1
|
Cherkashina O, Tsitrina A, Abolin D, Morgun E, Kosykh A, Sabirov M, Vorotelyak E, Kalabusheva E. The Recovery of Epidermal Proliferation Pattern in Human Skin Xenograft. Cells 2025; 14:448. [PMID: 40136697 PMCID: PMC11941497 DOI: 10.3390/cells14060448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Abnormalities in epidermal keratinocyte proliferation are a characteristic feature of a range of dermatological conditions. These include hyperproliferative states in psoriasis and dermatitis as well as hypoproliferative states in chronic wounds. This emphasises the importance of investigating the proliferation kinetics under conditions of healthy skin and identifying the key regulators of epidermal homeostasis, maintenance, and recovery following wound healing. Animal models contribute to our understanding of human epidermal self-renewal. Human skin xenografting overcomes the ethical limitations of studying human skin during regeneration. The application of this approach has allowed for the identification of a single population of stem cells and both slowly and rapidly cycling progenitors within the epidermal basal layer and the mapping of their location in relation to rete ridges and hair follicles. Furthermore, we have traced the dynamics of the proliferation pattern reorganization that occurs during epidermal regeneration, underlining the role of YAP activity in epidermal relief formation.
Collapse
Affiliation(s)
- Olga Cherkashina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Alexandra Tsitrina
- Ilse Katz Institute of Nanoscale Science, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Danila Abolin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Elena Morgun
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Anastasiya Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marat Sabirov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia (E.K.)
| |
Collapse
|
2
|
Broecker V, Toulza F, Brännström M, Ernst A, Roufosse C, Carbonnel M, Alkattan Z, Mölne J. Transcript analysis of uterus transplant cervical biopsies using the Banff Human Organ Transplant panel. Am J Transplant 2025; 25:329-342. [PMID: 39216690 DOI: 10.1016/j.ajt.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Uterus transplantation is being more widely implemented in clinical practice. Monitoring of rejection is routinely done for cervical biopsies and is dependent on histopathological assessment, as rejections are clinically silent and nonhistological biomarkers are missing. Until this gap is filled, it is important to corroborate the histopathological diagnosis of rejection through independent methods such as gene expression analysis. In this study, we compared our previously published scoring system for grading rejection in uterus transplant cervical biopsies to the gene expression profile in the same biopsy. For this, we used the Banff Human Organ Transplant gene panel to analyze the expression of 788 genes in 75 paraffin-embedded transplant cervical biopsies with a spectrum of histologic findings, as well as in 24 cervical biopsies from healthy controls. We found that gene expression in borderline changes did not differ from normal transplants, whereas the genes with increased expression in mild rejections overlapped with previously published rejection-associated transcripts. Moderate/severe rejection samples showed a gene expression pattern characterized by a mixture of rejection-associated and tissue injury-associated genes and a decrease in epithelial transcripts. In summary, our findings support our proposed scoring system for rejection but argue against the treatment of borderline changes.
Collapse
Affiliation(s)
- Verena Broecker
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Frederic Toulza
- Department of Immunology and Inflammation, Imperial College, Centre for Inflammatory Disease, London, United Kingdom
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Angela Ernst
- Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Germany; Institute for AI and Informatics in Medicine, Technical University of Munich, Germany
| | - Candice Roufosse
- Department of Immunology and Inflammation, Imperial College, Centre for Inflammatory Disease, London, United Kingdom
| | - Marie Carbonnel
- Department of Obstetrics and Gynecology, Foch Hospital, University of Versailles-Saint-Quentin-en-Yvelines Paris Saclay, Suresnes, France
| | - Zeinab Alkattan
- Department of Obstetrics and Gynecology, Halland Hospital, Varberg, Region Halland, Sweden
| | - Johan Mölne
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden; Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
3
|
Cui YY, Yang YH, Zheng JY, Ma HH, Han X, Liao CS, Zhou M. Elevated neutrophil extracellular trap levels in periodontitis: Implications for keratinization and barrier function in gingival epithelium. J Clin Periodontol 2024; 51:1210-1221. [PMID: 38839576 DOI: 10.1111/jcpe.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
AIM To explore the levels of neutrophil extracellular traps (NETs) in patients with periodontitis and examine their effects on keratinization, barrier function of human gingival keratinocytes (HGKs) and the associated mechanisms. MATERIALS AND METHODS Saliva, gingival crevicular fluid (GCF), clinical periodontal parameters and gingival specimens were collected from 10 healthy control subjects and 10 patients with stage II-IV periodontitis to measure the NET levels. Subsequently, mRNA and protein levels of keratinization and barrier indicators, as well as intracellular calcium and epithelial barrier permeability, were analysed in HGKs after NET stimulation. RESULTS The study showed that NET levels significantly elevated in patients with periodontitis, across multiple specimens including saliva, GCF and gingival tissues. Stimulation of HGKs with NETs resulted in a decrease in the expressions of involucrin, cytokeratin 10, zonula occludens 1 and E-cadherin, along with decreased intracellular calcium levels and increased epithelial barrier permeability. Furthermore, the inhibition of keratinization by NETs is ERK-KLF4-dependent. CONCLUSIONS This study indicates that NETs impair the barrier function of HGKs and suppress keratinization through ERK/KLF4 axis. These findings provide potential targets for therapeutic approaches in periodontitis to address impaired gingival keratinization.
Collapse
Affiliation(s)
- Ya-Yun Cui
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yi-Heng Yang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Yi Zheng
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Hui Ma
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue Han
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chong-Shan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Min Zhou
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Periodontology, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Zhang M, Li Y, Jiang Y. Comprehensive transcriptional analysis of early dorsal skin development in pigs. Gene 2024; 899:148141. [PMID: 38184019 DOI: 10.1016/j.gene.2024.148141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Porcine skin is similar to human skin in physiology, anatomy and histology and is often used as a model animal for human skin research. There are few studies on the transcriptome aspects of pig skin during the embryonic period. In this study, RNA sequencing was performed on the dorsal skin of Chenghua sows at embryonic day 56 (E56), embryonic day 76 (E76), embryonic day 105 (E105), and 3 days after birth (D3) to explore RNA changes in pig dorsal skin at four ages. A number of skin-related differential genes were identified by intercomparison between RNAs at four time points, and KEGG functional analysis showed that these differential genes were mainly enriched in metabolic and developmental, immune, and disease pathways, and the pathways enriched in GO analysis were highly overlapping. Collagen is an important part of the skin, with type I collagen making up the largest portion. In this study, collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2) were significantly upregulated at four time points. In addition, lncRNA-miRNA-mRNA and miRNA-circRNA coexpression networks were constructed. The data obtained may help to explain age-related changes in transcriptional patterns during skin development and provide further references for understanding human skin development at the molecular level.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
5
|
Cai S, Wang X, Xu R, Liang Z, Zhu Q, Chen M, Lin Z, Li C, Duo T, Tong X, Li E, He Z, Liu X, Chen Y, Mo D. KLF4 regulates skeletal muscle development and regeneration by directly targeting P57 and Myomixer. Cell Death Dis 2023; 14:612. [PMID: 37723138 PMCID: PMC10507053 DOI: 10.1038/s41419-023-06136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell proliferation, apoptosis, and differentiation. Our previous study showed that KLF4 expression is upregulated in skeletal muscle ontogeny during embryonic development in pigs, suggesting its importance for skeletal muscle development and muscle function. We revealed here that KLF4 plays a critical role in skeletal muscle development and regeneration. Specific knockout of KLF4 in skeletal muscle impaired muscle formation further affecting physical activity and also defected skeletal muscle regeneration. In vitro, KLF4 was highly expressed in proliferating myoblasts and early differentiated cells. KLF4 knockdown promoted myoblast proliferation and inhibited myoblast fusion, while its overexpression showed opposite results. Mechanically, in proliferating myoblasts, KLF4 inhibits myoblast proliferation through regulating cell cycle arrest protein P57 by directly targeting its promoter; while in differentiated myoblasts, KLF4 promotes myoblast fusion by transcriptionally activating Myomixer. Our study provides mechanistic information for skeletal muscle development, reduced muscle strength and impaired regeneration after injury and unveiling the mechanism of KLF4 in myogenic regulation.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Zhuhu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Chenggan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Coutier J, Auvré F, Lemaître G, Lataillade JJ, Deleuze JF, Roméo PH, Martin MT, Fortunel NO. MXD4/MAD4 Regulates Human Keratinocyte Precursor Fate. J Invest Dermatol 2023; 143:105-114.e12. [PMID: 36007550 DOI: 10.1016/j.jid.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
Deciphering the pathways that regulate human epidermal precursor cell fate is necessary for future developments in skin repair and graft bioengineering. Among them, characterization of pathways regulating the keratinocyte (KC) precursor immaturity versus differentiation balance is required for improving the efficiency of KC precursor ex vivo expansion. In this study, we show that the transcription factor MXD4/MAD4 is expressed at a higher level in quiescent KC stem/progenitor cells located in the basal layer of human epidermis than in cycling progenitors. In holoclone KCs, stable short hairpin-RNA‒mediated decreased expression of MXD4/MAD4 increases MYC expression, whose modulation increases the proliferation of KC precursors and maintenance of their clonogenic potential and preserves the functionality of these precursors in three-dimensional epidermis organoid generation. Altogether, these results characterize MXD4/MAD4 as a major piece of the stemness puzzle in the human epidermis KC lineage and pinpoint an original avenue for ex vivo expansion of human KC precursors.
Collapse
Affiliation(s)
- Julien Coutier
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Frédéric Auvré
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Gilles Lemaître
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Jean-Jacques Lataillade
- INSERM UMRS-MD 1197, Institute of Armies Biomedical Research (IRBA), Armies Blood Transfusion Centre, Clamart, France
| | | | - Paul-Henri Roméo
- CEA-INSERM UMR1274, Research Laboratory on Repair and Transcription in hematopoietic Stem Cells, CEA/DRF/IBFJ/IRCM, Fontenay-aux-Roses, France; Paris-Diderot University, Paris, France; Paris-Saclay University, Gif-sur-Yvette, France
| | - Michèle T Martin
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France
| | - Nicolas O Fortunel
- Laboratory of Genomic and Radiobiology of Keratinopoiesis, CEA/DRF/IBFJ/IRCM, Evry, France; Paris-Saclay University, Evry Val-d'Essonne University, Evry, France.
| |
Collapse
|
8
|
Depoërs L, Dumont-Lagacé M, Trinh VQH, Houques C, Côté C, Larouche JD, Brochu S, Perreault C. Klf4 protects thymus integrity during late pregnancy. Front Immunol 2023; 14:1016378. [PMID: 37180153 PMCID: PMC10174329 DOI: 10.3389/fimmu.2023.1016378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Pregnancy causes abrupt thymic atrophy. This atrophy is characterized by a severe decrease in the number of all thymocyte subsets and qualitative (but not quantitative) changes in thymic epithelial cells (TECs). Pregnancy-related thymic involution is triggered by progesterone-induced functional changes affecting mainly cortical TECs (cTECs). Remarkably, this severe involution is rapidly corrected following parturition. We postulated that understanding the mechanisms of pregnancy-related thymic changes could provide novel insights into signaling pathways regulating TEC function. When we analyzed genes whose expression in TECs was modified during late pregnancy, we found a strong enrichment in genes bearing KLF4 transcription factor binding motifs. We, therefore, engineered a Psmb11-iCre : Klf4lox/lox mouse model to study the impact of TEC-specific Klf4 deletion in steady-state conditions and during late pregnancy. Under steady-state conditions, Klf4 deletion had a minimal effect on TEC subsets and did not affect thymic architecture. However, pregnancy-induced thymic involution was much more pronounced in pregnant females lacking Klf4 expression in TECs. These mice displayed a substantial ablation of TECs with a more pronounced loss of thymocytes. Transcriptomic and phenotypic analyses of Klf4 -/- TECs revealed that Klf4 maintains cTEC numbers by supporting cell survival and preventing epithelial-to-mesenchymal plasticity during late pregnancy. We conclude that Klf4 is essential for preserving TEC's integrity and mitigating thymic involution during late pregnancy.
Collapse
Affiliation(s)
- Lucyle Depoërs
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Maude Dumont-Lagacé
- ExCellThera, Inc., Montréal, QC, Canada
- Piercing Star Technologies, Rabat, Morocco
| | - Vincent Quoc-Huy Trinh
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cellular Biology, Institute for Research in Immunology and Cancer, and Centre de recherche du Centre hospitalier de l’Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Chloé Houques
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Caroline Côté
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-David Larouche
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| | - Claude Perreault
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| |
Collapse
|
9
|
Oceguera-Yanez F, Avila-Robinson A, Woltjen K. Differentiation of pluripotent stem cells for modeling human skin development and potential applications. Front Cell Dev Biol 2022; 10:1030339. [PMID: 36506084 PMCID: PMC9728031 DOI: 10.3389/fcell.2022.1030339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The skin of mammals is a multilayered and multicellular tissue that forms an environmental barrier with key functions in protection, regulation, and sensation. While animal models have long served to study the basic functions of the skin in vivo, new insights are expected from in vitro models of human skin development. Human pluripotent stem cells (PSCs) have proven to be invaluable tools for studying human development in vitro. To understand the mechanisms regulating human skin homeostasis and injury repair at the molecular level, recent efforts aim to differentiate PSCs towards skin epidermal keratinocytes, dermal fibroblasts, and skin appendages such as hair follicles and sebaceous glands. Here, we present an overview of the literature describing strategies for human PSC differentiation towards the components of skin, with a particular focus on keratinocytes. We highlight fundamental advances in the field employing patient-derived human induced PSCs (iPSCs) and skin organoid generation. Importantly, PSCs allow researchers to model inherited skin diseases in the search for potential treatments. Skin differentiation from human PSCs holds the potential to clarify human skin biology.
Collapse
Affiliation(s)
- Fabian Oceguera-Yanez
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| | | | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,*Correspondence: Fabian Oceguera-Yanez, ; Knut Woltjen,
| |
Collapse
|
10
|
Liu C, Ram S, Hurwitz BL. Network analysis reveals dysregulated functional patterns in type II diabetic skin. Sci Rep 2022; 12:6889. [PMID: 35477946 PMCID: PMC9046425 DOI: 10.1038/s41598-022-10652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Skin disorders are one of the most common complications of type II diabetes (T2DM). Long-term effects of high blood glucose leave individuals with T2DM more susceptible to cutaneous diseases, but its underlying molecular mechanisms are unclear. Network-based methods consider the complex interactions between genes which can complement the analysis of single genes in previous research. Here, we use network analysis and topological properties to systematically investigate dysregulated gene co-expression patterns in type II diabetic skin with skin samples from the Genotype-Tissue Expression database. Our final network consisted of 8812 genes from 73 subjects with T2DM and 147 non-T2DM subjects matched for age, sex, and race. Two gene modules significantly related to T2DM were functionally enriched in the pathway lipid metabolism, activated by PPARA and SREBF (SREBP). Transcription factors KLF10, KLF4, SP1, and microRNA-21 were predicted to be important regulators of gene expression in these modules. Intramodular analysis and betweenness centrality identified NCOA6 as the hub gene while KHSRP and SIN3B are key coordinators that influence molecular activities differently between T2DM and non-T2DM populations. We built a TF-miRNA-mRNA regulatory network to reveal the novel mechanism (miR-21-PPARA-NCOA6) of dysregulated keratinocyte proliferation, differentiation, and migration in diabetic skin, which may provide new insights into the susceptibility of skin disorders in T2DM patients. Hub genes and key coordinators may serve as therapeutic targets to improve diabetic skincare.
Collapse
Affiliation(s)
- Chunan Liu
- Department of Biosystems Engineering, BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Sudha Ram
- Department of Management Information Systems, BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
11
|
Kardeh S, Saber A, Mazloomrezaei M, Hosseini A. Telomere targeting is insufficient to ameliorate multifaceted hallmarks of aging in cultured keratinocytes. Burns 2022; 48:470-471. [PMID: 34887119 DOI: 10.1016/j.burns.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Sina Kardeh
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Saber
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mazloomrezaei
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Transplantation Biology Research Center Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Mestrallet G, Carosella ED, Martin MT, Rouas-Freiss N, Fortunel NO, LeMaoult J. Immunosuppressive Properties of Epidermal Keratinocytes Differ According to Their Immaturity Status. Front Immunol 2022; 13:786859. [PMID: 35222373 PMCID: PMC8878806 DOI: 10.3389/fimmu.2022.786859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Preservation of a functional keratinocyte stem cell pool is essential to ensure the long-term maintenance of epidermis integrity, through continuous physiological renewal and regeneration in case of injury. Protecting stem cells from inflammation and immune reactions is thus a critical issue that needs to be explored. Here, we show that the immature CD49fhigh precursor cell fraction from interfollicular epidermis keratinocytes, comprising stem cells and progenitors, is able to inhibit CD4+ T-cell proliferation. Of note, both the stem cell-enriched CD49fhigh/EGFRlow subpopulation and the less immature CD49fhigh/EGFRhigh progenitors ensure this effect. Moreover, we show that HLA-G and PD-L1 immune checkpoints are overexpressed in CD49fhigh precursors, as compared to CD49flow differentiated keratinocytes. This potency may limit immune reactions against immature precursors including stem cells, and protect them from exacerbated inflammation. Further exploring this correlation between immuno-modulation and immaturity may open perspectives in allogenic cell therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Edgardo D. Carosella
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Michele T. Martin
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Nicolas O. Fortunel
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France
- Université Paris-Saclay, Saint-Aubin, France
- *Correspondence: Joel LeMaoult, ; Nicolas O. Fortunel,
| | - Joel LeMaoult
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
- *Correspondence: Joel LeMaoult, ; Nicolas O. Fortunel,
| |
Collapse
|
13
|
Kang X, Lei J, Yang C, Zhang P, Li X, Zheng S, Li Q, Zhang J. A hybrid hydrogel composed of chitin and β-glucan for effectively management of wound healing and scarring. Biomater Sci 2022; 10:6024-6036. [DOI: 10.1039/d2bm00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-functional scar commonly forms after the skin injury. At present, most of the clinical treatments for scar eradication are typically with long treatment courses, low curative effects and expensive. In...
Collapse
|
14
|
Qin H, Chen Y, Wang S, Ge S, Pang Q. The role of KLF4 in melanogenesis and homeostasis in sheep melanocytes. Acta Histochem 2022; 124:151839. [PMID: 34998218 DOI: 10.1016/j.acthis.2021.151839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/01/2022]
Abstract
KLF4 expression has been associated with hair color in mammals and has also been found to regulate melanoma cell growth. Here, we assessed the influence of KLF4 on coat color formation and melanocytes. We found that KLF4 was highly expressed in the black skin of sheep both at the mRNA and protein levels compared with white skin. KLF4 immunostaining further showed that KLF4 protein was mainly expressed in epidermal, outer root, and hair bulb regions. In sheep melanocytes, the proliferation of melanocytes was inhibited by KLF4 overexpression and this decrease in cell proliferation was coupled with induction of the S phase, cell cycle arrest, and apoptosis. In vitro cell migration assays showed that KLF4 suppressed cell migration. In addition, KLF4 overexpression significantly increased melanin production and pigment-related gene expression. Collectively, our findings show that KLF4 is important for coat color formation and melanocyte homeostasis.
Collapse
|
15
|
Bao S, Zhang C, Aweya JJ, Yao D, Zhao Y, Tuan TN, Ma H, Zhang Y. KLF13 induces apoptotic cell clearance in Penaeus vannamei as an essential part of shrimp innate immune response to pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104242. [PMID: 34450131 DOI: 10.1016/j.dci.2021.104242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Although, in mammals, the Krüppel-like transcription factor 13 (KLF13) plays an essential role in cell proliferation, survival, differentiation, apoptosis, tumorigenesis, immune regulation, and inflammation, its role in penaeid shrimp is unclear. In the current study, we characterized a KLF13 homolog in Penaeus vannamei (PvKLF13), with full-length cDNA of 1677 bp and 1068 bp open reading frame (ORF) encoding a putative protein of 355 amino acids, which contains three ZnF_C2H2 domains. Sequence and phylogenetic analysis revealed that PvKLF13 shares a close evolutionary relationship with KLF13 from invertebrates. Transcript levels of PvKLF13 were ubiquitously expressed in shrimp and induced in hemocytes upon challenge with Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus (WSSV), suggesting the involvement of PvKLF13 in shrimp immune response to pathogens. Besides, knockdown of PvKLF13 decreased hemocytes apoptosis in terms of increased expression of pro-survival PvBcl-2, but decreased expression of pro-apoptotic PvBax and PvCytochrome C, coupled with high PvCaspase3/7 activity, especially upon V. parahaemolyticus challenge. The findings here indicate the involvement of PvKLF13 in apoptotic cell clearance as an essential part of shrimp innate immune response to pathogens.
Collapse
Affiliation(s)
- Shiyuan Bao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chuchu Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Tran Ngoc Tuan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
16
|
Mestrallet G, Rouas-Freiss N, LeMaoult J, Fortunel NO, Martin MT. Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Front Immunol 2021; 12:772516. [PMID: 34938293 PMCID: PMC8685247 DOI: 10.3389/fimmu.2021.772516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Although the role of epidermal cells in skin regeneration has been extensively documented, their functions in immunity and tolerance mechanisms are largely underestimated. The aim of the present review was to outline the state of knowledge on resident immune cells of hematopoietic origin hosted in the epidermis, and then to focus on the involvement of keratinocytes in the complex skin immune networks acting in homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of immune tolerance are reviewed. In particular, strategies based on immunosuppression mediated by HLA-G are highlighted, as recent advances in this field open up perspectives in epidermis-substitute bioengineering for temporary and permanent skin replacement strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Nathalie Rouas-Freiss
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Joel LeMaoult
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, Paris, France.,Université de Paris, UMR-S 976 HIPI Unit, Paris, France
| | - Nicolas O Fortunel
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| | - Michele T Martin
- Commissariat ã l'Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France.,Université Paris-Saclay, Saint-Aubin, France
| |
Collapse
|
17
|
Kuonen F, Li NY, Haensel D, Patel T, Gaddam S, Yerly L, Rieger K, Aasi S, Oro AE. c-FOS drives reversible basal to squamous cell carcinoma transition. Cell Rep 2021; 37:109774. [PMID: 34610301 PMCID: PMC8515919 DOI: 10.1016/j.celrep.2021.109774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements. Remarkably, despite prominent changes in cell morphology and BST marker expression, we show using inducible model systems that c-FOS-mediated BST demonstrates reversibility. Blocking EGFR pathway activation after c-FOS induction partially reverts BST in vitro and prevents BST features in both mouse models and human tumors. Thus, by identifying the molecular basis of BST, our work reveals a therapeutic opportunity targeting plasticity as a mechanism of tumor resistance.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/veterinary
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/veterinary
- Cell Transdifferentiation/drug effects
- Chromatin Assembly and Disassembly
- Drug Resistance, Neoplasm/genetics
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mucin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-fos/antagonists & inhibitors
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- Transcription Factor AP-1/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland.
| | - Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Yerly
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland
| | - Kerri Rieger
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Mestrallet G, Auvré F, Schenowitz C, Carosella ED, LeMaoult J, Martin MT, Rouas-Freiss N, Fortunel NO. Human Keratinocytes Inhibit CD4 + T-Cell Proliferation through TGFB1 Secretion and Surface Expression of HLA-G1 and PD-L1 Immune Checkpoints. Cells 2021; 10:cells10061438. [PMID: 34201301 PMCID: PMC8227977 DOI: 10.3390/cells10061438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Human skin protects the body against infection and injury. This protection involves immune and epithelial cells, but their interactions remain largely unknown. Here, we show that cultured epidermal keratinocytes inhibit allogenic CD4+ T-cell proliferation under both normal and inflammatory conditions. Inhibition occurs through the secretion of soluble factors, including TGFB1 and the cell-surface expression of HLA-G1 and PD-L1 immune checkpoints. For the first time, we here describe the expression of the HLA-G1 protein in healthy human skin and its role in keratinocyte-driven tissue immunomodulation. The overexpression of HLA-G1 with an inducible vector increased the immunosuppressive properties of keratinocytes, opening up perspectives for their use in allogeneic settings for cell therapy.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Frédéric Auvré
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
| | - Chantal Schenowitz
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Edgardo D. Carosella
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
| | - Joel LeMaoult
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Michèle T. Martin
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nathalie Rouas-Freiss
- CEA, DRF, Francois Jacob Institute of Biology, Hemato-Immunology Research Department, Saint-Louis Hospital, 75010 Paris, France; (C.S.); (E.D.C.)
- U976 HIPI Unit, IRSL, Université Paris, 75010 Paris, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| | - Nicolas O. Fortunel
- CEA, Laboratory of Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Francois Jacob Institute of Biology, DRF, 91000 Evry, France; (G.M.); (F.A.)
- Université Paris-Saclay, 91190 Saint-Aubin, France
- Correspondence: (J.L.); (M.T.M.); (N.R.-F.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-57-27-68-01 (N.R.-F.); +33-1-60-87-34-92 (N.O.F.)
| |
Collapse
|
19
|
McGinn J, Hallou A, Han S, Krizic K, Ulyanchenko S, Iglesias-Bartolome R, England FJ, Verstreken C, Chalut KJ, Jensen KB, Simons BD, Alcolea MP. A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium. Nat Cell Biol 2021; 23:511-525. [PMID: 33972733 PMCID: PMC7611004 DOI: 10.1038/s41556-021-00679-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.
Collapse
Affiliation(s)
- Jamie McGinn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Adrien Hallou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Seungmin Han
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Kata Krizic
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Ulyanchenko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frances J England
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kim B Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Maria P Alcolea
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK.
| |
Collapse
|
20
|
When the Search for Stemness Genes Meets the Skin Substitute Bioengineering Field: KLF4 Transcription Factor under the Light. Cells 2020; 9:cells9102188. [PMID: 32998444 PMCID: PMC7601001 DOI: 10.3390/cells9102188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
The transcription factor “Kruppel-like factor 4” (KLF4) is a central player in the field of pluripotent stem cell biology. In particular, it was put under the spotlight as one of the four factors of the cocktail originally described for reprogramming into induced pluripotent stem cells (iPSCs). In contrast, its possible functions in native tissue stem cells remain largely unexplored. We recently published that KLF4 is a regulator of “stemness” in human keratinocytes. We show that reducing the level of expression of this transcription factor by RNA interference or pharmacological repression promotes the ex vivo amplification and regenerative capacity of two types of cells of interest for cutaneous cell therapy: native keratinocyte stem and progenitor cells from adult epidermis, which have been used for more than three decades in skin graft bioengineering, and keratinocytes generated by the lineage-oriented differentiation of embryonic stem cells (ESCs), which have potential for the development of skin bio-bandages. At the mechanistic level, KLF4 repression alters the expression of a large set of genes involved in TGF-β1 and WNT signaling pathways. Major regulators of TGF-β bioavailability and different TGF-β receptors were targeted, notably modulating the ALK1/Smad1/5/9 axis. At a functional level, KLF4 repression produced an antagonist effect on TGF-β1-induced keratinocyte differentiation.
Collapse
|
21
|
Cavallero S, Neves Granito R, Stockholm D, Azzolin P, Martin MT, Fortunel NO. Exposure of Human Skin Organoids to Low Genotoxic Stress Can Promote Epithelial-to-Mesenchymal Transition in Regenerating Keratinocyte Precursor Cells. Cells 2020; 9:cells9081912. [PMID: 32824646 PMCID: PMC7466070 DOI: 10.3390/cells9081912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/26/2023] Open
Abstract
For the general population, medical diagnosis is a major cause of exposure to low genotoxic stress, as various imaging techniques deliver low doses of ionizing radiation. Our study investigated the consequences of low genotoxic stress on a keratinocyte precursor fraction that includes stem and progenitor cells, which are at risk for carcinoma development. Human skin organoids were bioengineered according to a clinically-relevant model, exposed to a single 50 mGy dose of γ rays, and then xeno-transplanted in nude mice to follow full epidermis generation in an in vivo context. Twenty days post-xenografting, mature skin grafts were sampled and analyzed by semi-quantitative immuno-histochemical methods. Pre-transplantation exposure to 50 mGy of immature human skin organoids did not compromise engraftment, but half of xenografts generated from irradiated precursors exhibited areas displaying focal dysplasia, originating from the basal layer of the epidermis. Characteristics of epithelial-to-mesenchymal transition (EMT) were documented in these dysplastic areas, including loss of basal cell polarity and cohesiveness, epithelial marker decreases, ectopic expression of the mesenchymal marker α-SMA and expression of the EMT promoter ZEB1. Taken together, these data show that a very low level of radiative stress in regenerating keratinocyte stem and precursor cells can induce a micro-environment that may constitute a favorable context for long-term carcinogenesis.
Collapse
Affiliation(s)
- Sophie Cavallero
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
| | - Renata Neves Granito
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
| | - Daniel Stockholm
- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS 951, Genethon, 91002 Evry, France;
| | - Peggy Azzolin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
| | - Michèle T. Martin
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
- Correspondence: (M.T.M.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-60-87-34-92 (N.O.F.); Fax: +33-1-60-87-34-98 (M.T.M. & N.O.F.)
| | - Nicolas O. Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000 Evry, France; (S.C.); (R.N.G.); (P.A.)
- INSERM U967, 92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, 75013 Paris 11, France
- Université Paris-Diderot, 78140 Paris 7, France
- Correspondence: (M.T.M.); (N.O.F.); Tel.: +33-1-60-87-34-91 (M.T.M.); +33-1-60-87-34-92 (N.O.F.); Fax: +33-1-60-87-34-98 (M.T.M. & N.O.F.)
| |
Collapse
|
22
|
Fortunel NO, Martin MT. [When stemness genes meet skin graft bioengineering: focus on KLF4]. Med Sci (Paris) 2020; 36:565-568. [PMID: 32614304 DOI: 10.1051/medsci/2020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas O Fortunel
- Laboratoire de génomique et radiobiologie de la kératinopoïèse, CEA/DRF/IBFJ/IRCM, 2 rue Gaston Crémieux, 91000 Évry, France Inserm U967, Fontenay-aux-Roses ; Université Paris-Diderot, Université Paris-Saclay, France
| | - Michèle T Martin
- Laboratoire de génomique et radiobiologie de la kératinopoïèse, CEA/DRF/IBFJ/IRCM, 2 rue Gaston Crémieux, 91000 Évry, France Inserm U967, Fontenay-aux-Roses ; Université Paris-Diderot, Université Paris-Saclay, France
| |
Collapse
|
23
|
Mesenchymal and Induced Pluripotent Stem Cells-Derived Extracellular Vesicles: The New Frontier for Regenerative Medicine? Cells 2020; 9:cells9051163. [PMID: 32397132 PMCID: PMC7290733 DOI: 10.3390/cells9051163] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine aims to repair damaged, tissues or organs for the treatment of various diseases, which have been poorly managed with conventional drugs and medical procedures. To date, multimodal regenerative methods include transplant of healthy organs, tissues, or cells, body stimulation to activate a self-healing response in damaged tissues, as well as the combined use of cells and bio-degradable scaffold to obtain functional tissues. Certainly, stem cells are promising tools in regenerative medicine due to their ability to induce de novo tissue formation and/or promote organ repair and regeneration. Currently, several studies have shown that the beneficial stem cell effects, especially for mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) in damaged tissue restore are not dependent on their engraftment and differentiation on the injury site, but rather to their paracrine activity. It is now well known that paracrine action of stem cells is due to their ability to release extracellular vesicles (EVs). EVs play a fundamental role in cell-to-cell communication and are directly involved in tissue regeneration. In the present review, we tried to summarize the molecular mechanisms through which MSCs and iPSCs-derived EVs carry out their therapeutic action and their possible application for the treatment of several diseases.
Collapse
|