1
|
Mohammed HE, Gomaa MA, Khalifa YM, Shawky AA. Does KarXT (xanomeline-trospium) represent a novel approach to schizophrenia management? A GRADE-assessed systematic review and meta-analysis of randomized controlled clinical trials. BMC Psychiatry 2025; 25:309. [PMID: 40165106 PMCID: PMC11959844 DOI: 10.1186/s12888-025-06696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Schizophrenia is a complex psychiatric disorder characterized by positive, negative, and cognitive symptoms. KarXT, a novel combination of xanomeline and trospium, offers potential therapeutic benefits for schizophrenia treatment by targeting muscarinic receptors and avoiding dopamine receptor blockade. We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of KarXT. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were systematically searched for relevant randomized controlled trials (RCTs) up to October 2024. Studies involving adult patients with schizophrenia treated with KarXT were included. Furthermore, the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was used to assess evidence quality, and the risk of bias was evaluated using the Cochrane Risk of Bias 2.0 tool. RESULTS Four studies with 690 participants were included. KarXT significantly reduced Positive and Negative Syndrome Scale (PANSS) total scores compared to placebo (mean difference (MD): -13.77, 95% confidence interval (CI) [-22.33 to -5.20], P-value = 0.002), with significant improvements in positive and negative subscale scores. It significantly increased the incidence of achieving ≥ 30% PANSS score reduction (risk ratio: 2.15, 95% CI [1.64 to 2.84], P < 0.00001). Moreover, KarXT demonstrated a favorable safety profile, with side effects such as nausea and constipation being mild and transient. Notably, it was not significantly associated with weight gain or extrapyramidal symptoms, which are common with traditional antipsychotics. CONCLUSIONS KarXT's distinct mechanism and tolerability highlight its potential to address unmet needs in schizophrenia treatment. Future studies should explore its long-term efficacy, delayed adverse effects, and comparative effectiveness against existing therapies. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | - Menna A Gomaa
- Mansoura Manchester Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Magdy Khalifa
- Mansoura Manchester Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Ayman Shawky
- Mansoura Manchester Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Research Group of Egypt (MRGE), Cairo, Egypt
| |
Collapse
|
2
|
D'Addario C, Di Bartolomeo M. Epigenetic Control in Schizophrenia. Subcell Biochem 2025; 108:191-215. [PMID: 39820863 DOI: 10.1007/978-3-031-75980-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Schizophrenia is a severe and complex psychiatric condition ranking among the top 15 leading causes of disability worldwide. Despite the well-established heritability component, a complex interplay between genetic and environmental risk factors plays a key role in the development of schizophrenia and psychotic disorders in general. This chapter covers all the clinical evidence showing how the analysis of the epigenetic modulation in schizophrenia might be relevant to understand the pathogenesis of schizophrenia as well as potentially useful to develop new pharmacotherapies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Johnson EC, Austin-Zimmerman I, Thorpe HHA, Levey DF, Baranger DAA, Colbert SMC, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Di Forti M, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. Neuropsychopharmacology 2024; 49:1655-1665. [PMID: 38906991 PMCID: PMC11399264 DOI: 10.1038/s41386-024-01886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz; European ancestry N = 161,405; African ancestry N = 15,846), cannabis use disorder (CanUD; European ancestry N = 886,025; African ancestry N = 120,208), and ever-regular tobacco smoking (Smk; European ancestry N = 805,431; African ancestry N = 24,278) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17-0.62). Genetic instrumental variable analyses suggested the presence of shared heritable factors, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for these shared genetic factors. We identified 327 pleiotropic loci with 439 lead SNPs in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both shared genetic factors and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sarah M C Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
5
|
Cameron D, Vinh NN, Prapaiwongs P, Perry EA, Walters JTR, Li M, O’Donovan MC, Bray NJ. Genetic Implication of Prenatal GABAergic and Cholinergic Neuron Development in Susceptibility to Schizophrenia. Schizophr Bull 2024; 50:1171-1184. [PMID: 38869145 PMCID: PMC11349020 DOI: 10.1093/schbul/sbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
BACKGROUND The ganglionic eminences (GE) are fetal-specific structures that give rise to gamma-aminobutyric acid (GABA)- and acetylcholine-releasing neurons of the forebrain. Given the evidence for GABAergic, cholinergic, and neurodevelopmental disturbances in schizophrenia, we tested the potential involvement of GE neuron development in mediating genetic risk for the condition. STUDY DESIGN We combined data from a recent large-scale genome-wide association study of schizophrenia with single-cell RNA sequencing data from the human GE to test the enrichment of schizophrenia risk variation in genes with high expression specificity for developing GE cell populations. We additionally performed the single nuclei Assay for Transposase-Accessible Chromatin with Sequencing (snATAC-Seq) to map potential regulatory genomic regions operating in individual cell populations of the human GE, using these to test for enrichment of schizophrenia common genetic variant liability and to functionally annotate non-coding variants-associated with the disorder. STUDY RESULTS Schizophrenia common variant liability was enriched in genes with high expression specificity for developing neuron populations that are predicted to form dopamine D1 and D2 receptor-expressing GABAergic medium spiny neurons of the striatum, cortical somatostatin-positive GABAergic interneurons, calretinin-positive GABAergic neurons, and cholinergic neurons. Consistent with these findings, schizophrenia genetic risk was concentrated in predicted regulatory genomic sequence mapped in developing neuronal populations of the GE. CONCLUSIONS Our study implicates prenatal development of specific populations of GABAergic and cholinergic neurons in later susceptibility to schizophrenia, and provides a map of predicted regulatory genomic elements operating in cells of the GE.
Collapse
Affiliation(s)
- Darren Cameron
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Ngoc-Nga Vinh
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Parinda Prapaiwongs
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Elizabeth A Perry
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - James T R Walters
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Meng Li
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Michael C O’Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Nicholas J Bray
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Martins D, Abbasi M, Egas C, Arrais JP. Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction. J Integr Bioinform 2024; 21:jib-2023-0042. [PMID: 39004922 PMCID: PMC11377398 DOI: 10.1515/jib-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based on reports of non-negligible misdiagnosis rates for SCZ, case-control cohorts may contain outlying genetic profiles, hindering compelling performances of classification models. The research employed a case-control dataset sourced from the Swedish populace. A gene-annotation-based DL architecture was developed and employed in two stages. First, the model was trained on the entire dataset to highlight differences between cases and controls. Then, samples likely to be misclassified were excluded, and the model was retrained on the refined dataset for performance evaluation. The results indicate that SCZ prevalence and misdiagnosis rates can affect case-control cohorts, potentially compromising future studies reliant on such datasets. However, by detecting and filtering outliers, the study demonstrates the feasibility of adapting DL methodologies to large-scale biological problems, producing results more aligned with existing heritability estimates for SCZ. This approach not only advances the comprehension of the genetic background of SCZ but also opens doors for adapting DL techniques in complex research for precision medicine in mental health.
Collapse
Affiliation(s)
- Daniel Martins
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Maryam Abbasi
- Polytechnic Institute of Coimbra, Applied Research Institute, Coimbra, Portugal
- Research Centre for Natural Resources Environment and Society, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Conceição Egas
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Biocant - Transfer Technology Association, Cantanhede, Portugal
| | - Joel P Arrais
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Vasiliu O, Budeanu B, Cătănescu MȘ. The New Horizon of Antipsychotics beyond the Classic Dopaminergic Hypothesis-The Case of the Xanomeline-Trospium Combination: A Systematic Review. Pharmaceuticals (Basel) 2024; 17:610. [PMID: 38794180 PMCID: PMC11124398 DOI: 10.3390/ph17050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Although the dopamine hypothesis of schizophrenia explains the effects of all the available antipsychotics in clinical use, there is an increasing need for developing new drugs for the treatment of the positive, negative, and cognitive symptoms of chronic psychoses. Xanomeline-trospium (KarXT) is a drug combination that is based on the essential role played by acetylcholine in the regulation of cognitive processes and the interactions between this neurotransmitter and other signaling pathways in the central nervous system, with a potential role in the onset of schizophrenia, Alzheimer's disease, and substance use disorders. A systematic literature review that included four electronic databases (PubMed, Cochrane, Clarivate/Web of Science, and Google Scholar) and the US National Library of Medicine database for clinical trials detected twenty-one sources referring to fourteen studies focused on KarXT, out of which only four have available results. Based on the results of these trials, the short-term efficacy and tolerability of xanomeline-trospium are good, but more data are needed before this drug combination may be recommended for clinical use. However, on a theoretical level, the exploration of KarXT is useful for increasing the interest of researchers in finding new, non-dopaminergic, antipsychotics that could be used either as monotherapy or as add-on drugs.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, “Dr. Carol Davila” University Emergency Central Military Hospital, 010816 Bucharest, Romania
| | - Beatrice Budeanu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| | - Mihai-Ștefan Cătănescu
- Faculty of Medicine, « Carol Davila » University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.B.); (M.-Ș.C.)
| |
Collapse
|
8
|
McLean RT, Buist E, St Clair D, Wei J. Autoantibodies against acetylcholine receptors are increased in archived serum samples from patients with schizophrenia. Schizophr Res 2024; 267:8-13. [PMID: 38508027 DOI: 10.1016/j.schres.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have demonstrated that the levels of IgG against neurotransmitter receptors are increased in patients with schizophrenia. Genome-wide association (GWA) studies of schizophrenia confirmed that 108 loci harbouring over 300 genes were associated with schizophrenia. Although the functional implications of genetic variants are unclear, theoretical functional alterations of these genes could be replicated by the presence of autoantibodies. This study examined the levels of plasma IgG antibodies against four neurotransmitter receptors, CHRM4, GRM3, CHRNA4 and CHRNA5, using an in-house ELISA in 247 patients with schizophrenia and 344 non-psychiatric controls. Four peptides were designed based on in silico analysis with computational prediction of HLA-DRB1 restricted and B-cell epitopes. The relationship between plasma IgG levels and psychiatric symptoms, as defined by the Operational Criteria Checklist for Psychotic Illness and Affective Illness (OPCRIT), were examined. The results showed that the levels of plasma IgG against peptides derived from CHRM4 and CHRNA4 were significantly increased in patients with schizophrenia compared with control subjects, but there was no significant association of plasma IgG levels with any symptom domain or any specific symptoms. These preliminary results suggest that CHRM4 and CHRNA4 may be novel targets for autoantibody responses in schizophrenia, although the pathogenic relationship between increased serum autoantibody levels and schizophrenia symptoms remains unclear.
Collapse
Affiliation(s)
- Ryan Thomas McLean
- Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK.
| | - Elizabeth Buist
- Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK; New Craigs Hospital, Inverness, UK
| | - David St Clair
- Department of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Jun Wei
- Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|
9
|
Fan Y, Huang S, Li F, Zhang X, Huang X, Li W, Zeng J, Wang W, Liu J. Generation of Functional and Mature Sympathetic Neurons from Human Pluripotent Stem Cells via a Neuroepithelial Route. J Mol Neurosci 2024; 74:19. [PMID: 38358571 DOI: 10.1007/s12031-024-02196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
The sympathetic nervous system (SNS) is a crucial branch of the autonomic nervous system (ANS) that is responsible for regulating visceral function and various physiological processes. Dysfunction of the SNS can lead to various diseases, such as hypertension and metabolic disorders. However, obtaining sympathetic neurons from human tissues for research is challenging. The current research aimed at recapitulating the process of human sympathetic neuron development and achieved the successful establishment of a stepwise, highly efficient in vitro differentiation protocol. This protocol facilitated the generation of functional and mature sympathetic neurons from human pluripotent stem cells (hPSCs) using a chemical-defined induction medium. Initially, each differentiation stage was refined to derive sympathoadrenal progenitors (SAPs) from hPSCs through neural epithelial cells (NECs) and trunk neural crest stem cells (NCSCs). hPSC-derived SAPs could be expanded in vitro for at least 12 passages while maintaining the expression of SAP-specific transcription factors and neuronal differentiation potency. SAPs readily generated functional sympathetic neurons (SymNs) when cultured in the neuronal maturation medium for 3-4 weeks. These SymNs expressed sympathetic markers, exhibited electrophysiological properties, and secreted sympathetic neurotransmitters. More importantly, we further demonstrated that hPSC-derived SymNs can efficiently regulate the adipogenesis of human adipose-derived stem cells (ADSCs) and lipid metabolism in vitro. In conclusion, our study provided a simple and robust protocol for generating functional sympathetic neurons from hPSCs, which may be an invaluable tool in unraveling the mechanisms of SNS-related diseases.
Collapse
Affiliation(s)
- Yubao Fan
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Xiyu Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xueying Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, China
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weijia Wang
- Department of Laboratory Center, Zhongshan People's Hospital, Zhongshan, Guangdong, China.
| | - Jia Liu
- VIP Medical Service Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Johnson EC, Austin-Zimmerman I, Thorpe HH, Levey DF, Baranger DA, Colbert SM, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Forti MD, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301430. [PMID: 38293235 PMCID: PMC10827265 DOI: 10.1101/2024.01.17.24301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz), cannabis use disorder (CanUD), and ever-regular tobacco smoking (Smk) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17 - 0.62). Causal inference analyses suggested the presence of horizontal pleiotropy, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for horizontal pleiotropy. We identified 439 pleiotropic loci in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both horizontal pleiotropy and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley Ha Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO USA
| | - Sarah Mc Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
11
|
Cameron D, Vinh NN, Prapaiwongs P, Perry EA, Walters JTR, Li M, O’Donovan MC, Bray NJ. Genetic implication of prenatal GABAergic and cholinergic neuron development in susceptibility to schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.14.23299948. [PMID: 38168283 PMCID: PMC10760267 DOI: 10.1101/2023.12.14.23299948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The ganglionic eminences are fetal-specific structures that give rise to gamma-aminobutyric acid (GABA)- and acetylcholine- releasing neurons of the forebrain. Given evidence for GABAergic and cholinergic disturbances in schizophrenia, as well as an early neurodevelopmental component to the disorder, we tested the potential involvement of developing cells of the ganglionic eminences in mediating genetic risk for the condition. Study Design We combined data from a recent large-scale genome-wide association study of schizophrenia with single cell RNA sequencing data from the human ganglionic eminences to test enrichment of schizophrenia risk variation in genes with high expression specificity for particular developing cell populations within these structures. We additionally performed the single nuclei Assay for Transposase-Accessible Chromatin with Sequencing (snATAC-Seq) to map potential regulatory genomic regions operating in individual cell populations of the human ganglionic eminences, using these to additionally test for enrichment of schizophrenia common genetic variant liability and to functionally annotate non-coding variants associated with the disorder. Study Results Schizophrenia common variant liability was enriched in genes with high expression specificity for developing neuron populations that are predicted to form dopamine D1 and D2 receptor expressing GABAergic medium spiny neurons of the striatum, cortical somatostatin-positive GABAergic interneurons, calretinin-positive GABAergic neurons and cholinergic neurons. Consistent with these findings, schizophrenia genetic risk was also concentrated in predicted regulatory genomic sequence mapped in developing neuronal populations of the ganglionic eminences. Conclusions Our study provides evidence for a role of prenatal GABAergic and cholinergic neuron development in later susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Darren Cameron
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Ngoc-Nga Vinh
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Parinda Prapaiwongs
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Elizabeth A. Perry
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - James T. R. Walters
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Michael C. O’Donovan
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Bray
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Manjari SKV, Abraham SM, Poornima R, Chaturvedi RK, Maity S, Komal P. Unprecedented effect of vitamin D3 on T-cell receptor beta subunit and alpha7 nicotinic acetylcholine receptor expression in a 3-nitropropionic acid induced mouse model of Huntington's disease. IBRO Neurosci Rep 2023; 15:116-125. [PMID: 38204575 PMCID: PMC10776327 DOI: 10.1016/j.ibneur.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction 3-NP induction in rodent models has been shown to induce selective neurodegeneration in the striatum followed by the cortex (Brouillet, 2014). However, it remains unclear whether, under such a neurotoxic condition, characterized by neuroinflammation and oxidative stress, the gene expression of the immune resident protein, T-cell receptor beta subunit (TCR-β), α7 nicotinic acetylcholine receptor (α7 nAChRs), the nuclear factor kappa B (NF-κB), inflammatory cytokines (TNF-α and IL-6), and antioxidants (Cat and GpX4) get modulated on Vitamin D3 (VD) supplementation in the central nervous system. Methods In the present study, real-time polymerase chain reaction (RT-PCR) was performed to study the expression of respective genes. Male C57BL/6 mice (8-12 weeks) were divided into four groups namely, Group I: Control (saline); Group II: 3-NP induction via i.p (HD); Group III: Vitamin D3 (VD) and Group IV: (HD + VD) (Manjari et al., 2022). Results On administration of 500IU/kg/day of VD, HD mice showed a significant reduction in the gene expression of the immune receptor, TCR-β subunit, nuclear factor kappa B (NF-κB), inflammatory cytokines, and key antioxidants, followed by a decrease in the acetylcholinesterase activity. Conclusion A novel neuroprotective effect of VD in HD is demonstrated by combating the immune receptor, TCR-β gene expression, antioxidant markers, and inflammatory cytokines. In addition, HD mice on VD administration for 0-15 days showed an enhancement in cholinergic signaling with restoration in α7 nAChRs mRNA and protein expression in the striatum and cortex.
Collapse
Affiliation(s)
- SKV Manjari
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - R. Poornima
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - Rajneesh Kumar Chaturvedi
- Department of Toxicology and health assessment, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg P.O. Box No. 80, Lucknow 226 001 Uttar Pradesh, India
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS)-Pilani (Hyderabad Campus), Shameerpet-Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
13
|
Schulz J, Brandl F, Grothe MJ, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Priller J, Sorg C, Avram M. Basal-Forebrain Cholinergic Nuclei Alterations are Associated With Medication and Cognitive Deficits Across the Schizophrenia Spectrum. Schizophr Bull 2023; 49:1530-1541. [PMID: 37606273 PMCID: PMC10686329 DOI: 10.1093/schbul/sbad118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND HYPOTHESIS The cholinergic system is altered in schizophrenia. Particularly, patients' volumes of basal-forebrain cholinergic nuclei (BFCN) are lower and correlated with attentional deficits. It is unclear, however, if and how BFCN changes and their link to cognitive symptoms extend across the schizophrenia spectrum, including individuals with at-risk mental state for psychosis (ARMS) or during first psychotic episode (FEP). STUDY DESIGN To address this question, we assessed voxel-based morphometry (VBM) of structural magnetic resonance imaging data of anterior and posterior BFCN subclusters as well as symptom ratings, including cognitive, positive, and negative symptoms, in a large multi-site dataset (n = 4) comprising 68 ARMS subjects, 98 FEP patients (27 unmedicated and 71 medicated), 140 patients with established schizophrenia (SCZ; medicated), and 169 healthy controls. RESULTS In SCZ, we found lower VBM measures for the anterior BFCN, which were associated with the anticholinergic burden of medication and correlated with patients' cognitive deficits. In contrast, we found larger VBM measures for the posterior BFCN in FEP, which were driven by unmedicated patients and correlated at-trend with cognitive deficits. We found no BFCN changes in ARMS. Altered VBM measures were not correlated with positive or negative symptoms. CONCLUSIONS Results demonstrate complex (posterior vs. anterior BFCN) and non-linear (larger vs. lower VBM) differences in BFCN across the schizophrenia spectrum, which are specifically associated both with medication, including its anticholinergic burden, and cognitive symptoms. Data suggest an altered trajectory of BFCN integrity in schizophrenia, influenced by medication and relevant for cognitive symptoms.
Collapse
Affiliation(s)
- Julia Schulz
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Felix Brandl
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Neuroradiology, Technical University of Munich, School of Medicine, Munich, Germany
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
15
|
Meyer JM, Correll CU. Increased Metabolic Potential, Efficacy, and Safety of Emerging Treatments in Schizophrenia. CNS Drugs 2023; 37:545-570. [PMID: 37470979 PMCID: PMC10374807 DOI: 10.1007/s40263-023-01022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Patients with schizophrenia experience a broad range of detrimental health outcomes resulting from illness severity, heterogeneity of disease, lifestyle behaviors, and adverse effects of antipsychotics. Because of these various factors, patients with schizophrenia have a much higher risk of cardiometabolic abnormalities than people without psychiatric illness. Although exposure to many antipsychotics increases cardiometabolic risk factors, mortality is higher in patients who are not treated versus those who are treated with antipsychotics. This indicates both direct and indirect benefits of adequately treated illness, as well as the need for beneficial medications that result in fewer cardiometabolic risk factors and comorbidities. The aim of the current narrative review was to outline the association between cardiometabolic dysfunction and schizophrenia, as well as discuss the confluence of factors that increase cardiometabolic risk in this patient population. An increased understanding of the pathophysiology of schizophrenia has guided discovery of novel treatments that do not directly target dopamine and that not only do not add, but may potentially minimize relevant cardiometabolic burden for these patients. Key discoveries that have advanced the understanding of the neural circuitry and pathophysiology of schizophrenia now provide possible pathways toward the development of new and effective treatments that may mitigate the risk of metabolic dysfunction in these patients. Novel targets and preclinical and clinical data on emerging treatments, such as glycine transport inhibitors, nicotinic and muscarinic receptor agonists, and trace amine-associated receptor-1 agonists, offer promise toward relevant therapeutic advancements. Numerous areas of investigation currently exist with the potential to considerably progress our knowledge and treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonathan M Meyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
16
|
Yadav N, Thelma BK. Deletion induced splicing in RIC3 drives nicotinic acetylcholine receptor regulation with implications for endoplasmic reticulum stress in human astrocytes. Glia 2023; 71:1217-1232. [PMID: 36602087 DOI: 10.1002/glia.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) dysregulation in astrocytes is reported in neurodegenerative disorders. Modulation of nAChRs through agonists confers protection to astrocytes from stress but regulation of chaperones involved in proteostasis with pathological implications is unclear. Resistance to inhibitors of cholinesterase 3 (RIC3), a potential chaperone of nAChRs is poorly studied in humans. We characterized RIC3 in astrocytes derived from an isogenic wild-type and Cas9 edited "del" human iPSC line harboring a 25 bp homozygous deletion in exon2. Altered RIC3 transcript ratio due to deletion induced splicing and an unexpected gain of α7nAChR expression were observed in "del" astrocytes. Transcriptome analysis showed higher expression of neurotransmitter/G-protein coupled receptors mediated by cAMP and calcium/calmodulin-dependent kinase signaling with increased cytokines/glutamate secretion. Functional implications examined using tunicamycin induced ER stress in wild-type astrocyte stress model showed cell cycle arrest, RIC3 upregulation, reduction in α7nAChR membrane levels but increased α4nAChR membrane expression. Conversely, tunicamycin-treated "del" astrocytes showed a comparatively higher α4nAChR membrane expression and upsurged cAMP signaling. Furthermore, reduced expression of stress markers CHOP, phospho-PERK and lowered XBP1 splicing in western blot and qPCR, validated by proteome-based pathway analysis indicated lowered disease severity. Findings indicate (i) a complex RNA regulatory mechanism via exonic deletion induced splicing; (ii) RIC-3 as a disordered protein having contrasting effects on co-expressed nAChR subtypes under basal/stress conditions; and (iii) RIC3 as a potential drug target against ER stress in astrocytes for neurodegenerative/nicotine-related brain disorders. Cellular rescue mechanism through deletion induced exon skipping may encourage ASO-based therapies for tauopathies.
Collapse
Affiliation(s)
- Navneesh Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
17
|
Mahmoudi R, Novella JL, Laurent-Badr S, Boulahrouz S, Tran D, Morrone I, Jaïdi Y. Cholinergic Antagonists and Behavioral Disturbances in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24086921. [PMID: 37108085 PMCID: PMC10138684 DOI: 10.3390/ijms24086921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Cholinergic antagonists interfere with synaptic transmission in the central nervous system and are involved in pathological processes in patients with neurocognitive disorders (NCD), such as behavioral and psychological symptoms of dementia (BPSD). In this commentary, we will briefly review the current knowledge on the impact of cholinergic burden on BPSD in persons with NCD, including the main pathophysiological mechanisms. Given the lack of clear consensus regarding symptomatic management of BPSD, special attention must be paid to this preventable, iatrogenic condition in patients with NCD, and de-prescription of cholinergic antagonists should be considered in patients with BPSD.
Collapse
Affiliation(s)
- Rachid Mahmoudi
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Jean Luc Novella
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Sarah Laurent-Badr
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
| | - Sarah Boulahrouz
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - David Tran
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
| | - Isabella Morrone
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- Cognition Health and Society Laboratory (C2S-EA 6291), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| | - Yacine Jaïdi
- Department of Geriatric and Internal Medicine, Reims University Hospitals, Maison Blanche Hospital, 51092 Reims, France
- UR 3797 Vieillissement, Fragilité (VieFra), Faculty of Medicine, University of Reims Champagne-Ardenne, 51687 Reims, France
| |
Collapse
|
18
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
20
|
Ren J, Sang Y, Aballay A. Cholinergic receptor-Wnt pathway controls immune activation by sensing intestinal dysfunction. Cell Rep 2022; 41:111575. [DOI: 10.1016/j.celrep.2022.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
|
21
|
Park MTM, Jeon P, French L, Dempster K, Chakravarty MM, MacKinley M, Richard J, Khan AR, Théberge J, Palaniyappan L. Microstructural imaging and transcriptomics of the basal forebrain in first-episode psychosis. Transl Psychiatry 2022; 12:358. [PMID: 36050318 PMCID: PMC9436926 DOI: 10.1038/s41398-022-02136-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Cholinergic dysfunction has been implicated in the pathophysiology of psychosis and psychiatric disorders such as schizophrenia, depression, and bipolar disorder. The basal forebrain (BF) cholinergic nuclei, defined as cholinergic cell groups Ch1-3 and Ch4 (Nucleus Basalis of Meynert; NBM), provide extensive cholinergic projections to the rest of the brain. Here, we examined microstructural neuroimaging measures of the cholinergic nuclei in patients with untreated psychosis (~31 weeks of psychosis, <2 defined daily dose of antipsychotics) and used magnetic resonance spectroscopy (MRS) and transcriptomic data to support our findings. We used a cytoarchitectonic atlas of the BF to map the nuclei and obtained measures of myelin (quantitative T1, or qT1 as myelin surrogate) and microstructure (axial diffusion; AxD). In a clinical sample (n = 85; 29 healthy controls, 56 first-episode psychosis), we found significant correlations between qT1 of Ch1-3, left NBM and MRS-based dorsal anterior cingulate choline in healthy controls while this relationship was disrupted in FEP (p > 0.05). Case-control differences in qT1 and AxD were observed in the Ch1-3, with increased qT1 (reflecting reduced myelin content) and AxD (reflecting reduced axonal integrity). We found clinical correlates between left NBM qT1 with manic symptom severity, and AxD with negative symptom burden in FEP. Intracortical and subcortical myelin maps were derived and correlated with BF myelin. BF-cortical and BF-subcortical myelin correlations demonstrate known projection patterns from the BF. Using data from the Allen Human Brain Atlas, cholinergic nuclei showed significant enrichment for schizophrenia and depression-related genes. Cell-type specific enrichment indicated enrichment for cholinergic neuron markers as expected. Further relating the neuroimaging correlations to transcriptomics demonstrated links with cholinergic receptor genes and cell type markers of oligodendrocytes and cholinergic neurons, providing biological validity to the measures. These results provide genetic, neuroimaging, and clinical evidence for cholinergic dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Min Tae M. Park
- grid.39381.300000 0004 1936 8884Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Peter Jeon
- grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, Canada ,grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, Canada
| | - Leon French
- grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Kara Dempster
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - M. Mallar Chakravarty
- grid.14709.3b0000 0004 1936 8649Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada ,Cerebral Imaging Centre, Douglas Research Centre, Montreal, Canada
| | - Michael MacKinley
- grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, Canada
| | - Julie Richard
- grid.39381.300000 0004 1936 8884Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Ali R. Khan
- grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, Canada ,grid.39381.300000 0004 1936 8884Robarts Research Institute, Western University, London, Canada
| | - Jean Théberge
- grid.39381.300000 0004 1936 8884Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada ,grid.39381.300000 0004 1936 8884Department of Medical Biophysics, Western University, London, Canada ,grid.415847.b0000 0001 0556 2414Lawson Health Research Institute, London, Canada
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada. .,Department of Medical Biophysics, Western University, London, Canada. .,Robarts Research Institute, Western University, London, Canada. .,Lawson Health Research Institute, London, Canada. .,Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
22
|
Knox HJ, Rego Campello H, Lester HA, Gallagher T, Dougherty DA. Characterization of Binding Site Interactions and Selectivity Principles in the α3β4 Nicotinic Acetylcholine Receptor. J Am Chem Soc 2022; 144:16101-16117. [PMID: 36006801 DOI: 10.1021/jacs.2c06495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in neurotransmission and are also involved in addiction and several disease states. There is significant interest in therapeutic targeting of nAChRs; however, achieving selectivity for one subtype over others has been a longstanding challenge, given the close structural similarities across the family. Here, we characterize binding interactions in the α3β4 nAChR subtype via structure-function studies involving noncanonical amino acid mutagenesis and two-electrode voltage clamp electrophysiology. We establish comprehensive binding models for both the endogenous neurotransmitter ACh and the smoking cessation drug cytisine. We also use a panel of C(10)-substituted cytisine derivatives to probe the effects of subtle changes in the ligand structure on binding. By comparing our results to those obtained for the well-studied α4β2 subtype, we identify several features of both the receptor and agonist structure that can be utilized to enhance selectivity for either α3β4 or α4β2. Finally, we characterize binding interactions of the α3β4-selective partial agonist AT-1001 to determine factors that contribute to its selectivity. These results shed new light on the design of selective nAChR-targeted ligands and can be used to inform the design of improved therapies with minimized off-target effects.
Collapse
Affiliation(s)
- Hailey J Knox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Koniuszewski F, Vogel FD, Bampali K, Fabjan J, Seidel T, Scholze P, Schmiedhofer PB, Langer T, Ernst M. Molecular Mingling: Multimodal Predictions of Ligand Promiscuity in Pentameric Ligand-Gated Ion Channels. Front Mol Biosci 2022; 9:860246. [PMID: 35615739 PMCID: PMC9124788 DOI: 10.3389/fmolb.2022.860246] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/28/2022] [Indexed: 01/23/2023] Open
Abstract
Background: Human pentameric ligand-gated ion channels (pLGICs) comprise nicotinic acetylcholine receptors (nAChRs), 5-hydroxytryptamine type 3 receptors (5-HT3Rs), zinc-activated channels (ZAC), γ-aminobutyric acid type A receptors (GABAARs) and glycine receptors (GlyRs). They are recognized therapeutic targets of some of the most prescribed drugs like general anesthetics, anxiolytics, smoking cessation aids, antiemetics and many more. Currently, approximately 100 experimental structures of pLGICs with ligands bound exist in the protein data bank (PDB). These atomic-level 3D structures enable the generation of a comprehensive binding site inventory for the superfamily and the in silico prediction of binding site properties. Methods: A panel of high throughput in silico methods including pharmacophore screening, conformation analysis and descriptor calculation was applied to a selection of allosteric binding sites for which in vitro screens are lacking. Variant abundance near binding site forming regions and computational docking complement the approach. Results: The structural data reflects known and novel binding sites, some of which may be unique to individual receptors, while others are broadly conserved. The membrane spanning domain, comprising four highly conserved segments, contains ligand interaction sites for which in vitro assays suitable for high throughput screenings are critically lacking. This is also the case for structurally more variable novel sites in the extracellular domain. Our computational results suggest that the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) can utilize multiple pockets which are likely to exist on most superfamily members. Conclusion: With this study, we explore the potential for polypharmacology among pLGICs. Our data suggest that ligands can display two forms of promiscuity to an extent greater than what has been realized: 1) Ligands can interact with homologous sites in many members of the superfamily, which bears toxicological relevance. 2) Multiple pockets in distinct localizations of individual receptor subtypes share common ligands, which counteracts efforts to develop selective agents. Moreover, conformational states need to be considered for in silico drug screening, as certain binding sites display considerable flexibility. In total, this work contributes to a better understanding of polypharmacology across pLGICs and provides a basis for improved structure guided in silico drug development and drug derisking.
Collapse
Affiliation(s)
- Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian D. Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Konstantina Bampali
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Philip B. Schmiedhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
24
|
Rootes-Murdy K, Goldsmith DR, Turner JA. Clinical and Structural Differences in Delusions Across Diagnoses: A Systematic Review. Front Integr Neurosci 2022; 15:726321. [PMID: 35140591 PMCID: PMC8818879 DOI: 10.3389/fnint.2021.726321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Delusions are marked, fixed beliefs that are incongruent with reality. Delusions, with comorbid hallucinations, are a hallmark of certain psychotic disorders (e.g., schizophrenia). Delusions can present transdiagnostically, in neurodegenerative (e.g., Alzheimer's disease and fronto-temporal dementia), nervous system disorders (e.g., Parkinson's disease) and across other psychiatric disorders (e.g., bipolar disorder). The burden of delusions is severe and understanding the heterogeneity of delusions may delineate a more valid nosology of not only psychiatric disorders but also neurodegenerative and nervous system disorders. We systematically reviewed structural neuroimaging studies reporting on delusions in four disorder types [schizophrenia (SZ), bipolar disorder (BP), Alzheimer's disease (AD), and Parkinson's disease (PD)] to provide a comprehensive overview of neural changes and clinical presentations associated with delusions. Twenty-eight eligible studies were identified. This review found delusions were most associated with gray matter reductions in the dorsolateral prefrontal cortex (SZ, BP, and AD), left claustrum (SZ and AD), hippocampus (SZ and AD), insula (SZ, BP, and AD), amygdala (SZ and BP), thalamus (SZ and AD), superior temporal gyrus (SZ, BP, and AD), and middle frontal gyrus (SZ, BP, AD, and PD). However, there was a great deal of variability in the findings of each disorder. There is some support for the current dopaminergic hypothesis of psychosis, but we also propose new hypotheses related to the belief formation network and cognitive biases. We also propose a standardization of assessments to aid future transdiagnostic study approaches. Future studies should explore the neural and biological underpinnings of delusions to hopefully, inform future treatment.
Collapse
Affiliation(s)
- Kelly Rootes-Murdy
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David R. Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica A. Turner
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
da Motta KP, Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. Target enzymes in oxaliplatin-induced peripheral neuropathy in Swiss mice: A new acetylcholinesterase inhibitor as therapeutic strategy. Chem Biol Interact 2021; 352:109772. [PMID: 34896366 DOI: 10.1016/j.cbi.2021.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Beatriz F Santos
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Nelson Luís De C Domingues
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
26
|
Batool S, Akhter B, Zaidi J, Visser F, Petrie G, Hill M, Syed NI. Neuronal Menin Overexpression Rescues Learning and Memory Phenotype in CA1-Specific α7 nAChRs KD Mice. Cells 2021; 10:3286. [PMID: 34943798 PMCID: PMC8699470 DOI: 10.3390/cells10123286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
The perturbation of nicotinic cholinergic receptors is thought to underlie many neurodegenerative and neuropsychiatric disorders, such as Alzheimer's and schizophrenia. We previously identified that the tumor suppressor gene, MEN1, regulates both the expression and synaptic targeting of α7 nAChRs in the mouse hippocampal neurons in vitro. Here we sought to determine whether the α7 nAChRs gene expression reciprocally regulates the expression of menin, the protein encoded by the MEN1 gene, and if this interplay impacts learning and memory. We demonstrate here that α7 nAChRs knockdown (KD) both in in vitro and in vivo, initially upregulated and then subsequently downregulated menin expression. Exogenous expression of menin using an AAV transduction approach rescued α7 nAChRs KD mediated functional and behavioral deficits specifically in hippocampal (CA1) neurons. These effects involved the modulation of the α7 nAChR subunit expression and functional clustering at the synaptic sites. Our data thus demonstrates a novel and important interplay between the MEN1 gene and the α7 nAChRs in regulating hippocampal-dependent learning and memory.
Collapse
Affiliation(s)
- Shadab Batool
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Basma Akhter
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
| | - Jawwad Zaidi
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Frank Visser
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
| | - Gavin Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
- Department of Neuroscience, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Matthew Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (S.B.); (B.A.); (F.V.); (G.P.); (M.H.)
| | - Naweed I. Syed
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
27
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
28
|
Correa Leite PE, de Araujo Portes J, Pereira MR, Russo FB, Martins-Duarte ES, Almeida Dos Santos N, Attias M, Barrantes FJ, Baleeiro Beltrão-Braga PC, de Souza W. Morphological and biochemical repercussions of Toxoplasma gondii infection in a 3D human brain neurospheres model. Brain Behav Immun Health 2021; 11:100190. [PMID: 34589727 PMCID: PMC8474451 DOI: 10.1016/j.bbih.2020.100190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect the central nervous system (CNS), promoting neuroinflammation, neuronal loss, neurotransmitter imbalance and behavioral alterations. T. gondii infection is also related to neuropsychiatric disorders such as schizophrenia. The pathogenicity and inflammatory response in rodents are different to the case of humans, compromising the correlation between the behavioral alterations and physiological modifications observed in the disease. In the present work we used BrainSpheres, a 3D CNS model derived from human pluripotent stem cells (iPSC), to investigate the morphological and biochemical repercussions of T. gondii infection in human neural cells. Methods We evaluated T. gondii ME49 strain proliferation and cyst formation in both 2D cultured human neural cells and BrainSpheres. Aspects of cell morphology, ultrastructure, viability, gene expression of neural phenotype markers, as well as secretion of inflammatory mediators were evaluated for 2 and 4 weeks post infection in BrainSpheres. Results T. gondii can infect BrainSpheres, proliferating and inducing cysts formation, neural cell death, alteration in neural gene expression and triggering the release of several inflammatory mediators. Conclusions BrainSpheres reproduce many aspects of T. gondii infection in human CNS, constituting a useful model to study the neurotoxicity and neuroinflammation mediated by the parasite. In addition, these data could be important for future studies aiming at better understanding possible correlations between psychiatric disorders and human CNS infection with T. gondii. T. gondii infects, proliferates and induce cysts formation in neurospheres. T. gondii infection induces neural cell death in neurospheres. T. gondii infection promotes alteration in neural gene expression in neurospheres. T. gondii infection promotes release of inflammatory mediators in neurospheres.
Collapse
Affiliation(s)
- Paulo Emilio Correa Leite
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Directory of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Juliana de Araujo Portes
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Fabiele Baldino Russo
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Erica S Martins-Duarte
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil.,Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia Almeida Dos Santos
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Marcia Attias
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), UCA-CONICET, Buenos Aires, Argentina
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Laboratory of Disease Modeling, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP, Brazil.,Scientific Platform Pasteur-USP, São Paulo, SP, Brazil
| | - Wanderley de Souza
- Institute of Biophysics Carlos Chagas Filho and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
30
|
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar 143005 India
- Department of Chemistry University of Petroleum & Energy Studies, Energy Acres Dehradun 248007 India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar 143005 India
- Department of Chemistry Uttaranchal University, Arcadia Grant Dehradun 248007 India
| |
Collapse
|
31
|
Urso D, Gnoni V, Filardi M, Logroscino G. Delusion and Delirium in Neurodegenerative Disorders: An Overlooked Relationship? Front Psychiatry 2021; 12:808724. [PMID: 35115974 PMCID: PMC8804700 DOI: 10.3389/fpsyt.2021.808724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 12/04/2022] Open
Abstract
Delusions are part of the neuropsychiatric symptoms that patients suffering from neurodegenerative conditions frequently develop at some point of the disease course and are associated with an increased risk of cognitive and functional decline. Delirium is a syndrome characterized by acute onset of deficits in attention, awareness, and cognition that fluctuate in severity over a short time period. Delusions and delirium are frequently observed in the context of neurodegeneration, and their presence can easily mislead clinicians toward a misdiagnosis of psychiatric disorder further delaying the proper treatment. Risk factors for developing delusion and delirium in neurodegenerative conditions have been investigated separately while the possible interplay between these two conditions has not been explored so far. With this study, we aim to achieve a more comprehensive picture of the relationship between delusions and delirium in neurodegeneration by analyzing prevalence and subtypes of delusions in different neurodegenerative disorders; providing an overview of clinical tools to assess delusions in neurodegenerative patients and how delusions are covered by delirium assessment tools and discussing the possible common pathophysiology mechanisms between delusion and delirium in neurodegenerative patients. A more extensive characterization of the relationship between delusions and delirium may help to understand whether delusions may constitute a risk factor for delirium and may ameliorate the management of both conditions in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Urso
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Valentina Gnoni
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco Filardi
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, Pia Fondazione Cardinale G. Panico, University of Bari Aldo Moro, Bari, Italy.,Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|