1
|
Okura T, Nakamura R, Kitao S, Ito Y, Anno M, Matsumoto K, Shoji K, Matsuzawa K, Izawa S, Okura H, Ueta E, Kato M, Imamura T, Taniguchi SI, Yamamoto K. Fasting hepatic insulin clearance reflects postprandial hepatic insulin clearance: a brief report. Diabetol Metab Syndr 2023; 15:261. [PMID: 38115089 PMCID: PMC10731793 DOI: 10.1186/s13098-023-01241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Hepatic insulin clearance (HIC) is an important pathophysiology of type 2 diabetes mellitus (T2DM). HIC was reported to decrease in patients with type 2 diabetes and metabolic syndrome. HIC is originally calculated by post-load insulin and C-peptide from the oral glucose tolerance test (OGTT). However, OGTT or meal tolerance tests are a burden for patients, and OGTT is not suitable for overt diabetes due to the risk of hyperglycemia. If we can calculate the HIC from the fasting state, it is preferable. We hypothesized that fasting HIC correlates with postprandial HIC in both participants with T2DM and without diabetes. We investigated whether fasting HIC correlates with postprandial HIC in overt T2DM and nondiabetes subjects (non-DM) evaluated by using glucose clamp and meal load. METHODS We performed a meal tolerance test and hyperinsulinemic-euglycemic clamp in 70 subjects, 31 patients with T2DM and 39 non-DM subjects. We calculated the postprandial C-peptide AUC-to-insulin AUC ratio as the postprandial HIC and the fasting C-peptide-to-insulin ratio as the fasting HIC. We also calculated whole-body insulin clearance from the glucose clamp test. RESULTS The fasting HIC significantly correlated with postprandial HIC in T2DM (r_S = 0.82, P < 0.001). Nondiabetes subjects also showed a significant correlation between fasting and postprandial HIC (r_S = 0.71, P < 0.001). Fasting HIC in T2DM was correlated with BMI, HbA1c, gamma-glutamyl transpeptidase, HOMA-IR, HOMA-beta, M/I, and whole-body insulin clearance. Fasting HIC in nondiabetes subjects was correlated with HOMA-IR and HOMA-beta. CONCLUSIONS These results suggest that fasting HIC is strongly correlated with postprandial HIC in both overt T2DM and non-DM patients, as evaluated by the meal test and glucose clamp method. Fasting HIC could be a convenient marker of HIC.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Sonoko Kitao
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ito
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Mari Anno
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhisa Matsumoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kyoko Shoji
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhiko Matsuzawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Hiroko Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masahiko Kato
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shin-Ichi Taniguchi
- Department of Community-based Family Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
2
|
Zaharia OP, Antoniou S, Bobrov P, Karusheva Y, Bódis K, Kupriyanova Y, Schrauwen-Hinderling V, Gastaldelli A, Szendroedi J, Wagner R, Burkart V, Roden M. Reduced Insulin Clearance Differently Relates to Increased Liver Lipid Content and Worse Glycemic Control in Recent-Onset Type 2 and Type 1 Diabetes. Diabetes Care 2023; 46:2232-2239. [PMID: 37874983 DOI: 10.2337/dc23-1267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE Diabetes may feature impaired insulin kinetics, which could be aggravated by altered hepatic metabolism and glycemic control. Thus, we examined insulin clearance and its possible determinants in individuals with recent-onset diabetes. RESEARCH DESIGN AND METHODS Participants of the German Diabetes Study (GDS) with type 1 diabetes (T1D) (n = 306), type 2 diabetes (T2D) (n = 489), or normal glucose tolerance (control [CON]) (n = 167) underwent hyperinsulinemic-euglycemic clamps for assessment of whole-body insulin sensitivity (M value) and insulin clearance (ICCLAMP). Insulin clearance rates were further calculated during intravenous glucose tolerance tests (ICIVGTT) and mixed-meal tests (ICMMT). Hepatocellular lipid content (HCL) was quantified with 1H-MRS. RESULTS Both T1D and T2D groups had lower ICCLAMP (0.12 ± 0.07 and 0.21 ± 0.06 vs. 0.28 ± 0.14 arbitrary units [a.u.], respectively, all P < 0.05) and ICMMT (0.71 ± 0.35 and 0.99 ± 0.33 vs. 1.20 ± 0.36 a.u., all P < 0.05) than CON. In T1D, ICCLAMP, ICIVGTT, and ICMMT correlated negatively with HbA1c (all P < 0.05). M value correlated positively with ICIVGTT in CON and T2D (r = 0.199 and r = 0.178, P < 0.05) and with ICMMT in CON (r = 0.176, P < 0.05). HCL negatively associated with ICIVGTT and ICMMT in T2D (r = -0.005 and r = -0.037) and CON (r = -0.127 and r = -0.058, all P < 0.05). In line, T2D or CON subjects with steatosis featured lower ICMMT than those without steatosis (both P < 0.05). CONCLUSIONS Insulin clearance is reduced in both T1D and T2D within the first year after diagnosis but correlates negatively with liver lipid content rather in T2D. Moreover, insulin clearance differently associates with glycemic control and insulin sensitivity in each diabetes type, which may suggest specific mechanisms affecting insulin kinetics.
Collapse
Affiliation(s)
- Oana-Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Sofia Antoniou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Pavel Bobrov
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Yanislava Karusheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Kálmán Bódis
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Wagner
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Sugimoto H, Hironaka KI, Yamada T, Sakaguchi K, Ogawa W, Kuroda S. DI/cle, a Measure Consisting of Insulin Sensitivity, Secretion, and Clearance, Captures Diabetic States. J Clin Endocrinol Metab 2023; 108:3080-3089. [PMID: 37406246 PMCID: PMC10655546 DOI: 10.1210/clinem/dgad392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
CONTEXT Insulin clearance is implicated in regulation of glucose homeostasis independently of insulin sensitivity and insulin secretion. OBJECTIVE To understand the relation between blood glucose and insulin sensitivity, secretion, and clearance. METHODS We performed a hyperglycemic clamp, a hyperinsulinemic-euglycemic clamp, and an oral glucose tolerance test (OGTT) in 47, 16, and 49 subjects with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2 diabetes mellitus (T2DM), respectively. Mathematical analyses were retrospectively performed on this dataset. RESULTS The disposition index (DI), defined as the product of insulin sensitivity and secretion, showed a weak correlation with blood glucose levels, especially in IGT (r = 0.04; 95% CI, -0.63 to 0.44). However, an equation relating DI, insulin clearance, and blood glucose levels was well conserved regardless of the extent of glucose intolerance. As a measure of the effect of insulin, we developed an index, designated disposition index/clearance, (DI/cle) that is based on this equation and corresponds to DI divided by the square of insulin clearance. DI/cle was not impaired in IGT compared with NGT, possibly as a result of a decrease in insulin clearance in response to a reduction in DI, whereas it was impaired in T2DM relative to IGT. Moreover, DI/cle estimated from a hyperinsulinemic-euglycemic clamp, OGTT, or a fasting blood test were significantly correlated with that estimated from 2 clamp tests (r = 0.52; 95% CI, 0.37 to 0.64, r = 0.43; 95% CI, 0.24 to 0.58, r = 0.54; 95% CI, 0.38 to 0.68, respectively). CONCLUSION DI/cle can serve as a new indicator for the trajectory of changes in glucose tolerance.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ken-ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoko Yamada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| | - Kazuhiko Sakaguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| | - Shinya Kuroda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Yang Z, Kubant R, Cho CE, Kranenburg E, Beaudry J, Bottiglieri T, Anderson GH. Micronutrients in High-Fat Diet Modify Insulin Resistance and Its Regulatory Genes in Adult Male Mice. Mol Nutr Food Res 2023; 67:e2300199. [PMID: 37526337 DOI: 10.1002/mnfr.202300199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Indexed: 08/02/2023]
Abstract
SCOPE Obesity and insulin resistance (IR) are associated with epigenetic changes of gene expression. However, the relationship between micronutrients, epigenetic regulation of gene expression, and IR during development of diet-induced obesity has yet to be defined. Our objective is to describe the effect of micronutrient addition to diets on IR and its related genes during obesity development. METHODS AND RESULTS Male C57BL/6J mice are fed a high-fat (HFD) or low-fat (LFD) diets with or without a multi-vitamin mineral mix (MVM) addition containing vitamins A, B1, B6, B12, and Zn, and Se for 9 weeks. Compared to LFD mice, HFD mice have higher body weight, IR, fasting glucose, insulin, C-peptide, leptin, and hepatic triglyceride concentrations, and dysregulated gene expression in liver, muscle, pancreas, and fat tissues (p < 0.05). The addition of MVM reduces these HFD-induced effects. HFD downregulates 27 genes associated with insulin regulation and adipose tissue function across all tissues by an average of 47% and upregulates five genes by 230% (p < 0.001). Adding MVM downregulates five genes and upregulates one in HFD-fed mice. Both HFD and MVM alter one-carbon metabolites. CONCLUSION Addition of micronutrients to the HFD decreases IR and modifies associated gene expression in obese and lean mice.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Eva Kranenburg
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline Beaudry
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Scott & White Health, Austin, TX, USA
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Sugiyama S, Jinnouchi H, Hieshima K, Kurinami N, Jinnouchi K, Yoshida A, Suzuki T, Kajiwara K, Miyamoto F, Jinnouchi T. Potential Identification of Type 2 Diabetes with Elevated Insulin Clearance. NEJM EVIDENCE 2022; 1:EVIDoa2100052. [PMID: 38319210 DOI: 10.1056/evidoa2100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
BACKGROUND: Decreased blood insulin concentrations resulting from reduced pancreatic β-cell insulin secretion and elevated insulin clearance (IC) could be involved in impaired glucose metabolism in diabetes. Recently, we reported a patient with type 2 diabetes mellitus (T2DM) who had decreased blood insulin concentrations and elevated IC. METHODS: For this study, we recruited patients with newly diagnosed, treatment-naïve T2DM and measured the metabolic clearance rate of insulin (MCRI) determined by a hyperinsulinemic-euglycemic clamp examination. We defined elevated IC as an MCRI of more than 700 ml/min/m2. Using this tentative cutoff, we identified patients with T2DM with elevated IC and investigated their clinical characteristics. RESULTS: We enrolled 101 patients in this study; 78.2% were men. Patients had a mean age of 54.1 years, a median body-mass index (BMI) of 25.1 kg/m2 (interquartile range [IQR], 22.9 to 28.4 kg/m2), a median hemoglobin A1c of 10.0% (IQR, 8.0 to 12.3%), and a median MCRI of 655 ml/min/m2 (IQR, 562 to 810 ml/min/m2). Our case definition for elevated IC was met by 44 patients whose median MCRI was 842 ml/min/m2 (IQR, 747 to 975 ml/min/m2) compared with those without elevated IC (570 ml/min/m2; IQR, 500 to 628 ml/min/m2). On the basis of this division, fasting blood glucose and insulin levels were 178 mg/dl (IQR, 140 to 218 mg/dl) and 4.2 mU/l (IQR, 2.7 to 5.5 mU/l), respectively, in patients with elevated IC compared with 146 mg/dl (IQR, 128 to 188 mg/dl) and 9.6 mU/l (IQR, 6.6 to 14.9 mU/l), respectively, in patients without elevated IC. The BMI of patients with elevated IC was 22.9 kg/m2 (IQR, 20.7 to 24.2 kg/m2) compared with 27.3 kg/m2 (IQR, 25.2 to 29.4 kg/m2) in patients who did not have elevated IC. There were no clinically significant differences in renal or hepatic function test results. CONCLUSIONS: Our data suggest that there is a group of patients with T2DM with elevated IC, and that they are nonobese and have decreased blood insulin concentrations. If confirmed, this novel form of T2DM could affect the treatment of such patients. (UMIN Clinical Trials Registry number, UMIN000032014.)
Collapse
Affiliation(s)
- Seigo Sugiyama
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Cardiovascular Medicine, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Hideaki Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Cardiovascular Medicine, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Preventive Cardiology, Department of Cardiovascular Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Kunio Hieshima
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Infectious Disease Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Noboru Kurinami
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Obesity Treatment Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Katsunori Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Gastroenterology and Nephrology, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Akira Yoshida
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Pharmacology Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Tomoko Suzuki
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Cardiovascular Medicine, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Keizo Kajiwara
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Cardiovascular Medicine, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Fumio Miyamoto
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Ophthalmology Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Tomio Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
- Division of Cardiovascular Medicine, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| |
Collapse
|
6
|
Chorell E, Otten J, Stomby A, Ryberg M, Waling M, Hauksson J, Svensson M, Olsson T. Improved Peripheral and Hepatic Insulin Sensitivity after Lifestyle Interventions in Type 2 Diabetes Is Associated with Specific Metabolomic and Lipidomic Signatures in Skeletal Muscle and Plasma. Metabolites 2021; 11:metabo11120834. [PMID: 34940592 PMCID: PMC8708788 DOI: 10.3390/metabo11120834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/15/2023] Open
Abstract
Lifestyle interventions with weight loss can improve insulin sensitivity in type 2 diabetes (T2D), but mechanisms are unclear. We explored circulating and skeletal muscle metabolite signatures of altered peripheral (pIS) and hepatic insulin sensitivity (hIS) in overweight and obese T2D individuals that were randomly assigned a 12-week Paleolithic-type diet with (diet-ex, n = 13) or without (diet, n = 13) supervised exercise. Baseline and post-intervention measures included: mass spectrometry-based metabolomics and lipidomics of skeletal muscle and plasma; pIS and hIS; ectopic lipid deposits in the liver and skeletal muscle; and skeletal muscle fat oxidation rate. Both groups lowered BMI and total % fat mass and increased their pIS. Only the diet-group improved hIS and reduced ectopic lipids in the liver and muscle. The combined improvement in pIS and hIS in the diet-group were associated with decreases in muscle and circulating branched-chain amino acid (BCAA) metabolites, specifically valine. Improved pIS with diet-ex was instead linked to increased diacylglycerol (34:2) and triacylglycerol (56:0) and decreased phosphatidylcholine (34:3) in muscle coupled with improved muscle fat oxidation rate. This suggests a tissue crosstalk involving BCAA-metabolites after diet intervention with improved pIS and hIS, reflecting reduced lipid influx. Increased skeletal muscle lipid utilization with exercise may prevent specific lipid accumulation at sites that perturb insulin signaling.
Collapse
Affiliation(s)
- Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
- Correspondence: ; Tel.: +46-(0)90-785-1326
| | - Julia Otten
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Andreas Stomby
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Mats Ryberg
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| | - Maria Waling
- Department of Food, Nutrition and Culinary Science, Umeå University, 901 87 Umeå, Sweden;
| | - Jon Hauksson
- Department of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden;
| | - Michael Svensson
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, 901 87 Umeå, Sweden;
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden; (J.O.); (A.S.); (M.R.); (T.O.)
| |
Collapse
|
7
|
Mokwena MAM, Engwa GA, Nkeh-Chungag BN, Sewani-Rusike CR. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. BMC Complement Med Ther 2021; 21:292. [PMID: 34844584 PMCID: PMC8628465 DOI: 10.1186/s12906-021-03459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Central obesity and insulin resistance are associated with metabolic syndrome (MetS) which is aggravated by diet and sedentary lifestyle. Athrixia phylicoides (AP) is reported by rural communities to have medicinal benefits associated with MetS such as obesity and type 2 diabetes. This study was aimed to investigate the effects of AP on diet-induced MetS in Wistar rats to validate its ethnopharmacological use. METHODS AP was profiled for phytochemicals by LC-MS. After induction of MetS with high energy diet (HED), 30 male rats were divided into five treatment groups (n = 6): normal diet control, HED control, HED + AP 50 mg/Kg BW, HED + AP 100 mg/Kg BW and HED + 50 mg/Kg BW metformin. The rats were treated daily for 8 weeks orally after which weight gain, visceral fat, total cholesterol, free fatty acids (FFAs) and adipokine regulation; leptin: adiponectin ratio (LAR) were assessed. Also, glucose homeostatic parameters including fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glucose transporter 4 (GLUT 4), insulin and homeostatic model assessment of insulin resistance (HOMA-IR) were determined. RESULTS Findings showed that AP was rich in polyphenols. The HED control group showed derangements of the selected blood parameters of MetS. AP reversed diet-induced weight gain by reducing visceral fat, total blood cholesterol and circulating FFAs (p ≤ 0.05). Treatment with AP improved adipokine regulation depicted by reduced LAR (p<0.05). Treatment with AP improved parameters of glucose homeostasis as demonstrated by reduced FBG and HOMA-IR (p ≤ 0.05) and increased GLUT 4 (p<0.05). CONCLUSION Athrixia phylicoides tea infusion was shown to possess anti-obesity and anti-inflammatory properties, improved glucose uptake and reduce insulin resistance in diet-induced MetS in rats which could be attributed to its richness in polyphenols. Therefore, AP could have potential benefits against type 2 diabetes and obesity which are components of MetS validating its ethnopharmacological use.
Collapse
Affiliation(s)
- Madigoahle A M Mokwena
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa.
| |
Collapse
|
8
|
Piersanti A, Abdul Rahman NHB, Gobl C, Burattini L, Kautzky-Willer A, Pacini G, Tura A, Morettini M. Model-Based Assessment of Hepatic and Extrahepatic Insulin Clearance from Short Insulin-Modified IVGTT in Women with a History of Gestational Diabetes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4311-4314. [PMID: 34892175 DOI: 10.1109/embc46164.2021.9630405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insulin clearance is an integral component of insulin metabolism. Yet, little is known about separate contribution of hepatic and extrahepatic insulin clearance in type 2 diabetes and in high-risk populations, such as women who experienced gestational diabetes mellitus (pGDM). A model-based method was recently proposed to assess both contributions from 3-hour insulin-modified intravenous glucose tolerance test (IM-IVGTT); the aim of this study was to assess the reliability of short (1 hour) IM-IVGTT in the application of such model-based method and to evaluate the role of the two contributions in determining insulin clearance in pGDM. A total of 115 pGDM women and 41 who remained healthy during pregnancy (CNT) were analyzed early postpartum and underwent a 3-hour IMIVGTT. Peripheral insulin clearance (CLP), hepatic fractional extraction (FEL) and extrahepatic distribution volume (VP) were estimated by performing a best-fit procedure on insulin IMIVGTT data considering firstly the overall 3-hour duration and then limiting data to 1 hour. Results showed no significant difference in parameter values between the 3-hour and the 1-hour IM-IVGTT. Comparison between pGDM and CNT (1-hour) showed no significant difference in CLp (0.23 [0.29] vs. 0.27 [0.43] L·min-1; p=0.64), FEL (50.2 [15.1] vs. 50.9 [11.7] %; p=0.63) and VP (2.01 [2.99] vs. 2.70 [4.00] L; p=0.92). In conclusion, short IM-IVGTT provides a reliable assessment of hepatic and extrahepatic insulin clearance through such model-based method. Its application to the study of pGDM women showed no alteration in hepatic and extrahepatic contributions with respect to women who had a healthy pregnancy.Clinical Relevance- This study proves the reliability of short (1 hour) IM-IVGTT to assess hepatic and extrahepatic insulin clearance in women who experienced gestational diabetes.
Collapse
|
9
|
Tura A, Grespan E, Göbl CS, Koivula RW, Franks PW, Pearson ER, Walker M, Forgie IM, Giordano GN, Pavo I, Ruetten H, Dermitzakis ET, McCarthy MI, Pedersen O, Schwenk JM, Adamski J, De Masi F, Tsirigos KD, Brunak S, Viñuela A, Mahajan A, McDonald TJ, Kokkola T, Vangipurapu J, Cederberg H, Laakso M, Rutters F, Elders PJM, Koopman ADM, Beulens JW, Ridderstråle M, Hansen TH, Allin KH, Hansen T, Vestergaard H, Mari A. Profiles of Glucose Metabolism in Different Prediabetes Phenotypes, Classified by Fasting Glycemia, 2-Hour OGTT, Glycated Hemoglobin, and 1-Hour OGTT: An IMI DIRECT Study. Diabetes 2021; 70:2092-2106. [PMID: 34233929 DOI: 10.2337/db21-0227] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022]
Abstract
Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). β-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P < 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P < 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio >2, P < 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.
Collapse
Affiliation(s)
- Andrea Tura
- CNR Institute of Neuroscience, Padova, Italy
| | | | - Christian S Göbl
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Robert W Koivula
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- Genetic and Molecular Epidemiology, Department of Clinical Science, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Paul W Franks
- Genetic and Molecular Epidemiology, Department of Clinical Science, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Ewan R Pearson
- Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, U.K
| | - Mark Walker
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Ian M Forgie
- Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, U.K
| | - Giuseppe N Giordano
- Genetic and Molecular Epidemiology, Department of Clinical Science, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Imre Pavo
- Eli Lilly Regional Operations Ges.m.b.H., Vienna, Austria
| | - Hartmut Ruetten
- CardioMetabolism & Respiratory Medicine, Boehringer Ingelheim International GmbH, Ingelheim/Rhein, Germany
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Mark I McCarthy
- Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, U.K
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Oluf Pedersen
- Section of Metabolic Genetics, Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Federico De Masi
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantinos D Tsirigos
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Viñuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, U.K
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Timothy J McDonald
- Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Tarja Kokkola
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jagadish Vangipurapu
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henna Cederberg
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Femke Rutters
- Department of Epidemiology and Data Science, Amsterdam Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Petra J M Elders
- Department of Epidemiology and Data Science, Amsterdam Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Anitra D M Koopman
- Department of Epidemiology and Data Science, Amsterdam Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Joline W Beulens
- Department of Epidemiology and Data Science, Amsterdam Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Martin Ridderstråle
- Department of Clinical Sciences, Diabetes & Endocrinology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Tue H Hansen
- Section of Metabolic Genetics, Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristine H Allin
- Section of Metabolic Genetics, Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section of Metabolic Genetics, Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Section of Metabolic Genetics, Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | | | | |
Collapse
|
10
|
Barragán-Álvarez CP, Padilla-Camberos E, Díaz NF, Cota-Coronado A, Hernández-Jiménez C, Bravo-Reyna CC, Díaz-Martínez NE. Loss of Znt8 function in diabetes mellitus: risk or benefit? Mol Cell Biochem 2021; 476:2703-2718. [PMID: 33666829 DOI: 10.1007/s11010-021-04114-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic β cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.
Collapse
Affiliation(s)
- Carla P Barragán-Álvarez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Nestor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Agustín Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Claudia Hernández-Jiménez
- Departamento de Cirugía Experimental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nestor E Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.
| |
Collapse
|
11
|
Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Int J Mol Sci 2021; 22:ijms22052235. [PMID: 33668109 PMCID: PMC7956289 DOI: 10.3390/ijms22052235] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50–80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky’s seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697-4545, USA
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| | - Carlos M. González-Casimiro
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Beatriz Merino
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Caitlin N. Suire
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Germán Perdomo
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| |
Collapse
|
12
|
Foley KP, Zlitni S, Duggan BM, Barra NG, Anhê FF, Cavallari JF, Henriksbo BD, Chen CY, Huang M, Lau TC, Plante R, Schwab M, Marette A, Schertzer JD. Gut microbiota impairs insulin clearance in obese mice. Mol Metab 2020; 42:101067. [PMID: 32860984 PMCID: PMC7522491 DOI: 10.1016/j.molmet.2020.101067] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Hyperinsulinemia can be both a cause and consequence of obesity and insulin resistance. Hyperinsulinemia can result from increased insulin secretion and/or reduced insulin clearance. While many studies have focused on mechanisms triggering insulin secretion during obesity, the triggers for changes in insulin clearance during obesity are less defined. In this study, we investigated the role of the microbiota in regulating insulin clearance during diet-induced obesity. Methods Blood glucose and insulin clearance were tested in conventional male mice treated with antibiotics and germ-free mice colonized with microbes from mice that were fed a control (chow) diet or an obesogenic high-fat diet (HFD). The composition of the fecal microbiota was analyzed using 16S rRNA sequencing. Results Short-term HFD feeding and aging did not alter insulin clearance in the mice. Oral antibiotics mitigated impaired blood insulin clearance in the mice fed an HFD for 12 weeks or longer. Germ-free mice colonized with microbes from HFD-fed donor mice had impaired insulin but not C-peptide clearance. Microbe-transmissible insulin clearance impairment was only observed in germ-free mice after more than 6 weeks post-colonization upon HFD feeding. Five bacterial taxa predicted >90% of the variance in insulin clearance. Mechanistically, impaired insulin clearance was associated with lower levels of hepatic Ceacam-1 but increased liver and skeletal muscle insulin-degrading enzyme (IDE) activity. Conclusions Gut microbes regulate insulin clearance during diet-induced obesity. A small cluster of microbes or their metabolites may be targeted for mitigating defects in insulin clearance and hyperinsulinemia during the progression of obesity and type 2 diabetes. Obesity impairs insulin clearance in mice, which is mitigated by antibiotics. The gut microbiota contributes to impaired insulin but not C-peptide clearance. The gut microbiota is a stand-alone factor that impairs insulin clearance. A cluster of related bacteria predict >90% of the variance in insulin clearance. Impaired insulin clearance is associated with lower hepatic Ceacam-1.
Collapse
Affiliation(s)
- Kevin P Foley
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Soumaya Zlitni
- Departments of Genetics and Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Brittany M Duggan
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Fernando F Anhê
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Joseph F Cavallari
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Brandyn D Henriksbo
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Cassandra Y Chen
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Michael Huang
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Trevor C Lau
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Roxanne Plante
- Quebec Heart and Lung Institute Research Center, Faculty of Medicine, Laval University, Quebec City, Quebec, G1V 4G5, Canada
| | - Michael Schwab
- Quebec Heart and Lung Institute Research Center, Faculty of Medicine, Laval University, Quebec City, Quebec, G1V 4G5, Canada
| | - André Marette
- Quebec Heart and Lung Institute Research Center, Faculty of Medicine, Laval University, Quebec City, Quebec, G1V 4G5, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
13
|
Tura A, Göbl C, Morettini M, Burattini L, Kautzky-Willer A, Pacini G. Insulin clearance is altered in women with a history of gestational diabetes progressing to type 2 diabetes. Nutr Metab Cardiovasc Dis 2020; 30:1272-1280. [PMID: 32513580 DOI: 10.1016/j.numecd.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND AIMS Insulin clearance is a relevant process in glucose homeostasis. In this observational study, we aimed to assess insulin clearance (ClINS) in women with former gestational diabetes (fGDM) both early after delivery and after a follow-up. METHODS AND RESULTS We analysed 59 fGDM women, and 16 women not developing GDM (CNT). All women underwent an oral glucose tolerance test (OGTT) yearly, and an insulin-modified intravenous glucose tolerance test (IVGTT) at baseline and at follow-up end (until 7 years). Both IVGTT and OGTT ClINS was assessed as insulin secretion to plasma insulin ratio. We also defined IVGTT first (0-10 min) and second phase (10-180 min) ClINS. We found that 14 fGDM women progressed to type 2 diabetes (PROG), whereas 45 women remained diabetes-free (NONPROG). At baseline, IVGTT ClINS showed alterations in PROG, especially in second phase (0.88 ± 0.10 l·min-1 in PROG, 0.60 ± 0.06 in NONPROG, 0.54 ± 0.07 in CNT, p ≤ 0.03). Differences in ClINS were not found from OGTT. Cox regression analysis showed second phase ClINS as significant type 2 diabetes predictor (hazard ratio = 1.90, 95% confidence interval 1.09-3.30, p = 0.02). CONCLUSION This study showed that insulin clearance derived from an insulin-modified IVGTT is notably altered in women with history of GDM progressing towards type 2 diabetes.
Collapse
Affiliation(s)
- Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy.
| | - Christian Göbl
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Vienna, Austria
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Burattini
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Giovanni Pacini
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
14
|
Loss of Caveolin-1 Is Associated with a Decrease in Beta Cell Death in Mice on a High Fat Diet. Int J Mol Sci 2020; 21:ijms21155225. [PMID: 32718046 PMCID: PMC7432291 DOI: 10.3390/ijms21155225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022] Open
Abstract
Elevated free fatty acids (FFAs) impair beta cell function and reduce beta cell mass as a consequence of the lipotoxicity that occurs in type 2 diabetes (T2D). We previously reported that the membrane protein caveolin-1 (CAV1) sensitizes to palmitate-induced apoptosis in the beta pancreatic cell line MIN6. Thus, our hypothesis was that CAV1 knock-out (CAV1 KO) mice subjected to a high fat diet (HFD) should suffer less damage to beta cells than wild type (WT) mice. Here, we evaluated the in vivo response of beta cells in the pancreatic islets of 8-week-old C57Bl/6J CAV1 KO mice subjected to a control diet (CD, 14% kcal fat) or a HFD (60% kcal fat) for 12 weeks. We observed that CAV1 KO mice were resistant to weight gain when on HFD, although they had high serum cholesterol and FFA levels, impaired glucose tolerance and were insulin resistant. Some of these alterations were also observed in mice on CD. Interestingly, KO mice fed with HFD showed an adaptive response of the pancreatic beta cells and exhibited a significant decrease in beta cell apoptosis in their islets compared to WT mice. These in vivo results suggest that although the CAV1 KO mice are metabolically unhealthy, they adapt better to a HFD than WT mice. To shed light on the possible signaling pathway(s) involved, MIN6 murine beta cells expressing (MIN6 CAV) or not expressing (MIN6 Mock) CAV1 were incubated with the saturated fatty acid palmitate in the presence of mitogen-activated protein kinase inhibitors. Western blot analysis revealed that CAV1 enhanced palmitate-induced JNK, p38 and ERK phosphorylation in MIN6 CAV1 cells. Moreover, all the MAPK inhibitors partially restored MIN6 viability, but the effect was most notable with the ERK inhibitor. In conclusion, our results suggest that CAV1 KO mice adapted better to a HFD despite their altered metabolic state and that this may at least in part be due to reduced beta cell damage. Moreover, they indicate that the ability of CAV1 to increase sensitivity to FFAs may be mediated by MAPK and particularly ERK activation.
Collapse
|
15
|
Wysham C, Shubrook J. Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications. Postgrad Med 2020; 132:676-686. [PMID: 32543261 DOI: 10.1080/00325481.2020.1771047] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well known that type 2 diabetes mellitus (T2D) is a globally increasing health burden. Despite recent therapeutic advances and the availability of many different classes of antihyperglycemic therapy, a large proportion of people do not achieve glycemic control. A decline in pancreatic beta-cell function has been defined as a key contributing factor to progression of T2D. In fact, a significant proportion of beta-cell secretory capacity is thought to be lost well before the diagnosis of T2D is made. Several models have been proposed to explain the reduction in beta-cell function, including reduced beta-cell number, beta-cell exhaustion, and dedifferentiation or transdifferentiation into other cell types. However, there have been reports that suggest remission of T2D is possible, and it is believed that beta-cell dysfunction may be, in part, reversible. As such, the question of whether beta cells are committed to failure in people with T2D is complex. It is now widely accepted that early restoration of normoglycemia may protect beta-cell function. Key to the successful implementation of this approach in clinical practice is the appropriate assessment of individuals at risk of beta-cell failure, and the early implementation of appropriate treatment options. In this review, we discuss the progression of T2D in the context of beta-cell failure and describe how C-peptide testing can be used to assess beta-cell function in primary care practice. In conclusion, significant beta-cell dysfunction is likely in individuals with certain clinical characteristics of T2D, such as long duration of disease, high glycated hemoglobin (≥9%), and/or long-term use of therapies that continuously stimulate the beta cell. In these people, measurement of beta-cell status could assist with choice of appropriate therapy to delay or potentially reverse beta-cell dysfunction and the progression of T2D.
Collapse
Affiliation(s)
- Carol Wysham
- Department of Diabetes and Endocrinology, Rockwood Diabetes & Endocrinology Clinic , Spokane, WA, USA
| | - Jay Shubrook
- College of Osteopathic Medicine, Touro University California , Vallejo, CA, USA
| |
Collapse
|
16
|
Fujii M, Murakami Y, Karasawa Y, Sumitomo Y, Fujita S, Koyama M, Uda S, Kubota H, Inoue H, Konishi K, Oba S, Ishii S, Kuroda S. Logical design of oral glucose ingestion pattern minimizing blood glucose in humans. NPJ Syst Biol Appl 2019; 5:31. [PMID: 31508240 PMCID: PMC6718521 DOI: 10.1038/s41540-019-0108-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Excessive increase in blood glucose level after eating increases the risk of macroangiopathy, and a method for not increasing the postprandial blood glucose level is desired. However, a logical design method of the dietary ingestion pattern controlling the postprandial blood glucose level has not yet been established. We constructed a mathematical model of blood glucose control by oral glucose ingestion in three healthy human subjects, and predicted that intermittent ingestion 30 min apart was the optimal glucose ingestion patterns that minimized the peak value of blood glucose level. We confirmed with subjects that this intermittent pattern consistently decreased the peak value of blood glucose level. We also predicted insulin minimization pattern, and found that the intermittent ingestion 30 min apart was optimal, which is similar to that of glucose minimization pattern. Taken together, these results suggest that the glucose minimization is achieved by suppressing the peak value of insulin concentration, rather than by enhancing insulin concentration. This approach could be applied to design optimal dietary ingestion patterns.
Collapse
Affiliation(s)
- Masashi Fujii
- Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Present Address: Department of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526 Japan
| | - Yohei Murakami
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasuaki Karasawa
- Department of Neurosurgery, The University of Tokyo Hospital, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Rehabilitation, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Yohei Sumitomo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Suguru Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masanori Koyama
- Department of Mathematics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, 525-8577 Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, 920-8640 Japan
| | - Katsumi Konishi
- Faculty of Computer and Information Sciences, Hosei University, Tokyo, 184-8584 Japan
| | - Shigeyuki Oba
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501 Japan
| | - Shin Ishii
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501 Japan
- CREST, Japan Science and Technology Agency, Tokyo, 113-0033 Japan
| | - Shinya Kuroda
- Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
- CREST, Japan Science and Technology Agency, Tokyo, 113-0033 Japan
| |
Collapse
|
17
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
18
|
Ye S, Chen H, Ren X, Wen J, Du Y, Li X, Zhang R, Yu L, Zhang B, Du D, Sun F. Carbonated beverage consumption is associated with lower C-peptide in adolescents. J Pediatr Endocrinol Metab 2019; 32:447-454. [PMID: 31042641 DOI: 10.1515/jpem-2018-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 03/14/2019] [Indexed: 11/15/2022]
Abstract
Background Too much consumption of carbonated beverages increases the risk of diabetes. Insulin deficiency and the body's decreased sensitivity to insulin cause diabetes. C-peptide can assess a person's own insulin secretion. The decrease of C-peptide is closely related to the occurrence of diabetes and its chronic complications. The present study assessed the effect of carbonated beverages on C-peptide in adolescents and analyzed the correlation between C-peptide and the drinking index (DI). Methods The subjects investigated including 463 adolescents were divided into a carbonated beverages group, a non-carbonated beverages group and a control group. The general demographic characteristics, beverage consumption status, physical activity and family history of hypertension and diabetes were interviewed with a questionnaire designed by us. All the subjects maintained their original lifestyle and received the oral glucose tolerance test. Various biochemical indicators and C-peptides were detected in these three groups. The data were analyzed by statistical analysis, and multivariate logistic regression analysis was used to examine the risk factors related to C-peptide. Results Blood glucose, blood lipid, liver function and renal function had no statistically significant difference among the three groups. C-peptide levels were lower in the carbonated beverages group and the non-carbonated beverages group than in the control group. Compared to the non-carbonated beverages group, there was a significant decrease in C-peptide levels in the carbonated beverages group. Logistic analysis demonstrated that DI was negatively correlated with C-peptide levels when the physical activity was adjusted. The odds ratio (OR) (OR = 2.540, 95% confidence interval [CI] 1.121-5.752) value difference was statistically significant at a stratification level of DI ≥ 6. Conclusions The C-peptide of adolescents was affected by the long-term consumption of beverages, and the effect of carbonated beverages was even more obvious. DI ≥ 6 bottle-years was a risk factor for diabetes, and we can constitute prevention and control measures accordingly so as to reduce the incidence of diabetes.
Collapse
Affiliation(s)
- Shengkai Ye
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Haiying Chen
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning 116021, China, Phone: +86-0411-80841136
| | - Xia Ren
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Jie Wen
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Ying Du
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Xue Li
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Ru Zhang
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Li Yu
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Biying Zhang
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Delian Du
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| | - Feifan Sun
- Department of Endocrinology, The 967th Hospital of P.L.A., Dalian, Liaoning, China
| |
Collapse
|