1
|
Pellegrina D, Wilson HL, Mutwiri GK, Helmy M. Transcriptional Systems Vaccinology Approaches for Vaccine Adjuvant Profiling. Vaccines (Basel) 2025; 13:33. [PMID: 39852812 PMCID: PMC11768747 DOI: 10.3390/vaccines13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Adjuvants are a diverse group of substances that can be added to vaccines to enhance antigen-specific immune responses and improve vaccine efficacy. The first adjuvants, discovered almost a century ago, were soluble crystals of aluminium salts. Over the following decades, oil emulsions, vesicles, oligodeoxynucleotides, viral capsids, and other complex organic structures have been shown to have adjuvant potential. However, the detailed mechanisms of how adjuvants enhance immune responses remain poorly understood and may be a barrier that reduces the rational selection of vaccine components. Previous studies on mechanisms of action of adjuvants have focused on how they activate innate immune responses, including the regulation of cell recruitment and activation, cytokine/chemokine production, and the regulation of some "immune" genes. This approach provides a narrow perspective on the complex events involved in how adjuvants modulate antigen-specific immune responses. A comprehensive and efficient way to investigate the molecular mechanism of action for adjuvants is to utilize systems biology approaches such as transcriptomics in so-called "systems vaccinology" analysis. While other molecular biology methods can verify if one or few genes are differentially regulated in response to vaccination, systems vaccinology provides a more comprehensive picture by simultaneously identifying the hundreds or thousands of genes that interact with complex networks in response to a vaccine. Transcriptomics tools such as RNA sequencing (RNA-Seq) allow us to simultaneously quantify the expression of practically all expressed genes, making it possible to make inferences that are only possible when considering the system as a whole. Here, we review some of the challenges in adjuvant studies, such as predicting adjuvant activity and toxicity when administered alone or in combination with antigens, or classifying adjuvants in groups with similar properties, while underscoring the significance of transcriptomics in systems vaccinology approaches to propel vaccine development forward.
Collapse
Affiliation(s)
- Diogo Pellegrina
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
| | - Heather L. Wilson
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - George K. Mutwiri
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Mohamed Helmy
- Vaccine and Infectious Diseases Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; (D.P.); (H.L.W.); (G.K.M.)
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
- Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Department of Computer Science, Idaho State University, Pocatello, ID 83209, USA
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| |
Collapse
|
2
|
Moraga-Fernández A, de Sousa-Blanco M, Marques JP, Queirós J, Fernández-Melgar R, García-Álvarez O, Alves PC, Contreras M. Impact of vaccination with the Anaplasma phagocytophilum MSP4 chimeric antigen on gene expression in the rabbit host. Res Vet Sci 2024; 178:105370. [PMID: 39116823 DOI: 10.1016/j.rvsc.2024.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
There are currently no vaccines available to prevent and control of Anaplasma phagocytophilum, an intracellular bacterial pathogen transmitted by ticks that occurs in many regions of the world and causes disease in a wide range of domestic and wild hosts, including humans. Vaccines induce long-lasting immunity and could prevent or reduce transmission of this pathogen. Understanding how vaccines induce a protective response can be difficult due to the complexity of the immune system, which operates at many levels throughout the organism. New perspectives in vaccinology, based on systems biology approaches, integrate many scientific disciplines to fully understand the biological responses to vaccination, where a transcriptomic approach could reveal relevant information of the host immune system, allowing profiling for rational design of vaccine formulations, administration, and potential protection. In the present study we report the gene expression profiles by RNA-seq followed by functional analysis using whole blood samples from rabbits immunized with a recombinant chimeric protein containing peptides from the MSP4 protein of A. phagocytophilum, which showed satisfactory results in terms of potential protection. Transcriptomic analysis revealed differential expression of 720 genes, with 346 genes upregulated and 374 genes downregulated. Overrepresentation of biological and metabolic pathways correlated with immune response, protein signaling, cytoskeleton organization and protein synthesis were found. These changes in gene expression could provide a complete and unique picture of the biological response to the epitope candidate vaccine against A. phagocytophilum in the host.
Collapse
Affiliation(s)
- Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - María de Sousa-Blanco
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - João Pedro Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - João Queirós
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal
| | - Rubén Fernández-Melgar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Olga García-Álvarez
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Paulo C Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Estação Biológica de Mértola (EBM), CIBIO, Praça Luís de Camões, Mértola 7750-329, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.
| |
Collapse
|
3
|
Zhao X, Zhao J, Wang J, Liao C, Guan Q, Han Q. Immune protection of three serine protease inhibitors vaccine in mice against Rhipicephalus sanguineus. Sci Rep 2024; 14:7703. [PMID: 38565937 PMCID: PMC10987660 DOI: 10.1038/s41598-024-58303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Bioactive molecules in tick saliva are considered to be key to successful feeding and further the transmission of tick-borne pathogens. Problems such as pathogen transmission and animal weight loss result in tick infestation can cause tremendous economic losses to the livestock industry. Therefore, the development of a universal tick vaccine is urgently needed. In this paper, three serine protease inhibitor (serpin) proteins RMS-3, L7LRK7 and L7LTU1 were analyzed with bioinformatics methods. Subsequently the proteins were expressed and purified, and inoculated into Kunming mice for immune protection analysis. The amino acid sequence similarities between RMS-3, L7LRK7 and L7LTU1 were up to 90% in Rhipicephalus sanguineus. The recombinant RMS-3 + L7LRK7 + L7LTU1 showed anticoagulant reaction function and could inhibit the activity of CD4+ lymphocytes, when inoculated into Kunming mice. Additionally, After the immunized mice were challenged with Rhipicephalus sanguineus, the percentage of larvae and nymphs that were fully engorged dropped to 40.87% (P < 0.05) and 87.68% (P > 0.05) in the RmS-3 + L7LRK7 immune group, 49.57% (P < 0.01) and 52.06% (P < 0.05) in the RmS-3 + L7LTU1 group, and 45.22% (P < 0.05) and 60.28% (P < 0.05) in the RmS-3 + L7LRK7 + L7LTU1 immune group, in comparison with the control group. These data indicate that RmS-3 + L7LRK7 + L7LTU1 has good immune protection and has the potential to be developed into a vaccine against the larvae and nymphs of R. sanguineus.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Jianguo Zhao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Jinhua Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China
| | - Qingfeng Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou, 570228, Hainan, China.
- One Health Institute, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
4
|
Pathak RK, Kim JM. Veterinary systems biology for bridging the phenotype-genotype gap via computational modeling for disease epidemiology and animal welfare. Brief Bioinform 2024; 25:bbae025. [PMID: 38343323 PMCID: PMC10859662 DOI: 10.1093/bib/bbae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Veterinary systems biology is an innovative approach that integrates biological data at the molecular and cellular levels, allowing for a more extensive understanding of the interactions and functions of complex biological systems in livestock and veterinary science. It has tremendous potential to integrate multi-omics data with the support of vetinformatics resources for bridging the phenotype-genotype gap via computational modeling. To understand the dynamic behaviors of complex systems, computational models are frequently used. It facilitates a comprehensive understanding of how a host system defends itself against a pathogen attack or operates when the pathogen compromises the host's immune system. In this context, various approaches, such as systems immunology, network pharmacology, vaccinology and immunoinformatics, can be employed to effectively investigate vaccines and drugs. By utilizing this approach, we can ensure the health of livestock. This is beneficial not only for animal welfare but also for human health and environmental well-being. Therefore, the current review offers a detailed summary of systems biology advancements utilized in veterinary sciences, demonstrating the potential of the holistic approach in disease epidemiology, animal welfare and productivity.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
5
|
Mantilla Valdivieso EF, Ross EM, Raza A, Naseem MN, Kamran M, Hayes BJ, Jonsson NN, James P, Tabor AE. Transcriptional changes in the peripheral blood leukocytes from Brangus cattle before and after tick challenge with Rhipicephalus australis. BMC Genomics 2022; 23:454. [PMID: 35725367 PMCID: PMC9208207 DOI: 10.1186/s12864-022-08686-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Background Disease emergence and production loss caused by cattle tick infestations have focused attention on genetic selection strategies to breed beef cattle with increased tick resistance. However, the mechanisms behind host responses to tick infestation have not been fully characterised. Hence, this study examined gene expression profiles of peripheral blood leukocytes from tick-naive Brangus steers (Bos taurus x Bos indicus) at 0, 3, and 12 weeks following artificial tick challenge experiments with Rhipicephalus australis larvae. The aim of the study was to investigate the effect of tick infestation on host leukocyte response to explore genes associated with the expression of high and low host resistance to ticks. Results Animals with high (HR, n = 5) and low (LR, n = 5) host resistance were identified after repeated tick challenge. A total of 3644 unique differentially expressed genes (FDR < 0.05) were identified in the comparison of tick-exposed (both HR and LR) and tick-naive steers for the 3-week and 12-week infestation period. Enrichment analyses showed genes were involved in leukocyte chemotaxis, coagulation, and inflammatory response. The IL-17 signalling, and cytokine-cytokine interactions pathways appeared to be relevant in protection and immunopathology to tick challenge. Comparison of HR and LR phenotypes at timepoints of weeks 0, 3, and 12 showed there were 69, 8, and 4 differentially expressed genes, respectively. Most of these genes were related to immune, tissue remodelling, and angiogenesis functions, suggesting this is relevant in the development of resistance or susceptibility to tick challenge. Conclusions This study showed the effect of tick infestation on Brangus cattle with variable phenotypes of host resistance to R. australis ticks. Steers responded to infestation by expressing leukocyte genes related to chemotaxis, cytokine secretion, and inflammatory response. The altered expression of genes from the bovine MHC complex in highly resistant animals at pre- and post- infestation stages also supports the relevance of this genomic region for disease resilience. Overall, this study offers a resource of leukocyte gene expression data on matched tick-naive and tick-infested steers relevant for the improvement of tick resistance in composite cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08686-3.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia.
| | - Elizabeth M Ross
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ali Raza
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Noman Naseem
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Muhammad Kamran
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Nicholas N Jonsson
- University of Glasgow, Institute of Biodiversity Animal Health and Comparative Medicine, Glasgow, G61 1QH, UK.
| | - Peter James
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia
| | - Ala E Tabor
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, St Lucia, Queensland, 4072, Australia. .,The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
6
|
Gardinassi LG, Maruyama SR, Cantacessi C. Editorial: Systems Biology of Hosts, Parasites and Vectors. Front Cell Infect Microbiol 2021; 11:796475. [PMID: 34805003 PMCID: PMC8599433 DOI: 10.3389/fcimb.2021.796475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luiz Gustavo Gardinassi
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Transcriptomic Profiling of Dromedary Camels Immunised with a MERS Vaccine Candidate. Vet Sci 2021; 8:vetsci8080156. [PMID: 34437478 PMCID: PMC8402689 DOI: 10.3390/vetsci8080156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Middle East Respiratory Syndrome coronavirus (MERS-CoV) infects dromedary camels and zoonotically infects humans, causing a respiratory disease with severe pneumonia and death. With no approved antiviral or vaccine interventions for MERS, vaccines are being developed for camels to prevent virus transmission into humans. We have previously developed a chimpanzee adenoviral vector-based vaccine for MERS-CoV (ChAdOx1 MERS) and reported its strong humoral immunogenicity in dromedary camels. Here, we looked back at total RNA isolated from whole blood of three immunised dromedaries pre and post-vaccination during the first day; and performed RNA sequencing and bioinformatic analysis in order to shed light on the molecular immune responses following a ChAdOx1 MERS vaccination. Our finding shows that a number of transcripts were differentially regulated as an effect of the vaccination, including genes that are involved in innate and adaptive immunity, such as type I and II interferon responses. The camel Bcl-3 and Bcl-6 transcripts were significantly upregulated, indicating a strong activation of Tfh cell, B cell, and NF-κB pathways. In conclusion, this study gives an overall view of the first changes in the immune transcriptome of dromedaries after vaccination; it supports the potency of ChAdOx1 MERS as a potential camel vaccine to block transmission and prevent new human cases and outbreaks.
Collapse
|
8
|
Hervet C, Boullier J, Guiadeur M, Michel L, Brun-Lafleur L, Aupiais A, Zhu J, Mounaix B, Meurens F, Renois F, Assié S. Appeasing Pheromones against Bovine Respiratory Complex and Modulation of Immune Transcript Expressions. Animals (Basel) 2021; 11:ani11061545. [PMID: 34070477 PMCID: PMC8229285 DOI: 10.3390/ani11061545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine respiratory disease is still a major concern and has major economic impact. Another consequence of respiratory infections is the use of antimicrobial molecules to control bacterial pathogens. This can participate in the emergence and shedding of antimicrobial resistance that can threaten animal as well as human health. Appeasing pheromones with their capacity to reduce stress and thus their ability to preserve the functions of the immune system have been proposed to reduce the use of antimicrobial substances. In this study, we assessed the effect of appeasing pheromone administration on bovine health and performance during the fattening period. Zootechnical and health parameters and whole blood immune transcript expressions were measured over four weeks in bulls to determine the effect of the pheromone. We observed increased clinical signs on Day 8 (D8) and decreased clinical signs on D30 in bulls who received the pheromone and a higher expression of interleukin 8 transcripts in this group than in the control group on D8. Our results are overall in line with previous reports in livestock species. Further studies are needed to shed more light on the effect of appeasing pheromones and decipher their exact mechanisms of action.
Collapse
Affiliation(s)
- Caroline Hervet
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
| | - Justine Boullier
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
- Institut de l’Élevage, 14310 Villers-Bocage, France;
| | | | - Léa Michel
- TERRENA Innovation, La Noëlle, 20199 Ancenis, France;
| | | | - Anne Aupiais
- Institut de l’Élevage, 35652 Le Rheu, France; (L.B.-L.); (A.A.); (B.M.)
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
| | - Béatrice Mounaix
- Institut de l’Élevage, 35652 Le Rheu, France; (L.B.-L.); (A.A.); (B.M.)
| | - François Meurens
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, Saskatoon, SK S7N5E3, Canada
- Correspondence: ; Tel.: +33-240-68-77-02
| | - Fanny Renois
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
| | - Sébastien Assié
- BIOEPAR, INRAE, Oniris, 44307 Nantes, France; (C.H.); (J.B.); (F.R.); (S.A.)
| |
Collapse
|
9
|
Olajiga O, Holguin-Rocha AF, Rippee-Brooks M, Eppler M, Harris SL, Londono-Renteria B. Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines (Basel) 2021; 9:347. [PMID: 33916367 PMCID: PMC8066741 DOI: 10.3390/vaccines9040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
The saliva of hematophagous arthropods contains a group of active proteins to counteract host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins have significant impacts on modulating pathogen transmission, immunogenicity expression, the establishment of infection, and even disease severity. Recent studies have shown that several salivary proteins are immunogenic and antibodies against them may block infection, thereby suggesting potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied for their therapeutic potential as vaccine candidates or to control the transmission of human vector-borne pathogens and immune responses against different arthropod salivary proteins.
Collapse
Affiliation(s)
- Olayinka Olajiga
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Andrés F. Holguin-Rocha
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | | | - Megan Eppler
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Shanice L. Harris
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| |
Collapse
|
10
|
Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020; 22:16. [PMID: 32754004 PMCID: PMC7377208 DOI: 10.1186/s12575-020-00127-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV. Results In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients. Conclusions Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Eftekhari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|