. Results The study included 119 patients: mean age at PANS onset was 8.2 years, mean age at initial presentation was 10.4 years, 55.5% were male, and 73.9% were non-Hispanic White. At least one NSS-BG was observed in 95/119 patients (79.8%). Patients had 2.1 NSS-BG on average. Patients with 4 or more NSS-BG had higher scores of global impairment (p=0.052) and more symptoms (p=0.008) than patients with 0 NSS-BG. There was no significant difference in age at visit or reported caregiver burden. On Poisson and linear regression, the number of NSS-BG was associated with global impairment (2.857, 95% CI: 0.092-5.622, p=0.045) and the number of symptoms (1.049, 95% CI: 1.018-1.082, p=0.002), but not age or duration of PANS at presentation. Conclusions and Relevance We found a high prevalence of NSS-BG in patients with PANS and an association between NSS-BG and disease severity that is not attributable to younger age. PANS may have a unique NSS-BG profile, suggesting that targeted neurological exams may support PANS diagnosis.
Collapse
Affiliation(s)
- Jane E. Zebrack
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
| | - Jaynelle Gao
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
| | - Britta Verhey
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher Stave
- Lane Medical Library, Stanford University School of Medicine, Stanford, CA, USA
| | - Bahare Farhadian
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
| | - Meiqian Ma
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
| | - Melissa Silverman
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhuan Xie
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Paula Tran
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Margo Thienemann
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Frankovich
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford PANS/Immune Behavioral Health Clinic and PANS Research Program at Lucile Packard Children's Hospital, Stanford, CA, USA
| |
Collapse
|
5
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Slow-wave sleep dysfunction in mild parkinsonism is associated with excessive beta and reduced delta oscillations in motor cortex. Front Neurosci 2024; 18:1338624. [PMID: 38449736 PMCID: PMC10915200 DOI: 10.3389/fnins.2024.1338624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Increasing evidence suggests slow-wave sleep (SWS) dysfunction in Parkinson's disease (PD) is associated with faster disease progression, cognitive impairment, and excessive daytime sleepiness. Beta oscillations (8-35 Hz) in the basal ganglia thalamocortical (BGTC) network are thought to play a role in the development of cardinal motor signs of PD. The role cortical beta oscillations play in SWS dysfunction in the early stage of parkinsonism is not understood, however. To address this question, we used a within-subject design in a nonhuman primate (NHP) model of PD to record local field potentials from the primary motor cortex (MC) during sleep across normal and mild parkinsonian states. The MC is a critical node in the BGTC network, exhibits pathological oscillations with depletion in dopamine tone, and displays high amplitude slow oscillations during SWS. The MC is therefore an appropriate recording site to understand the neurophysiology of SWS dysfunction in parkinsonism. We observed a reduction in SWS quantity (p = 0.027) in the parkinsonian state compared to normal. The cortical delta (0.5-3 Hz) power was reduced (p = 0.038) whereas beta (8-35 Hz) power was elevated (p = 0.001) during SWS in the parkinsonian state compared to normal. Furthermore, SWS quantity positively correlated with delta power (r = 0.43, p = 0.037) and negatively correlated with beta power (r = -0.65, p < 0.001). Our findings support excessive beta oscillations as a mechanism for SWS dysfunction in mild parkinsonism and could inform the development of neuromodulation therapies for enhancing SWS in people with PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Bharadwaj Nandakumar
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, United States
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Colum D. MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Feuerstein JS, Amara A. REM Behavior Disorder: Implications for PD Therapeutics. Curr Neurol Neurosci Rep 2023; 23:727-734. [PMID: 37831394 DOI: 10.1007/s11910-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia that occurs during REM sleep, characterized by REM sleep without atonia (RSWA) and dream enactment behavior (DEB). RBD is associated with several diseases and medications but most notably is a prodromal feature of synucleinopathies, including Parkinson's disease (PD). This article reviews RBD, its treatments, and implications for PD therapeutics. RECENT FINDINGS Recent research recognizes RBD as a prodromal marker of PD, resulting in expansion of basic science and clinical investigations of RBD. Current basic science research investigates the pathophysiology of RBD and explores animal models to allow therapeutic development. Clinical research has focused on natural history observation, as well as potential RBD treatments and their impact on sleep and phenoconversion to neurodegenerative disease. RBD serves as a fresh access point to develop both neuroprotective and symptomatic therapies in PD. These types of investigations are novel and will benefit from the more established basic science infrastructure to develop new interventions.
Collapse
Affiliation(s)
- Jeanne S Feuerstein
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Neurology, Rocky Mountain Regional VA Medical Center, 12631 E. 17th Ave Room 5508, Mail Stop B185, Aurora, CO, 80045, USA.
| | - Amy Amara
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Verma AK, Nandakumar B, Acedillo K, Yu Y, Marshall E, Schneck D, Fiecas M, Wang J, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Excessive cortical beta oscillations are associated with slow-wave sleep dysfunction in mild parkinsonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564524. [PMID: 37961389 PMCID: PMC10634920 DOI: 10.1101/2023.10.28.564524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Increasing evidence associates slow-wave sleep (SWS) dysfunction with neurodegeneration. Using a within-subject design in the nonhuman primate model of Parkinson's disease (PD), we found that reduced SWS quantity in mild parkinsonism was accompanied by elevated beta and reduced delta power during SWS in the motor cortex. Our findings support excessive beta oscillations as a mechanism for SWS dysfunction and will inform development of neuromodulation therapies for enhancing SWS in PD.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Kit Acedillo
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan Marshall
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - David Schneck
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | | - Michael J. Howell
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Luke A. Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Yin Z, Ma R, An Q, Xu Y, Gan Y, Zhu G, Jiang Y, Zhang N, Yang A, Meng F, Kühn AA, Bergman H, Neumann WJ, Zhang J. Pathological pallidal beta activity in Parkinson's disease is sustained during sleep and associated with sleep disturbance. Nat Commun 2023; 14:5434. [PMID: 37669927 PMCID: PMC10480217 DOI: 10.1038/s41467-023-41128-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Gan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
- Exzellenzcluster - NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology (Physiology), Institute of Medical Research - Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
9
|
Yin Z, Jiang Y, Merk T, Neumann WJ, Ma R, An Q, Bai Y, Zhao B, Xu Y, Fan H, Zhang Q, Qin G, Zhang N, Ma J, Zhang H, Liu H, Shi L, Yang A, Meng F, Zhu G, Zhang J. Pallidal activities during sleep and sleep decoding in dystonia, Huntington's, and Parkinson's disease. Neurobiol Dis 2023; 182:106143. [PMID: 37146835 DOI: 10.1016/j.nbd.2023.106143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Timon Merk
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Campus Mitte, Charite - Universitatsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yichen Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Houyou Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guofan Qin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanguang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
10
|
Verma AK, Yu Y, Acosta-Lenis SF, Havel T, Sanabria DE, Molnar GF, MacKinnon CD, Howell MJ, Vitek JL, Johnson LA. Parkinsonian daytime sleep-wake classification using deep brain stimulation lead recordings. Neurobiol Dis 2023; 176:105963. [PMID: 36521781 PMCID: PMC9869648 DOI: 10.1016/j.nbd.2022.105963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Excessive daytime sleepiness is a recognized non-motor symptom that adversely impacts the quality of life of people with Parkinson's disease (PD), yet effective treatment options remain limited. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for PD motor signs. Reliable daytime sleep-wake classification using local field potentials (LFPs) recorded from DBS leads implanted in STN can inform the development of closed-loop DBS approaches for prompt detection and disruption of sleep-related neural oscillations. We performed STN DBS lead recordings in three nonhuman primates rendered parkinsonian by administrating neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Reference sleep-wake states were determined on a second-by-second basis by video monitoring of eyes (eyes-open, wake and eyes-closed, sleep). The spectral power in delta (1-4 Hz), theta (4-8 Hz), low-beta (8-20 Hz), high-beta (20-35 Hz), gamma (35-90 Hz), and high-frequency (200-400 Hz) bands were extracted from each wake and sleep epochs for training (70% data) and testing (30% data) a support vector machines classifier for each subject independently. The spectral features yielded reasonable daytime sleep-wake classification (sensitivity: 90.68 ± 1.28; specificity: 88.16 ± 1.08; accuracy: 89.42 ± 0.68; positive predictive value; 88.70 ± 0.89, n = 3). Our findings support the plausibility of monitoring daytime sleep-wake states using DBS lead recordings. These results could have future clinical implications in informing the development of closed-loop DBS approaches for automatic detection and disruption of sleep-related neural oscillations in people with PD to promote wakefulness.
Collapse
Affiliation(s)
- Ajay K Verma
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Ying Yu
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Sergio F Acosta-Lenis
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Tyler Havel
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | | | - Gregory F Molnar
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Michael J Howell
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, United States of America
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, United States of America.
| |
Collapse
|